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Abstract Although various forms for the Hashin–Shtrikman bounds on the effective elastic properties of inhomo-
geneousmaterials have beenwritten down over the last few decades, it is often unclear how to construct and compute
such bounds when the material is not of simple type (e.g. isotropic spheres inside an isotropic host phase). Here,
we show how to construct, in a straightforward manner, the Hashin–Shtrikman bounds for generally transversely
isotropic two-phase particulate composites where the inclusion phase is spheroidal, and its distribution is governed
by spheroidal statistics. Note that this case covers a multitude of composites used in applications by taking various
limits of the spheroid, including both layered media and long unidirectional composites. Of specific interest in this
case is the fact that the corresponding Eshelby and Hill tensors can be derived analytically. That the shape of the
inclusions and their distribution can be specified independently is of great utility in composite design. We exhibit
the implementation of the computations with several examples.

Keywords Fibre-reinforced materials · Hashin–Shtrikman bounds · Linear elasticity

1 Introduction

Fibre-reinforced composites (FRCs) are commonly employed in numerous applications in science and engineering,
one of theirmain uses being to provide improved tensile strength. It is therefore of great interest to possess knowledge
of the overall (effective) properties of such materials; of specific interest in this article will be their effective linear
elastic properties and the ability to determine useful bounds on these for a variety of fibre microstructures. FRCs
typically occur as one of two types: long unidirectional fibre materials where the fibres are aligned (parallel) to
some common axis and they are so long that end effects can be neglected, or short fibre materials where the short
fibres may or may not be aligned, depending upon the application. Such FRCs are frequently then used as ply phases
in order to build up layered composites, see e.g. Tsai [1]. Furthermore, such layered and FRC materials have the
potential to be of great use inmodernmetamaterial applications as was described by Torrent and Sanchez-Dehesa [2]
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and Amirkhizi et al. [3] for example. The main objective of this article is to pull together ideas relating to FRCs from
a variety of diverse publications, placing particular emphasis on the explicit construction and computation of the
Hashin–Shtrikman bounds on effective elastic constants, including information regarding the two-point correlation
functions associated with the distribution of inclusion phases.

From amathematical viewpoint, modelling inhomogeneous materials such as FRCs, which possess amicrostruc-
ture (i.e. a lengthscale that is much smaller than the characteristic lengthscale of loading, e.g. a propagating wave-
length) is difficult, because the partial differential equations that arise possess rapidly varying coefficients (in
space). Before the early 1960s, there was a paucity of theoretical work regarding the prediction of the effective
behaviour of elastic composite materials, i.e. elastic materials composed of two or more so-called phases that are
mixed together in order to improve and/or optimize the overall material behaviour in some sense. In particular,
very limited information was available regarding the prediction of the fourth-order effective linear elastic modulus
tensor C∗. Key results were those of Voigt [4] and Reuss [5] in 1889 and 1929, respectively, whose approximations
of uniform strain and stress (respectively) throughout the composite are straightforwardly identified as upper and
lower bounds (respectively) on the effective elastic properties. For a composite with phases labelled r = 0, . . . , n
and with associated elastic modulus tensors Cr , these bounds are written

CR ≤ C∗ ≤ CV .

Here the bounds are interpreted component-wise and the Reuss (lower) bound CR is defined by

CR =
(

n∑
r=0

φr (Cr )−1

)−1

, (1.1)

where φr is the volume fraction of the r th phase, and I is the fourth-order identity tensor with components Ii jk� =
(δikδ j� + δi�δ jk)/2. We have used A−1 to denote the inverse of the tensor A. Later, we discuss technical aspects
for the inversion of transversely isotropic tensors. Finally, the Voigt (upper) bound CV is defined by

CV =
n∑

r=0

φr Cr .

In addition to these bounds, there also existed Eshelby’s dilute estimate for particulate composites derived in his
seminal paper of 1957 [6]. Such dilute estimates are only valid for small volume fractions φr (asymptotically correct
to O(φr )) and furthermore, although the establishment of the Reuss/Voigt bounds was an important step, in many
cases, the distance between these bounds can be large, meaning that little can be inferred as regards the effective
elastic properties themselves.

Numerous important contributions to the subject occurred in the early 1960s, the main motivation being the
understanding of the overall behaviour of FRCs. At that time, such materials were used in a variety of applica-
tions but principally within the aerospace industry because of their high strength-to-weight ratio compared with
more conventional structural materials. In particular, Hashin and Shtrikman [7] established a variational principle
for elastostatics which they subsequently applied to multiphase (macroscopically isotropic) composites [8]. The
resulting bounds on the effective bulk and shear moduli are the celebrated Hashin–Shtrikman bounds. Hashin [9]
extended the principle in order to derive bounds for long FRCs where the macroscopic anisotropy is that of trans-
verse isotropy and phases are isotropic. Hashin [10] also derived results for fibre reinforced composites where
phases are transversely isotropic but not via the classical Hashin–Shtrikman variational scheme. Derivations of the
Hashin–Shtrikman bounds have been improved and revised by many authors since they were originally devised.
In particular, we note the works [11] and [12–16]. The analogous problem for nonlinear heterogeneous media has
been treated less frequently. In this regard, we can refer toWillis [17] where the approach of Hill [18] was applied to
nonlinear dielectrics, and Talbot andWillis [19] where theoretical aspects of the extension of the Hashin–Shtrikman
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variational principles to nonlinear heterogeneous systems were formulated. Other variational structures for non-
linear media, based on comparisons with linear homogeneous media that allow the estimation of the effective
energy function of nonlinear composites, in terms of the corresponding properties for linear problems with the same
microscopic distribution, were obtained by Ponte Castañeda [20,21].

The articles just described were instrumental in enabling general forms of the Hashin–Shtrikman bounds to be
written down for arbitrarily anisotropic composites.

Working in Cartesian coordinates x1, x2, x3, let us denote differentiation of a second-order tensor σ =
σ (x1, x2, x3) with respect to xk by σ,k , and we adopt the Einstein summation convention for summation over
repeated indices. We also introduce the notation x = (x1, x2, x3). The key step in a most succinct derivation of the
Hashin–Shtrikman bounds in the structure developed by Willis [12] is to write the standard governing equations
of elastostatics for an inhomogeneous material in an alternative form. Upon neglecting body forces and supposing
that the elastic modulus tensor of the inhomogeneous material is C = C(x), the equations of elastostatics are

div σT = 0, σ = C(x)e, (1.2)

where σ is the Cauchy stress tensor, div is the divergence operator, e is the linear strain tensor, and the superscript T
here denotes transpose. In common with much of the existing literature, we use notation AB to denote contraction
over the final two and first two indices of the tensors A and B, respectively. This is rather convenient as it can be
applied to tensors of arbitrary order. Here the i j th component of Ce is therefore Ci jk�e�k = Ci jk�ek� and also later,
we will use this notation extensively for the contraction of two fourth-order tensors A and B so that the i jk�th
component of AB is Ai jmn Bnmk�.

The alternative form of (1.2) used by Willis is derived by writing Hooke’s law as σ = Cce + τ (x) where Cc

is a homogeneous linear elastic comparison material (the choice of which will be discussed shortly), and τ is the
so-called polarization stress, which is necessarily spatially dependent. The equations of elastostatics thus reduce to

div(σ c)T = −div τT,

where σ c = Cce. The divergence of the polarization stress can therefore be interpreted as a spatial distribution
of body forces in a homogeneous medium with elastic modulus tensor Cc. Upon introducing the second-order
elastostatic Green’s tensor Gc associated with the (anisotropic) comparison material, a variational principle on the
strain energy is then found in terms of the polarization stress τ (x) [12,16]. Next, we choose the polarization stress
to be piecewise uniform (uniform in each phase), usually written as τ (x) = ∑N

k=0 χk(x)τ r where χk(x) is unity
when x resides in the kth phase and is zero otherwise, and each component of τ r is constant.

Optimizing with respect to τ r and choosing the distribution function to have the same spheroidal statistics as
the shape of the corresponding inclusion phase, we are led to the classical (and much quoted) form of the Hashin–
Shtrikman bounds ((3.13) below) derived by Willis [12]. This form can also be deduced from the more general
formulation (3.8) developed by Ponte Castañeda and Willis [16] which allows for more general distributions. The
key advantage of the Hashin–Shtrikman bounds over the Reuss–Voigt bounds is that the former uses information
about the macroscopic anisotropy; this permits an improvement over the Reuss–Voigt bounds in almost all cases.

It is worth noting at this point that improved bounds, using more general polarizations leading to higher-order
statistics, can also be derived [22–24]. However, it is often the case that such higher-order statistical correlation
information for a given material is not known or difficult to determine accurately.

Although the general form for the Hashin–Shtrikman bounds applicable to arbitrarily anisotropic composites
can be derived in a straightforward manner in some cases, only very recently have explicit bounds for generally
transversely isotropic materials been written down [25]. Furthermore, as far as the authors are aware, works con-
cerning the construction and computation of such bounds for a given material, using tensor bases (thus permitting
fast implementation), are not available. Indeed it appears that the Hashin–Shtrikman bounds have often taken on a
mysterious air in the literature. These bounds always appear to be merely stated (not derived constructively) and
almost no information can be found in the literature regarding bounds on the effective properties of composites that
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are not simply either macroscopically isotropic or transversely isotropic of the long FRC variety. Therefore, the
step taken in [25] was a useful and important one since explicit bounds were stated and compared with numerous
homogenization and micromechanical methods. However, in [25], very little discussion of the required tensor-basis
for transverse isotropy was given, and furthermore the uniformity of the so-called P-tensor (directly related to the
Eshelby tensor and sometimes known as the Hill tensor in the literature) was not exploited fully since expressions
for the P-tensor were given in integral form, rather than explicit expressions which have been previously derived
for spheroidal inclusions and distributions.

For all of the reasons above, the construction and computation of the Hashin–Shtrikman bounds for those “not
in the know” are far from straightforward. This is important specifically for engineers, materials scientists and
industrialists who may wish to construct the Hashin–Shtrikman bounds for a variety of such media. They are often
restricted from doing so by lack of information regarding the detail of the construction. It would be convenient to
have a systematic and prescriptive way of constructing the Hashin–Shtrikman bounds from the first principles. That
is, given the volume fractions, elastic properties, shapes of phases of the composite and their spatial distribution,
it would be convenient to have a mechanism by which the Hashin–Shtrikman bounds could be constructed in a
straightforward manner using the correct tensor basis set and the appropriate expressions for the Eshelby (S) tensors
and/or Hill (P) tensors. In particular in this respect, it appears that although knowledge of explicit bounds is very
useful, we would argue that it is less important than being able to construct the bounds from the first principles.

The principal objective of this article is therefore the discussion of such a construction and computation of the
Hashin–Shtrikman bounds for transversely isotropic composites restricting attention to two-phase fibre-reinforced
media. We consider cases that incorporate separately the influence of the fibre (or “inclusion”) phase and the
distribution of these inclusions. Initially, we shall consider the general case of an arbitrary number of phases, but
considering general statistics makes the study of media with more then one inclusion phase more complicated, and
therefore that case shall be considered in a follow-up article.

The paper is organized as follows. In Sect. 2, we introduce notation and the basics concerning Hill’s tensor. In
Sect. 3, we describe the general formulation of the Hashin–Shtrikman bounds, initially for the general multiphase
case before restricting attention to two phases, the primary concern of this article. We specialize in Sect. 4 to the
case of macroscopically transversely isotropic materials. This specialization therefore motivates the discussion of
transversely isotropic fourth-order tensors in Sect. 5 and in particular we describe a convenient basis set for such
tensors which was introduced in this context by Hill [26]. In Sect. 6, we describe how such a basis set, together
with knowledge of the appropriate Hill and Eshelby tensors (stated in the appendices), allows us to construct the
Hashin–Shtrikman bounds in a straightforward, procedural manner.We discuss the specific limiting cases of layered
and long cylindrical fibre-reinforced media in Sect. 7 before illustrating the implementation of the construction via
some examples in Sect. 8. The main focus is the illustration of the simple implementation via the basis set employed
as well as the study of distributions of inclusions that have a different spheroidal spread to their shape, the latter
being associated with the appropriate Hill tensor. We conclude in Sect. 9 indicating required areas for future study.

2 Notation and preliminaries

Let us first define some language: we shall say that a tensor is uniform if all of its components are constant (and
these components can be different constants of course). In this article, we speak generally at first with regard to
multi-phase particulate composite materials occupying the domainΩ with closed boundary ∂Ω and with n types of
inclusion phase that could be chosen independently of their spatial distribution [16]. We denote the elastic modulus
tensor of the r th inclusion phase byCr, r = 1, . . . , n. Inclusion phases are embedded inside a host phase with elastic
modulus tensorC0. Although results can in principle be obtained for ellipsoidal inclusions, let us restrict attention to
the case of spheroidal inclusions; this is convenient for reasons that will become clear shortly. We note that this case
is extremely useful since many composites are of this class (including the limiting cases of long FRCs and layered
media). Let us denote Ωr as the total domain of the r th phase, i.e. it is the collection of all spheroidal inclusions
which constitute that phase, each aligned and having the shape defined by a domain V r . Each spheroid constituting
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the r th phase is located at a different point in space; in terms of the computation of the Hashin–Shtrikman bounds,
only their shape and distribution is important. The total volume fraction of this phase is therefore φr = |Ωr |/|Ω|
where | · | denotes a volume. The volume fraction of the host phase is therefore φ0 = 1 − ∑n

r=1 φr .
In micromechanics and homogenization, a specific tensor known as the P-tensor frequently arises [13]. This

fourth-order tensor, also often known as Hill’s polarization tensor, has components defined by

Pr
i jk� = −

[
∂2

∂x j∂x�

∫
Vr

Gc
ik(x − y) dx

] ∣∣∣∣
(i j),(k�)

(2.1)

being linked with the free-space Green’s tensor having components Gc
i j (x − y), i.e. that associated with the linear

comparison phase having elastic modulus tensor Cc. We note that the integral in (2.1) is over the domain of a
spheroid in the r th phase, i.e. Vr (hence the superscript r on P) and dependent only on the ratio of semi-axes, and
not the size of the spheroid. It is also independent of the material properties of the inclusion so that in the particular
case where all inclusion phases are of the same shape, the P-tensor considered here is identical for any phase. The
notation |(i j),(k�) indicates symmetrization with respect to these indices, i.e. for a tensor Qi jk� such a symmetrization
would be

[Qi jk�]
∣∣
(i j),(k�)

= 1

4
(Qi jk� + Qi j�k + Q jik� + Q ji�k).

If the domain Vr is spheroidal as here (ellipsoidal even) then the P-tensor defined in (2.1) is uniform (i.e. each
component is constant) [6,27,28]. Note that Pc

i jk�, Hill’s tensor associated with the comparison phase, is related to
the Eshelby tensor Sc

i jk� via the expression

Pc
i jk� = [Sc

i jmn(Cc)−1
nmk�]

∣∣
(i j) = Sc

i jmn(Cc)−1
nmk�, (2.2)

where the second equality is due to the inclusions being ellipsoids so that Sr
i jmn = Sr

jimn .

The P-tensor associated with an ellipsoidal inclusion of the kth phase, say Vk = {x : |A(k)
s x|2 < 1}, for some

second-order tensor A(k)
s (which is usually diagonal with diagonal components corresponding to the semi-axes of

the ellipsoid) may be computed from the expression

Pk
s = det A(k)

s

4π

∫
S2

�(ξ̄)

(ξ̄
T
(A(k)

s )TA(k)
s ξ̄)3/2

dS(ξ̄),

where S2 is the unit sphere and ξ̄ is a unit vector pointing from the centre of S2 to a point on its surface. Furthermore,

Γ −1
i jk� = Cc

i jk�ξ̄ j ξ̄�.

For spheroidal inclusions, explicit formsmay be obtained as is detailed inAppendixB. The subscript ‘s’ is associated
with shape, to distinguish it from an analogous quantity (with subscript d) that we will encounter shortly associated
with distributions.

3 The Hashin–Shtrikman variational principle

In his paper of 1977,Willis [12] developed a variational structure to derive the Hashin–Shtrikman bounds. Introduc-
ing a polarization stress relative to a so-called comparison material, both the inclusion shape and their distribution
(from integrals of the associated two-point correlation functions) are incorporated through appropriate influence
tensors. The distribution tensors were assumed to be the same as the associated shape tensor for simplicity. Later,
Ponte Castañeda and Willis [16] generalized the structure of Willis [12,14], whereby the derived bounds contain
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general distribution tensors. Itmakes use of the alternative variational representation for the effective energy function
given by Talbot and Willis [19], which also applies for nonlinear composites.

Let us now consider the linear composite described above whose stress–strain constitutive relation is given by

σ = C(x)e.

Under homogeneous boundary conditions, the fourth-order-effective moduli tensor C∗ can be defined as

σ̄ = C∗ē,

and the average strain energy density (see [29]) is determined as

W ∗(ē) = 1

2
ēσ̄ = 1

2
ēC∗ē. (3.1)

Following [7,11], a comparisonmaterial is introducedwith uniformmodulusCc and a polarization field is defined by
τ (x) = (C(x)−Cc)e. Next assume thatCc ≤ min0≤r≤n Cr (≥ max0≤r≤n Cr ), in the sense that e(Cc−Cr )e ≤ (≥) 0,
r = 0, . . . , n. Certainly, choosingCc−Cr ≤ (≥) 0 componentwise achieves this. Finally select a piecewise constant
polarization stress

τ (x) =
n∑

r=0

χr (x)τ r ,

(
then τ̄ =

n∑
r=0

φrτ r

)
.

Such an assumption subsequently yields at most two-point statistics regarding phase distribution. Under the hypoth-
esis of ellipsoidal symmetry for the distribution of the inclusions (possibly with a different ellipsoidal shape to the
shape of the inclusion), the following bounds on the effective energy are derived in [16]:

W ∗(ē) ≥ (≤)
1

2
ēCcē + 1

2
ēτ̄ ∗, (3.2)

where

τ̄ ∗ =
n∑

k=0

φkτ
∗
k

is the average of the so-called optimal polarizations τ ∗
k .

By linearity, using (3.1), the following expression for the optimal bounds is derived from (3.2):

C∗ ≥ (≤) Cc + τ̄ ∗ē−1 = CB, (3.3)

where ≤ is here interpreted componentwise, and where CB = C+ refers to an upper bound and CB = C− to
a lower bound. These bounds depend on the choice of comparison modulus tensor and the optimal polarizations
which satisfy the relations:

(C0 − Cc)−1τ ∗
0 − 1

φ0

n∑
k=1

n∑
�=1

M(k�)(τ ∗
� − τ ∗

0) = ē,

(Ck − Cc)−1τ ∗
k + 1

φk

n∑
�=1

M(k�)(τ ∗
� − τ ∗

0) = ē, k = 1, . . . , n.

(3.4)
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The tensor parameters M(k�) in (3.4) depend on C0 and on the microstructure. They can be shown to be symmetric
and to have the form (see [16]):

M(k�) = φ�(Pk
s − φkP(k�)

d ), k, � = 1, . . . , n. (3.5)

Here Pk
s is the P-tensor associated with the shape of the inclusion in the kth phase as introduced in (3.6). On the

other hand, the notation P(k�)
d is the (uniform) P-tensor associated with the ellipsoidal distribution tensor concerning

interaction between the kth and �th phases. It is associated with the ellipsoid V (k�)
d = {x : |A(k�)

d x|2 < 1} for some

symmetric matrix A(k�)
d and may be computed from the expression:

Pk�
d = det A(k�)

d

4π

∫
S2

�(ξ̄)

(ξ̄
T
(A(k�)

d )TA(k�)
d ξ̄)3/2

dS. (3.6)

Recall that the subscripts s and d refer to the shape and distribution of inclusions, respectively. By definition,
we have P(k�)

d = P(�k)
d , and for conciseness, we will write Pk

d , to denote P(kk)
d , k = 0, . . . , n.

Given the above, let us therefore recall the Hashin–Shtrikman variational principle which states the following
regarding the choice of the elastic modulus tensor Cc of the comparison material and the way that this leads to
bounds, denoted by CB = C+ for the upper and CB = C− for the lower bounds. The theorem that we state has
been stated in a number of different ways depending upon the context and application. See e.g. [16].

Theorem 1 Given the linear elastic comparison material with elastic modulus tensor Cc, let us choose

Cc = max
0≤r≤n

Cr

meaning that we choose the maximal value of each component in the tensor Cr . Then, using this choice of Cc in
CB, we find that CB = C+ is an upper bound on the effective modulus tensor, i.e.

C∗ ≤ CB = C+

where we remind the reader that ≤ is interpreted componentwise.
Alternatively, let us choose

Cc = min
0≤r≤n

Cr

meaning that we choose the minimal value of each component in the tensor Cr . Then, using this choice of Cc in CB

we find that CB = C−, is a lower bound on the effective modulus tensor, i.e.

CB = C− ≤ C∗.

The Hashin–Shtrikman bounds are thus

C− ≤ C∗ ≤ C+. (3.7)

Therefore, the lower bound CB in (3.7) is given whenever Cr − Cc is positive semi-definite for all r = 0, . . . , n. If
Cr − Cc is negative semi-definite, the upper bound is given.
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In some instances, instead of obtaining bounds, authors have chosen to obtain an approximation to the effective
properties by choosing Cc = C0, the host elastic modulus tensor, regardless of its relationship to other moduli [16].
Let us consider this case first.

3.1 The Hashin–Shtrikman estimates

Let us take Cc = C0. This immediately yields τ ∗
0 = 0 and due to the form of (3.4), we are able to write down a

simple system for the polarizations, i.e. for k = 1, 2, . . . , n, we have

(Ck − Cc)−1τ ∗
k + 1

φk

n∑
�=1

M(k�)τ ∗
� = ē

and for this general case, one simply has to solve this linear system for the optimal polarizations, which are then
fed into the expression for CB = C∗ to obtain an estimate (note that it is not a bound unless C0 is either minimal
or maximal over all phase modulus tensors).

Various cases enable clean simplifications and explicit expressions. Firstly suppose that although we allow
the shape and elastic moduli to vary between phases, the distributions are the same for all so that P(k�)

d = Pd ,
k, � = 1, . . . , n. It is then straightforward to show that the estimate simplifies to

C∗ ≈ C0 +
(

I −
n∑

r=1

φr Nr (Cr − C0)Pd

)−1 (
n∑

r=1

φr Nr (Cr − C0)

)
(3.8)

where

Nr = (I + (Cr − C0)Pr
s )

−1.

A little work enables the form (3.8) to be written as

C∗ ≈
(

n∑
r=0

φr Nr
[
I + (Cr − C0)(Pr

s − Pd)
])−1 (

n∑
r=0

φr Nr
[
Cr + (Cr − C0)(Pr

s − Pd)C0
])

. (3.9)

If all of the inclusions have the same shape, then Pr
s = Ps and furthermore, if it transpires that Ps = Pd , then the

form (3.9) simplifies significantly to

C∗ ≈
(

n∑
r=0

φr Nr

)−1 (
n∑

r=0

φr Nr Cr

)
. (3.10)

3.2 The Hashin–Shtrikman bounds

As the title suggests we shall restrict attention to two-phase particulatemedia so that there is a single inclusion phase.
The bounding technique for greater than one inclusion phase is not well established. Suppose that the inclusion
phase is a distribution of (possibly different sized) aligned spheroids but where each spheroid has the same aspect
ratio δ = a3/a and where the long/short axis (same direction as the semi-axis a3 of the spheroid) is aligned with
x3. Note that this spheroidal shape is taken into account thanks to the tensor Ps . Their distribution is accounted for
by virtue of the tensor Pd which we shall consider to be governed by spheroidal statistics, of aspect ratio ε. We
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shall consider this notion further shortly. Let us first consider the case when the comparison phase can be chosen
as either the host or inclusion phase. Note that this may not always be possible, however.

3.2.1 Comparison phase can be identified as either host or inclusion phase

Let us first suppose that we are able to identify Cc = C0. In this case, τ 0 = 0 and it is straightforward to determine
that

CB = C0 + φ1

(
(C1 − C0)−1 + Ps − φ1Pd

)−1
(3.11)

and this forms the lower bound if C0 ≤ C1 or the upper bound if C0 ≥ C1.
Analogously, if we are able to identify Cc = C1, then τ 1 = 0 and

CB = C1 + φ0

(
(C0 − C1)−1 + Qs − φ1Qd

)−1
, (3.12)

where

Qs = φ1

φ0
Ps, Qd = φ1

φ0
Pd .

The quantity CB forms the lower bound if C1 ≤ C0 or the upper bound if C1 ≥ C0.
Of course, it may not always be the case that the comparison material can be identified as exactly one of the

inclusion phases. As such, it is instructive to determine general bounds in terms of the comparison modulus tensor.

3.2.2 Comparison phase cannot be identified as either host or inclusion phase

In this case, both polarization stresses have non-zero components. As such, the linear system is

[
(C0 − Cc)−1 + (Qs − φ1Qd)

]
φ0τ

∗
0 − (Ps − φ1Pd)φ1τ

∗
1 = φ0ē,

− (Qs − φ1Qd)φ0τ
∗
0 + [

(C1 − Cc)−1 + (Ps − φ1Pd)
]
φ1τ

∗
1 = φ1ē,

which we shall conveniently write as

A0Qφ0τ
∗
0 − BPφ1τ

∗
1 = φ0ē, −BQφ0τ

∗
0 + A1Pφ1τ

∗
1 = φ1ē,

so that we can solve to find that

τ ∗ =
(
[B−1

P A0Q − A−1
1P BQ]−1[φ0B−1

P + φ1A−1
1P ] + [B−1

Q A1P − A−1
0QBP ]−1[φ0A−1

0Q + φ1B−1
Q ]

)
ē.

Other forms can also be found.

3.2.3 The distribution P-tensor is identical to the shape P-tensor

If Ps = Pd = P, one can write down a clean form involving the comparison phase. We have

CB = [
φ0(I + (C0 − Cc)P)−1 + φ1(I + (C1 − Cc)P)−1]−1

× [
φ0(I + (C0 − Cc)P)−1C0 + φ1(I + (C1 − Cc)P)−1C1]
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Fig. 1 Illustrating the
alternative spheroidal
distributions (aspect ratio ε)
containing spheroidal
inclusions (aspect ratio δ).
The vertical axis here is the
axis of symmetry of TI and
of the inclusions and
distributions

This also generalizes to the multi-phase case, so that we can write

CB =
[

n∑
r=0

φr
[
I + (Cr − Cc)P

]−1

]−1 n∑
r=0

φr [I + (Cr − Cc)P]−1Cr . (3.13)

3.3 Distribution P-tensor

Let us now consider the P-tensor Pd which as noted above is associated with a spheroid of aspect ratio ε whose long
or short axis is in the x3 direction. We must consider the relation between the aspect ratio of the inclusions δ and
that of Pd , i.e. ε. Let us refer to Fig. 1) where we note that the distribution spheroid is a safety spheroid, containing a
single spheroidal inclusion and which is not intersected by any other security spheroid (hence the terminology). The
details of the distribution tensors for more than one inclusion phase become quite complex and will be discussed in
a future article. Here we focus on a single inclusion phase.

Assuming that Ps and Pd are given, this construction of the composite means that there is a maximal volume
fraction associated with howmuch of the inclusion can fit into the security spheroid. This depends on whether δ > ε

or δ < ε (see Fig. 1). Simple calculations show that when δ > ε, we have

0 ≤ φ ≤ ε2

δ2
,

whereas if δ < ε, we have

0 ≤ φ ≤ δ

ε
.

Alternatively, consider that the inclusion aspect ratio δ is fixed as well as the volume fraction. This then gives
a condition on the maximum ε permitted. In particular, when ε < δ, we can determine that 0 ≤ ε ≤ δ

√
φ ≤ δ

whereas when ε > δ, we have δ ≤ ε ≤ δ/φ. A special case is the example when inclusions are spherical so that
δ = 1, when φmax = 1.

4 Transversely isotropic composites

We have spoken of a general construction of bounds in terms of the elastic modulus tensors Cr . Of course, above
when it comes to implementation, one must consider a specific form and in general, this can cause great difficulty,
particularly for anisotropic phases. Let us now restrict attention to two-phase composites where phases are (at most)
transversely isotropic (TI), all with x3 as the axis of transverse symmetry so that the x1x2 plane is the plane of
isotropy. This is a very commonly occurring case in practice. Many fibre-reinforced media are of this type with
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fibres being TI in order to provide high tensile strength. Elastic modulus tensors that are TI are in fact symmetric
TI tensors, a concept that we will discuss shortly. Therefore, in the r th phase, the Cauchy stress σ r is linked to the
linear elastic strain er via σ r = Cr er where Cr is (symmetrically) transversely isostropic. We use the following
notation (following Hill [26]) in component form:

1

2
(σ r

11 + σ r
22) = kr (e

r
11 + er

22) + �r er
33, σ r

33 = �r (e
r
11 + er

22) + nr er
33, (4.1)

1

2
(σ r

11 − σ r
22) = mr (e

r
11 − er

22), σ r
12 = 2mr er

12, (4.2)

σ r
13 = 2pr er

13, σ r
23 = 2pr er

23. (4.3)

Here kr and mr are known as the in-plane bulk and shear moduli of phase r = 1, 0, respectively, and pr is the
anti-plane (or longitudinal) shear modulus. We note here that Cr

1111 = kr + mr , Cr
1133 = �r , Cr

3333 = nr , Cr
1122 =

kr − mr , Cr
1313 = pr and Cr

1212 = (Cr
1111 − Cr

1122)/2 = mr . Finally, we note that the engineering notation
for the elastic modulus tensor is often used, which expresses stress in terms of strain via multiplication by a six
by six matrix Cr

i j . The coefficients of this matrix are related to the elastic modulus tensor by the expressions
Cr
1111 = Cr

11, Cr
1133 = Cr

13, Cr
3333 = Cr

33, Cr
1212 = Cr

66, Cr
1313 = Cr

55.
Note that in the above, we have worked with the elastic modulus tensor and the Hill notation for this. We also

note the following strain–stress relationship in terms of the so-called engineering constants

er
11 = 1

ET
r

σ r
11 − νTr

ET
r

σ r
22 − ν A

r

E A
r

σ r
33, er

22 = − νTr

ET
r

σ r
11 + 1

ET
r

σ r
22 − ν A

r

E A
r

σ r
33,

er
33 = − ν A

r

E A
r

σ r
11 − ν A

r

E A
r

σ r
22 + 1

E A
r

σ r
33, er

12 = 1

2mr
σ r
12, er

13 = 1

2pr
σ r
13, er

23 = 1

2pr
σ r
23,

where ET and E A are the transverse and axial Young’s moduli and νT and ν A are the transverse and axial Pois-
son ratios, respectively. In particular, ν A = ν31 corresponds to the lateral contraction when a force is applied
in the axial direction, and we note the relationship ν A

31/E A = ν A
13/ET . Note also that there are still only five

independent constants due to the relationship ET
r = 2mr (1 + νTr ). The relationships between the Engineer-

ing moduli and the constants appearing in the Hill notation of the elastic modulus tensor are given in appen-
dix.

As detailed above, we restrict attention to inclusions (and distributions) that are spheroidal and with the axis of
TI of the phases being the x3 axis. This yields macroscopically TI materials. Note that the limits δ → ∞ and δ → 0
correspond to the long cylindrical fibre and layer (or penny-shape) limits, respectively.

Themacroscopic stress–strain law associated with the effectivematerial will be that in (4.1)–(4.3) with r replaced
by ∗ everywhere (denoting the effective material). In what follows then we shall describe how to construct the
Hashin–Shtrikman bounds on the effective elastic properties k∗, �∗, n∗, m∗ and p∗ and subsequently on the Engi-
neering moduli ET∗, E A∗ , νT∗ and ν A∗ .

5 Transversely isotropic tensors

A fourth-order isotropic tensor can be defined with respect to the tensor basis set {I (1)
i jk�, I (2)

i jk�} where

I (1)
i jk� = 1

3
δi jδk�, I (2)

i jk� = Ii jk� − I (1)
i jk�. (5.1)
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Therefore, a fourth-order isotropic tensor Hi jk� can be written as

Hi jk� =
2∑

n=1

Xn I (n)
i jk�.

Given the basis set (5.1), an isotropic tensor Hi jk� may therefore be specified by a list of two parameters, in short-
hand notation:H = (X1, X2). In order to specify an isotropic elasticmodulus tensorCi jk�, frequently the short-hand
notation C = (3κ, 2μ) = (X1, X2) is adopted where κ = λ + 2μ/3 corresponds to the bulk modulus and μ to the
shear modulus. The parameters λ and μ are the Lamé constants of the material.

Analogously, suppose now that instead of isotropy we consider the case of transverse isotropy, where the axis of
transverse symmetry is the x3 axis. In this case, a transversely isotropic (TI) tensor Hi jk� can also be defined with
respect to a tensor basis set. Several of these have been proposed; all slight variants of each other, see for example
[30,31]. However we shall use the basis associated with the notation introduced for TI tensors by Hill [26] since
this is a frequently used notation in the composite materials community, particularly when the Hashin–Shtrikman
bounds are discussed. Although it does not appear that Hill wrote down this specific basis set, it is clear that this
was what his notation referred to. This basis set enables a TI tensor Hi jk� to be written in the form:

Hi jk� =
6∑

n=1

XnH(n)
i jk�, (5.2)

where Xn are constants and the basis tensors H(n)
i jk� are defined by

H(1)
i jk� = 1

2
Θi jΘk�, H(2)

i jk� = Θi jδk3δ�3, H(3)
i jk� = Θk�δi3δ j3, (5.3)

H(4)
i jk� = δi3δ j3δk3δ�3, H(5)

i jk� = 1

2
(ΘikΘ�j + Θi�Θk j − Θi jΘk�), (5.4)

H(6)
i jk� = 1

2
(Θikδ�3δ j3 + Θi�δk3δ j3 + Θ jkδ�3δi3 + Θ j�δk3δi3), (5.5)

where Θi j = δi j − δi3δ j3. The notation H has been used to signify the Hill basis.
The set of symmetric TI tensors (Hi jk� = Hk�i j ) is defined by setting X2 = X3 (e.g. a TI elastic modulus tensor

falls into this class). The set of symmetric TI tensors is not closed under multiplication in the sense that if we take
two symmetric TI tensors Ai jk� and Bi jk� and perform the double contraction Ai jmn Bnmk� = Di jk�, the resulting
tensor Di jk� is not symmetric TI because D3311 	= D1133, and so X2 	= X3 in this case; see Eq. (5.8) below.
Hence in general, when considering transversely isotropic tensors, we must consider them with respect to the six
basis tensors H(n)

i jk� defined above; this basis set is closed with respect to double contraction. Note this important
difference between transversely isotropic tensors and symmetric transversely isotropic tensors. For more discussion
of this point, see [32], although the terminology symmetric TI tensors is specific to this article.

Analogous to the short-hand notation introduced for isotropic tensors above, in order to specify a TI tensor Hi jk�,
the shorthand notation H = (2kH , �H , �′

H , nH , 2m H , 2pH ) = (X1, X2, X3, X4, X5, X6) is adopted, i.e. the tensor
is defined by these six constants (a symmetric TI tensor corresponds to �′

H = �H ). This notation is motivated by
the fact that Hooke’s law with respect to this basis (4.1)–(4.3) links stress to strain via the (symmetric) transversely
isotropic tensor Ci jk� which in short-hand notation is written C = (2k, �, �′, n, 2m, 2p) with �′ = �. Before we
proceed, let us define the shorthand notation:

H(m)H(n) = H(m)
i j pqH(n)

qpk� (5.6)
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Table 1 The contractions
of the basis tensors H(n)

i jk�

H(1) H(2) H(3) H(4) H(5) H(6)

H(1) H(1) H(2) 0 0 0 0

H(2) 0 0 2H(1) H(2) 0 0

H(3) H(3) 2H(4) 0 0 0 0

H(4) 0 0 H(3) H(4) 0 0

H(5) 0 0 0 0 H(5) 0

H(6) 0 0 0 0 0 H(6)

for contraction between the basis tensors defined in (5.3)–(5.5). The contractions defined in (5.6) are summarized
in Table 1.

With the notation above, using the contractions in Table 1, we can therefore write down the operations of addition
and contraction (in short-hand notation) on the two TI tensors H1

i jk� and H2
i jk� defined in short-hand notation by

H1 = (2k1, �1, �′
1, n1, 2m1, 2p1) and H2 = (2k2, �2, �′

2, n2, 2m2, 2p2), respectively. We define the operation of
addition Hi jk� = H1

i jk� + H2
i jk� in short-hand notation by

H = (2(k1 + k2), �1 + �2, �
′
1 + �′

2, n1 + n2, 2(m1 + m2), 2(p1 + p2)), (5.7)

and the operation of double contraction Hi jk� = H1
i jmn H2

nmk� by

H = (4k1k2 + 2�1�
′
2, 2k1�2 + �1n2, 2k2�

′
1 + �′

2n1, n1n2 + 2�′
1�2, 4m1m2, 4p1 p2). (5.8)

Note that even if �′
1 = �1 and �′

2 = �2 (corresponding to symmetric TI tensors H1 and H2), the second and
third elements on the right-hand side of (5.8) are not equal in general, i.e. contraction between two symmetric TI
tensors produces a non-symmetric TI tensor in general. This is why we must write out the theory for the evaluation
of the Hashin–Shtrikman bounds for TI materials by using the general TI tensor basis set. We note that (5.8) is a
correction to the typographical error in the corresponding expression in Appendix A of [25].

The fourth-order identity tensor Ii jk� and isotropic basis tensors I (1)
i jk� and I (2)

i jk�, written with respect to this TI
basis are

I = (1, 0, 0, 1, 1, 1), I(1) = 1

3
(2, 1, 1, 1, 0, 0), I(2) = 1

3
(1,−1,−1, 2, 3, 3). (5.9)

Finally the inverse of the tensor H1 = (2k1, �1, �′
1, n1, 2m1, 2p1) is

(
H1)−1 =

(
n1

2�
,
−�1

2�
,
−�′

1

2�
,

k1
�

,
1

2m1
,

1

2p1

)
, � = k1n1 − �1�

′
1. (5.10)

6 Construction and computation of the bounds

Here we describe the procedure for constructing the Hashin–Shtrikman bounds for TI composites of the type
considered above. This procedure can be easily coded in any standard mathematical package or alternatively in
widely used programming languages, in a straightforward manner. In particular, we have described the construction
in a way that should be simple to implement in such languages, by defining functions that represent the operations
of taking the inverse and double contraction of TI tensors.
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The construction is achieved by using the short-hand notation for TI tensors described in the previous section. In
particular, we specify a TI tensor by writing this short-hand list of six constants as a 6-vector (2k, �, �′, n, 2m, 2p),
with symmetric transverse isotropy if �′ = �. We then exploit the properties of the Hill basis defined above by
defining the appropriate tensor operations of contraction and inversion as in (5.8) and (5.10). This vector notation
is particularly convenient for computational implementation of the computation of the HS bounds.

First we define the (symmetric TI) elastic modulus tensor:

Cr = (2kr , �r , �r , nr , 2mr , 2pr ), r = 0, 1.

We also define the fourth-order identity tensor and isotropic basis tensors in 6-vector forms as in (5.9). Two TI
comparison materials are defined (as 6-vectors) as in Remark 1:

Cc− = min
0≤r≤1

Cr , Cc+ = max
0≤r≤1

Cr . (6.1)

This means that we take the minimal and maximal elements over all of the phases. For a multi-phase material
therefore, it could be that the comparison phase does not correspond to any of the specific phases constituting the
composite, since, for example, the modulus m1 of phase 1 may be maximal but the modulus n2 of phase 2 could be
maximal.

Wenowdefine the operations of double contraction and inversion in termsof the 6-vector notation introducedhere.
With reference to (5.8) and (5.10), we introduce the functions C[H1, H0] : R6 × R

6 → R
6 and I[H1] : R6 → R

6

operating on the 6-vectors H1 = (2k1, �1, �′
1, n1, 2m1, 2p1) and H0 = (2k0, �0, �′

0, n0, 2m0, 2p0) in the following
way:

C
[
H1, H0] = (4k1k0 + 2�1�

′
0, 2k1�0 + �1n0, 2k0�

′
1 + �′

0n1, n1n0 + 2�′
1�0, 4m1m0, 4p1 p0), (6.2)

I
[
H1] =

(
n1

2�
,
−�1

2�
,
−�′

1

2�
,

k1
�

,
1

2m1
,

1

2p1

)
, � = k1n1 − �1�

′
1. (6.3)

Such operations can therefore be straightforwardly coded by introducing such functionswith arguments as 6-vectors.
Therefore, given the (non-symmetric) TIEshelby tensor (defined inAppendixA) corresponding to the appropriate

comparison phase, written in 6-vector form as Sδ = (2kδ, �δ, �
′
δ, nδ, 2mδ, 2pδ) the super or subscript δ (or ε) refers

to the aspect ratio of the spheroid in question involved in the Eshelby tensor. TheP-tensor (also written as a 6-vector)
can thus be defined via (2.2) as

Pδ = C[Sδ, (Cc)
−1] = (2kδ, �δ, �δ, nδ, 2mδ, 2pδ), (6.4)

and we note that Pc is a symmetric transversely isotropic tensor. We also recall that the P tensor is associated with
the comparison material.

Let us now consider the different computations, according to the choice of comparison material. Suppose first
that we are able to choose the comparison material as either the host or inclusion as in Sect. 3.2.1.

6.1 Construction when comparison phase is host or inclusion phase

Start by letting N = I[C1 − C0]. In the case when Cc = C0, define

M0 = I[N + Ps − φ1Pd ],
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and then we have

CB = C0 + φ1M0,

which is a lower bound if C1 − C0 is positive semi-definite, or an upper bound if C1 − C0 is negative semi-definite.
Similarly, in the case when Cc = C1 then we define

M1 = I[−N + (φ1/φ0)(Ps − φ1Pd)]

and then we have

CB = C1 + φ1M1,

which is a lower bound if C0 − C1 is positive semi-definite or an upper bound if C0 − C1 is negative semi-definite.
If we have Pd = Ps = P, then one can simply use this in the procedure above, or alternatively one could use the

contraction and inversion procedures to code up the approach written down in Sect. 3.2.3. In this two phase case
(a single inclusion phase), re-writing in this manner is no more advantageous. However, in the multi-phase case,
this alternative approach does make the construction more simple because we may exploit the form (3.13). We will
describe this further in future work.

Since we can write the effective elastic modulus tensor in the short-hand notation form

C∗ = (2k∗, �∗, �∗, n∗, 2m∗, 2p∗), (6.5)

we have therefore constructed the bounds on each of the properties, i.e. from (3.7) and (6.5), we have

k− ≤ k∗ ≤ k+, �− ≤ �∗ ≤ �+, n− ≤ n∗ ≤ n+, m− ≤ m∗ ≤ m+, p− ≤ p∗ ≤ p+. (6.6)

As regards the Engineering constants, we can follow Hill [26] who noted the expression

ν A∗ −
1∑

r=0

φrνr = P
(

1

k∗
−

1∑
r=0

φr

kr

)
= − 1

4P

(
E A∗ −

1∑
r=0

φr E A
r

)
,

where

P =
(

ν A
1 − ν A

0

1/k1 − 1/k0

)
.

Therefore according as to whetherP is positive or negative we can derive bounds on ν A∗ and E A∗ from the bounds on
k∗ in (6.6). Furthermore from [10], we can then use their expressions to state the following bounds on the transverse
properties:
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ET
(±) = 4k(±)m(±)

k(±) + M(±)m(±)

, νT(±) = k(±) − M(±)m(∓)

k(±) + M(±)m(∓)

,

where

M(±) = 1 + 4k(±)(ν
A
(∓))

2

E A
(±)

.

6.2 Construction in the general case

Let us now consider the most general case when the host or inclusion phases cannot be identified as the comparison
material. Let us take into account the formulation in Sect. 3.2.2 and using the contractions and inversion operations
described in (6.2) and (6.3), we introduce the following fourth-order tensors:

B̃s = I[Bs], Ãrs = I[Ars], r = 0, 1, s = P, Q,

Drst = C[B̃s, Ar t ], Erst = C[Ãrs, Bt ], r = 0, 1, s, t = P, Q,

U = I[D0P Q − E1P Q], V = I[D1Q P − E0Q P ],
WP = φ0B̃P + φ1Ã1P , WQ = φ0Ã0Q + φ1B̃Q . (6.7)

Having defined (6.7), from (3.3) we can therefore write

CB = Cc + C[U, WP ] + C[V, WQ]. (6.8)

This provides lower (upper) bound whenever Cr − Cc, r = 0, 1 is positive (negative) semi-definite.

7 Limiting cases of transversely isotropic composites

We note that the two limits δ = ε → 0 and δ = ε → ∞ correspond to a layered medium and a long fibre-reinforced
medium, respectively. As regards the former, the effective properties of such media are known exactly. They are
the well-known [33] results, which for a material with TI phases, of the type considered here take the form:

kL∗ =
n∑

r=0

φr

nr

(
nr kr + �r (n

L∗ − �r )
)
, (7.1)

�L∗ = nL∗

(
n∑

r=0

φr
�r

nr

)
, nL∗ =

(
n∑

r=0

φr

nr

)−1

, (7.2)

mL∗ =
(

n∑
r=0

φr mr

)
, pL∗ =

(
n∑

r=0

φr

pr

)−1

, (7.3)

where the superscript L denotes a layered medium.
It is straightforward (but time consuming) to derive the results (7.1)–(7.3) analytically using the construction

of the Hashin–Shtrikman bounds in the form (3.13). In this specific limiting case, the Hashin–Shtrikman bounds
coincide for all five effective properties of course, thus giving the exact results (7.1)–(7.3) for a layered medium (or
a medium consisting of aligned uniformly distributed penny-shaped inclusions).
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In the limit δ → ∞, the Hashin–Shtrikman bounds do not coincide; they become the form of bounds given in [9]
on long FRCs for k∗, m∗ and p∗. Bounds on n∗ and �∗ were not given in [9] but theymay be determined by appealing
to the so-called universal properties of composites [18]). In [9], Hashin dealt with only isotropic phases, although
since he wrote the paper in terms of (de-coupled) in-plane and anti-plane problems and wrote the expressions in
terms of shear moduli and in-plane bulk moduli, it is straightforward to derive the bounds for TI phases by simple
replacement of the corresponding moduli with their TI counterparts. As in the layered medium case above, it is
straightforward to derive these bounds analytically in this limiting case using the details regarding transversely
isotropic tensors in Sect. 5 (once again noting the use of (5.8) and (5.10) in particular) in the construction of the
Hashin–Shtrikman bounds described above, together with the exact form of the Eshelby tensor in this limit (given
in 1). These results for an n phase composite of the type considered in this article are the following, in terms of
k B, �B, nB, m B and pB , specified in terms of the comparison phase:

k B =
(

n∑
r=1

krφr

kr + mc

)(
n∑

r=1

φr

kr + mc

)−1

, (7.4)

�B =
(

n∑
r=1

�rφr

kr + mc

) (
n∑

r=1

φr

kr + mc

)−1

, (7.5)

nB =
n∑

r=1

φr

(
nr − (�B − �r )(�c − �r )

kr + mc

)
(7.6)

m B =
(

n∑
r=1

mrφr

2mcmr + kc(mr + mc)

)(
n∑

r=1

φr

2mcmr + kc(mr + mc)

)−1

, (7.7)

pB =
(

n∑
r=1

prφr

pr + pc

)(
n∑

r=1

φr

pr + pc

)−1

, (7.8)

and therefore lower (upper) bounds follow from setting the comparison material equal to the smallest (largest)
moduli, as described above. Therefore in this limit we are not as fortunate as the layered case where the bounds
coincide. Many theories have been proposed to model the effective elastic properties of long FRC materials and a
first check on the efficacy such theories is that the prediction sits within the bounds (7.4)–(7.8).

8 Implementation

We now implement the construction above in various scenarios. Table 2 states the phase properties (taken from
[25]). In particular, note that traditionally the Hashin–Shtrikman bounds are plotted as a function of volume fraction
φ = φ1 of the inclusion phase, for a fixed aspect ratio δ of inclusion. Here we not only plot this case, but also
consider the bounds plotted as a function of δ for a fixed volume fraction of inclusion. This was also done in [25]
but note that here the P-tensor is computed analytically, and therefore it is easy to plot such results for a wide

Table 2 Elastic material
properties of the phases in
GPa

Material C11 = k + m C12 = k − m C13 = � C33 = n C44 = p

Glass 77.77 25.77 25.77 77.77 26

Epoxy 6.73 4.19 4.19 6.73 1.27

PZT-7A 157 85.4 73 175 47.2

Epoxy II 8 4.4 4.4 8 1.4
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κ∗/κ0 μ∗/μ0

2

4

5

6

8

10

15

20

0 00 .20. 02 .40. 04 .60. 06 .80. 18 .01.0
φφ

Fig. 2 Plots of bounds on the effective bulk modulus κ∗ and effective shear modulus μ∗ for a glass/epoxy composite with spherical
(δ = 1) glass inclusions. The effective material is isotropic. We plot the Reuss (lower) and Voigt (upper) bounds (dashed lines) and the
Hashin–Shtrikman bounds (solid lines). Note the improvement of the Hashin–Shtrikman bounds over the Reuss–Voigt bounds
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Fig. 3 Plots of the Hashin–Shtrikman bounds on the effective shear moduli of a glass/epoxy composite with spheroidal glass inclusions
of aspect ratio δ. On the left is the in-plane shear modulus m∗/m0, and on the right is the anti-plane shear modulus p∗/p0. In both plots:
δ = 1 (solid line), δ → ∞ (dotted line), δ = 0.1 (dashed line) and δ → 0 (dot-dashed line). In the last case, the bounds coincide as can
also be seen clearly in Fig. 6. These correspond to the Voigt (m∗) and Reuss (p∗) bounds in those cases

range of δ (we plot results for a logarithmic scale in δ). Moreover, here we also study the dependence of the bounds
on the distribution aspect ratio (ε). Such plots are very informative particularly since the Reuss–Voigt bounds are
independent of δ and ε and so they cannot give this information.

Example 1: Isotropic glass inclusions in the isotropic epoxy host phase

Let us here suppose that Ps = Pd so that ε = δ. Consider the example of isotropic glass inclusions uniformly
distributed in the epoxy host phase. First we consider the case of spherical glass inclusions, and therefore the
effective material is isotropic. In Fig. 2, we plot bounds on the effective bulk modulus κ∗ and shear modulus μ∗
of the composite material. In particular, we plot the Reuss (lower) and Voigt (upper) bounds on these effective
properties together with the Hashin–Shtrikman bounds. Note the improvement of the Hashin–Shtrikman bounds
over the Reuss/Voigt bounds.

Alternatively, we can consider the case of spheroidal glass inclusions with general aspect ratio δ so that the
effective material is transversely isotropic. In Fig. 3, we plot the Hashin–Shtrikman bounds on the effective shear
moduli m∗/m0 and p∗/p0. Note that the bounds coincide in the (layered) limit when δ → 0. In the case of the
in-plane shear modulus, the bounds become equal to the Voigt bound, whereas in the anti-plane shear modulus they
become equal to the Reuss bound; this can be seen from the exact results in (7.3). Note also that the anti-plane
shear modulus does not change significantly when we increase δ from δ = 1 to the δ → ∞ limit. This can also be
seen on the right of Fig. 6 where we plot the bounds on the effective shear moduli as a function of δ for φ = 0.3.
In Fig. 4, we plot the effective properties k∗/k0 and n∗/n0, noting that the layered limit bounds coincide. We also
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Fig. 4 Plots of the Hashin–Shtrikman bounds on the effective moduli of a glass/epoxy composite with spheroidal glass inclusions of
aspect ratio δ. On the left is the in-plane bulk modulus k∗/k0 and on the right is the longitudinal property n∗/n0. In both plots: δ = 1
(solid line), δ → ∞ (dotted line), δ = 0.4 (dashed line) and δ → 0 (dot-dashed line). In the last case, the bounds coincide as can be
seen clearly in Fig. 6
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Fig. 5 Plots of theHashin–Shtrikmanbounds on the effectivemodulus �∗/�0 of a glass/epoxy compositewith spheroidal glass inclusions
of aspect ratio δ. On the left, we plot δ = 1 (solid line), δ = 0.1 (dashed line) and the δ → 0 limit (dot-dashed line). On the right, we
plot δ = 1 (solid line), δ = 5 (dashed line) and the δ → ∞ limit (dotted line)
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Fig. 6 Plots of the upper and lower Hashin–Shtrikman bounds on the effective material properties of a glass/epoxy composite as a
function of glass inclusion of aspect ratio δ for fixed volume fraction φ = 0.5 of the inclusion phase. Left plot k∗/k0 (dot-dash line),
�∗/�0 (dashed line), n∗/n0 (dotted line). Right plot m∗/m0 (dot-dash line), p∗/p0 (dotted line). The plotted discs indicate the limiting
values as δ → 0 and δ → ∞ of the Hashin–Shtrikman bounds and concur with the values of the Backus expressions and classical
Hashin–Shtrikman bounds on long fibre-reinforced composites, respectively

note that in this instance, the bounds on n∗/n0 for δ → ∞ are very tight. The different regimes of �∗/�0 are plotted
in Fig. 5.

In Fig. 6, we illustrate the dependence of the bounds as a function of δ for fixed volume fraction φ = 0.5. In
particular, we note the recovery of the (exact) layered expressions (7.1)–(7.3) as δ → 0 (denoted by disks) and also
the recovery of the classical Hashin–Shtrikman bounds (7.4)–(7.8) for long FRCs when δ → ∞ (also denoted by
disks). Note in particular that the fibres do not have to be particularly long before they reach this limit: δ = O(10)
suffices for this limit to be reached, with the exception of n∗ which requires a larger δ, perhaps δ = O(100).
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Fig. 7 Plots of the Hashin–Shtrikman bounds on the effective shear moduli of a PZT-7A/Epoxy II composite with spheroidal PZT-7A
inclusions of aspect ratio δ. On the left is the in-plane shear modulus m∗/m0 and on the right is the anti-plane shear modulus p∗/p0.
In both plots: δ = 1 (solid line), δ → ∞ (dotted line), δ = 0.1 (dashed line) and δ → 0 (dot-dashed line). In the last case, the bounds
coincide as can be seen clearly in Fig. 10. These correspond to the Voigt (m∗) and Reuss (p∗) bounds in those cases. Note the high
contrast in effective shear moduli (particularly the in-plane shear modulus) as we increase the inclusion volume fraction
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Fig. 8 Plots of the Hashin–Shtrikman bounds on the effective moduli of a PZT-7A/Epoxy II composite with spheroidal PZT-7A
inclusions of aspect ratio δ. On the left is the in-plane bulk modulus k∗/k0 and on the right is the longitudinal property n∗/n0. In both
plots: δ = 1 (solid line), δ → ∞ (dotted line), δ = 0.5 (dashed line) and δ → 0 (dot-dashed line). For the k∗/k0 case, we have only
plotted the upper bound for the δ = 1 case since δ has to be extremely small before it departs from this significantly. This can be seen
in Fig. 10. In the case when δ → 0, the bounds coincide as can also be seen clearly in Fig. 10

Example 2: Transversely isotropic PZT-7A inclusions in the isotropic Epoxy II host phase

Let us once again suppose that Ps = Pd so that ε = δ, but now consider the effect of a TI inclusion phase (PZT-7A).
We shall embed such inclusions in an epoxy phase with properties designated as Epoxy II in Table 2. We plot
Hashin–Shtrikman bounds as a function of φ, the inclusion volume fraction in Figs. 7, 8 and 9 for different values
of δ, the inclusion aspect ratio. In Fig. 10, we plot the bounds as a function of δ for a fixed volume fraction, φ = 0.3.

In Fig. 7, we plot the bounds on the effective shear moduli of this composite. Note in particular the high contrast
achieved by addition of the inclusion phase (particularly the in-plane shear modulus). As in example 1, the effective
shear moduli are not affected greatly by increasing δ from unity, particularly the anti-plane shear modulus. This is
also seen in the plot on the right of Fig. 10. In Fig. 8, we plot corresponding bounds on k∗/k0 and n∗/n0. For k∗/k0,
we plot only the upper bound for δ = 1 since this does not change significantly until δ is very small, when the upper
and lower bounds coincide in the layered limit as can be seen in the plot on the left. This can also be seen in Fig. 10
(noting the logarithmic scale for δ). As in the isotropic case, bounds on n∗/n0 become relatively tight in the long
cylindrical fibre limit, δ → ∞. In Fig. 9, we plot �∗/�0, on the left as we decrease δ below unity and on the right
as we increase δ above unity. On the left, we see that bounds become progressively tighter as δ is decreased until
the layered limit is reached. On the right, we see that the bounds do not become modified greatly by increasing δ

above unity.
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Fig. 9 Plots of the Hashin–Shtrikman bounds on the effective modulus �∗/�0 of a PZT-7A/Epoxy II composite with spheroidal PZT-7A
inclusions of aspect ratio δ. On the left, we plot δ = 1 (solid line), δ = 0.1 (dashed line) and the δ → 0 limit (dot-dashed line). On the
right, we plot δ = 1 (solid line) and the δ → ∞ limit (dotted line). Any value of δ between 1 and the long fibre limit sits between these
two latter sets of bounds
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Fig. 10 Plots of the upper and lower Hashin–Shtrikman bounds on the effective material properties of a PZT-7A/Epoxy II composite
with spheroidal PZT-7A inclusions of aspect ratio δ for fixed volume fraction φ = 0.3 of the inclusion phase. Left plot: k∗/k0 (dot-dash
line), �∗/�0 (dashed line), n∗/n0 (solid line). Right plot: m∗/m0 (dot-dash line), p∗/p0 (solid line). The plotted discs indicate the
limiting values as δ → 0 and δ → ∞ of the Hashin–Shtrikman bounds and concur with the values of the Backus expressions and
classical Hashin–Shtrikman bounds on long fibre-reinforced composites, respectively

For all properties, as δ → 0, the layered limit is achieved, as should be expected. We note from Fig. 10 that this
limit is not reached as quickly as in the isotropic phase case in example 1. In particular even for δ = 10−3, this
limit has not yet been reached for the in-plane shear modulus m∗/m0.

Example 3: Spheroidal glass inclusions with spheroidal distribution in the epoxy host phase

Let us now consider a case when the distribution spheroid has a different shape to that of the inclusion phase. Let
us first take spherical glass inclusions (δ = 1) and consider both prolate (ε > 1) and oblate (ε < 1) distributions,
referring to Fig. 1. We shall take the case of the isotropic epoxy host phase. Following the discussion in Sect. 3.3 for
a given volume fraction, we take the distribution spheroid to be ε = √

φ < 1 in the oblate case and ε = 1/φ in the
prolate case and plot the resulting bounds in Figs. 11 and 12, noting how tight the Hashin–Shtrikman bounds are
in these cases and that the distribution has an apparently greater effect on m∗ and n∗ than on p∗ and �∗. Of course,
each point on these curves represents a different type of composite in the sense that the distribution has different
spheroidal distribution statistics. If we were to fix ε (i.e. fix the type of distribution), then wewould have amaximum
volume fraction φmax < 1. As an example, in Fig. 13, we therefore take ε = 1/

√
2, 1, 2 and plot bounds on the

shear moduli up to a maximal (in the non-spherical distribution cases) volume fraction of φ = 0.5. Bounds on the
in-plane shear modulus m∗ are very tight, particularly in the case of the case ε = 1/

√
2. The bounds for m∗ tend

to shift upwards with a decrease in ε and vice versa, whereas with p∗, the bounds move down with a decrease in ε.
Let us now consider the effect when the inclusion becomes a spheroid with aspect ratio δ possibly distinct from ε

the aspect ratio of the spheroidal distribution. In particular, we refer to Fig. 14 where we consider the modification
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Fig. 11 On the left: Hashin–Shtrikman bounds for the effective in-plane shear modulus m∗/m0 (effective anti-plane shear modulus
p∗/p0 on the right resp.) of a glass/epoxy composite with spherical inclusions (δ = 1) and spheroidal symmetry with ratio ε = √

φ ≤ 1
(dot-dashed line) for the oblate case and ratio ε = 1/φ ≥ 1 for the prolate one (dashed line). Voigt–Reuss bounds (solid lines) are also
represented
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Fig. 12 On the left: Hashin–Shtrikman bounds of the longitudinal property n∗/n0 (effective modulus �∗/�0 on the right resp.) for a
glass/epoxy composite with spherical inclusions (δ = 1) and spheroidal symmetry with ratio ε = √

φ ≤ 1 (dot-dashed line) for the
oblate case and ratio ε = 1/φ ≥ 1 (dashed line) for the prolate one. Voigt–Reuss bounds (solid lines) are also represented. Analogous
to previous case, note the improvement of (6.8) bounds over the Voigt–Reuss bounds
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Fig. 13 Bounds on the effective in-plane shear modulus m/m0 (left) and effective anti-plane shear modulus p/p0 (right) for a
glass/epoxy composite with spheroidal inclusions with a spheroidal distribution. We plot Hashin–Shtrikman with ε= 2 (dashed lines)
and ε = 1/

√
2 (dotted lines) and additionally for spherical distributions, ε = 1 (dot-dashed lines). Voigt–Reuss bounds (solid lines)

are also represented. The maximum volume fraction in the spheroidal distribution cases is φ = 0.5

to the plot in Fig. 6 when the spheroidal distribution is ε = δ
√

φ = δ/
√
2 < δ. Note that the plot has log-linear

scaling and as should be expected, the most significant effect is felt away from the limiting cases when δ → 0 and
δ → ∞ corresponding to the layer and long fibre limits.

Finally with reference to Fig. 15, we study the glass/epoxy composite with fixed volume fraction φ = 0.2 of
glass inclusions. We then fix the inclusion aspect ratio and study the dependence of the shear moduli m∗/m0 and
p∗/p0 on the spheroidal distribution aspect ratio ε. In particular, we present results for the four values δ = 1.5, 1
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Fig. 14 Plots of the upper and lower Hashin–Shtrikman bounds on the effective material properties of a glass/epoxy composite as a
function of glass inclusion of aspect ratio δ for fixed volume fraction φ = 0.5 of the inclusion phase. We plot two sets of curves: one
set corresponding to the results in Fig. 6 associated with a spheroidal distribution with the same aspect ratio as that of the inclusion
(and same line styles), i.e. ε = δ and another where the distribution spheroid has aspect ratio ε = δ

√
φ = δ/

√
2 (the associated solid

curves). Left plot k∗/k0 (dot-dash line), �∗/�0 (dashed line), n∗/n0 (dotted line). Right plot m∗/m0 (dot-dash line), p∗/p0 (dotted
line). The plotted discs indicate the limiting values as δ → 0 and δ → ∞ of the Hashin–Shtrikman bounds and concur with the values
of the Backus expressions and classical Hashin–Shtrikman bounds on long fibre-reinforced composites, respectively, which still hold
for the alternative spheroidal distribution
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Fig. 15 Hashin–Shtrikman bounds for the in-plane shear modulus m∗/m0 (dashed lines) and the anti-plane shear modulus p∗/p0
(solid lines) for a two-phase glass/epoxy composite with volume fraction φ = 0.2 of glass inclusions, plotted as a function of spheroidal
distribution aspect ratio ε. Top left δ = 1.5, top right δ = 1 (spheres), bottom left δ = 0.6 and bottom right δ = 0.2

(spheres), δ = 0.6 and 0.2. In plotting the range of ε, we take into account the inequalities given in Sect. 3.3. In
particular from subfigure to subfigure, we see the shift in bounds as δ is decreased. Note in particular that there is
little variation in the bounds as ε increases above unity. More variation is seen for ε < 1.

9 Concluding remarks

We have shown how to construct, in a straightforward manner, the Hashin–Shtrikman bounds for transversely
isotropic composites focusing in particular on the case of two-phase FRCs. The shape of the inclusion phase and
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their corresponding distributions can be chosen independently by use of the appropriate Hill and Eshelby tensors
and TI tensor basis set. Note in particular that for TI materials, the Eshelby tensor can be derived analytically, and
we summarized its various forms for spheroids in the Appendix. We implemented different computations for two
specific composite materials, exhibiting the improvement of the Hashin–Shtrikman bounds over the Reuss–Voigt
bounds, also showing how bounds behave for different inclusion (δ) and distribution (ε) aspect ratios, including the
limiting cases of layered media (δ → 0) where bounds coincide, agreeing with the Backus expressions [33] and
also long fibre-reinforced media (δ → ∞) where the bounds are then the classical Hashin–Shtrikman bounds (some
of which were derived by Hashin [9]) for such media. Entirely analogous approaches may be followed for phases
and materials of arbitrary anisotropy, although in general, the corresponding Green’s tensor (and hence P-tensor)
cannot be derived analytically.

Futurework needs to consider the construction and computation of theHashin–Shtrikman bounds formulti-phase
composites, a case that has not been studied sufficiently in the literature.
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Appendix

Relationships between elastic and engineering moduli

Here we note the relationships between the moduli k, �, n, m and the Engineering moduli:

E A = C11C33 − 2C2
13 + C33C12

C11 + C12
= n − �2

k
,

ET = C2
11C33 + 2C2

13C12 − 2C11C2
13 − C33C2

12

C11C33 − C2
13

= 4mk E A

mn + k E A
,

ν A = C13

C11 + C12
= �

2k
,

νT = C12C33 − C2
13

C11C33 − C2
13

= k E A − mn

k E A + mn
,

m = C11 − C12

2
= ET

2(1 + νT)
,

and

C11 = k + m = ET(E A − ET(ν A)2)

(1 + νT)(E A − E AνT − 2ET(ν A)2)
,

C12 = k − m = ET(E AνT + ET(ν A)2)

(1 + νT)(E A − E AνT − 2ET(νA)2)
,

C13 = � = ETE Aν A

E A − E AνT − 2ET(ν A)2
,

C33 = n = (E A)2(1 − νT)

E A − E AνT − 2ET(ν A)2
.
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The Eshelby (S) tensor and the Hill (P) tensor

We discuss these tensors for spheroids of aspect ratio δ, and thus we refer to the shape tensors, i.e. Ss and Ps .
However, we merely change δ to ε to obtain the associated distribution tensors, i.e. Sd and Pd . Thus, consider
the case of a spheroidal inclusion with semi-axes a1 = a2 	= a3, embedded inside a transversely isotropic (TI)
comparison phase with axis of symmetry along x3 and with elastic modulus tensor Cc. In short-hand notation, we
write this as Cc = (2kc, �c, �c, nc, 2mc, 2pc). The resulting Eshelby tensor Ss is TI (but not symmetric in general),
and in the short-hand notation, it may be written

Ss = (2kδ, �δ, �
′
δ, nδ, 2mδ, 2pδ) (10.1)

where

kδ = 1

2
(S1111 + S1122), �δ = S1133, �′

δ = S3311, (10.2)

nδ = S3333 mδ = 1

2
(S1111 − S1122), pδ = S1313. (10.3)

Let us define the parameters:

v1 =
(

(�̂c − �c)(�̂c + �c + 2pc)

4nc pc

)1/2

+
(

(�̂c + �c)(�̂c − �c − 2pc)

4nc pc

)1/2

,

v2 =
(

(�̂c − �c)(�̂c + �c + 2pc)

4nc pc

)1/2

−
(

(�̂c + �c)(�̂c − �c − 2pc)

4nc pc

)1/2

,

v3 =
(

mc

pc

)1/2

,

where �̂c = (nc(kc + mc))
1/2. We note that for elastic materials v3 ∈ R but v1, v2 ∈ C in general with v2 = v1,

where an overbar denotes the complex conjugate.1 For vi ∈ R, define

I1(vi ) = 2πδ

(1 − v2i δ2)
×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
cos−1(viδ)

(1 − v2i δ2)1/2
− viδ

)
viδ < 1,

(
cosh−1(viδ)

(v2i δ2 − 1)1/2
− viδ

)
viδ > 1,

(10.4)

whereas when vi ∈ C, either of the expressions in (10.4) can be used since they are merely an analytic continuation
of the function (of vi ) into the complex vi -plane.

We note that in the case of isotropy, �c = λc = �′
c, pc = mc = μc, �̂c = nc = kc + mc = λc + 2μc (where

λc and μc are the Lamé moduli of the comparison phase) and thus v1 = v2 = v3 = 1. We introduce the notation
I1 = I1(1) for the isotropic case.

1 This latter point does not appear to have been recognized in the original papers on this subject, e.g. [34]. An example of a trans-
versely isotropic material for which v2 = v1 ∈ C is zinc with (all in GPa) k = 80, � = 33, n = 50, m = 63, p = 40, for which
v1 = 1.1284 + 0.6465i to four digits of precision.
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Eshelby tensor for an isotropic comparison phase

For an isotropic comparison phase defined by the Lamé moduli λc andμc, Sc
i jk� takes the form (see [6,35], although

note the slightly different notation involving the Ii j ):

S1111 = 3AI11 + B I1, S3333 = 3AI33 + B I3, (10.5)

S1122 = AI11 − B I1, S1133 = AI13 − B I1, (10.6)

S3311 = A

δ2
I13 − B I3, S1313 = δ2 + 1

2δ2
AI13 + B

2
(I1 + I3), (10.7)

where A = [8π(1 − νc)]−1, B = (1 − 2νc)A, and νc = λc/(2(λc + μc)) is Poisson’s ratio of the comparison
medium. We have defined

I3 = 4π − 2I1, I33 = 4π

3
− 2

3
I13, (10.8)

I11 = π − I1 − I3
4(δ2 − 1)

, I13 = δ2(I1 − I3)

δ2 − 1
(10.9)

and thus the Eshelby tensor for the isotropic case is defined purely in terms of I1 = I1(1) from (10.4). In the limiting
case of an isotropic (vi = 1) sphere (δ = 1), the appropriate limit of (10.4) gives I1 = 4π/3 which completely
defines the Eshelby tensor via (10.5)–(10.9). Only in this spherical, isotropic case does S1133 = S3311.

Eshelby tensor for a transversely isotropic comparison phase

For a TI comparison phase defined by elastic properties kc, �c, nc, mc and pc, the components Si jk� take the form
[34] (although note some typographical errors there that are corrected here):

S1111 =
2∑

i=1

[
2pc(1 + Ki )v

2
i − mc

]
Livi I1(vi ) + 1

2
Dmc I1(v3), (10.10)

S1122 =
2∑

i=1

[
2pc(1 + Ki )v

2
i − 3mc

]
Livi I1(vi ) − 1

2
Dmc I1(v3), (10.11)

S3333 = 2
2∑

i=1

[�c − nc Kiv
2
i ]v3i Ki Li I3(vi ), (10.12)

S1133 = 2
2∑

i=1

[�c − nc Kiv
2
i ]vi Li I1(vi ), (10.13)

S3311 = 2
2∑

i=1

[pcv
2
i (1 + Ki ) − mc]Ki Liv

3
i I3(vi ), (10.14)

S1313 = 1

2
pc

2∑
i=1

Liv
3
i (1 + Ki )(I3(vi ) − 2Ki I1(vi )) + 1

4
Dpc I3(v3)v

2
3, (10.15)
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where

D = 1

4πpcv3
, Ki = (kc + mc)/v

2
i − pc

�c + pc
, Li = (−1)i pc − ncv

2
i

8πnc pc(v
2
1 − v22)v

2
i

.

Note that we have used the notation I3(vi ) = −2I1(vi )+4π/vi in (10.10)–(10.15) whereas [34] used I2(vi ) instead
of I3(vi ) in the corresponding equations. This is to preserve the symmetry with the isotropic case above. Finally,
let us define two very useful limits of the Eshelby tensor for TI comparison materials.

Layer (penny-shaped) limit (strongly oblate)

If we take the limit as δ → 0, we find that

S1111 = 0, S1122 = 0, S3333 = 1, (10.16)

S1133 = 0, S3311 = �c

nc
, S1313 = 1

2
. (10.17)

Long cylindrical fibre limit (strongly prolate)

If we take the limit as δ → ∞, we find that

S1111 = 3kc + 2mc

4(kc + mc)
, S1122 = kc − 2mc

4(kc + mc)
, S3333 = 0, (10.18)

S1133 = �c

2(kc + mc)
, S3311 = 0, S1313 = 1

4
. (10.19)

The P-tensor

The P-tensor is defined from (2.1), (2.2) and (6.4) and is a symmetric transversely isotropic tensor, which we write
in short-hand notation as

Ps = (2kδ, �δ, �δ, nδ, 2mδ, 2pδ) (10.20)

for that associated with the shape of the inclusion (aspect ratio δ)—for the distribution P-tensor Pd replace δ with ε.
Given an isotropic comparison phase with bulk modulus κc = λc + 2μc/3 and shear modulus μc, we have

Cc
i jkl = 3κc I 1i jkl + 2μr I 2i jkl , (Cc

i jkl)
−1 = 1

3κc
I 1i jkl + 1

2μc
I 2i jkl

and given that we can write the tensors I 1 and I 2 in the form in (5.9), we can thus write

(Cc)−1 = 1

3

(
2

3κc
+ 1

2μc
,

1

3κc
− 1

2μc
,

1

3κc
− 1

2μc
,

1

3κc
+ 1

μc
,

1

2μc
,

1

2μc

)
.

The P-tensor then follows as in (6.4) by contracting Sc for the isotropic comparison phase case as defined in 1 with
this (Cc)−1.
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For a transversely isotropic comparison phase Cc = (2kc, �c, �c, nc, 2mc, 2pc) with inverse

(Cc)−1 =
(

nc

2�
,− �c

2�
,− �c

2�
,

kc

�
,

1

2mc
,

1

2pc

)
, � = kcnc − �2c,

the P-tensor then follows as in (6.4) by contracting Sc for the TI comparison phase case as defined in 1 with this
(Cc)−1. Given that we have defined the Eshelby tensor components explicitly in Sect. 1, it is best written in terms
of these components as

P1111 + P1122 = 1

2�
(nc(S1111 + S1122) − 2�c S1133) , (10.21)

P1111 − P1122 = 1

2mc
(S1111 − S1122), (10.22)

P3333 = 1

�
(kc S3333 − �c S3311) , (10.23)

P1133 = P3311 = 1

2�
(nc S3311 − �c S3333), (10.24)

P1313 = 1

pc
S1313. (10.25)
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