
https://doi.org/10.1007/s10664-019-09768-9

An empirical catalog of code smells
for the presentation layer of Android apps

Suelen Goularte Carvalho1 ·Maurı́cio Aniche2 · Júlio Verı́ssimo3 ·Rafael S. Durelli3 ·
Marco Aurélio Gerosa4

© The Author(s) 2019

Abstract
Software developers, including those of the Android mobile platform, constantly seek to
improve their applications’ maintainability and evolvability. Code smells are commonly
used for this purpose, as they indicate symptoms of design problems. However, although
the literature presents a variety of code smells, such as God Class and Long Method,
characteristics that are specific to the underlying technologies are not taken into account.
The presentation layer of an Android app, for example, implements specific architectural
decisions from the Android platform itself (such as the use of Activities, Fragments, and
Listeners) as well as deal with and integrate different types of resources (such as layouts
and images). Through a three-step study involving 246 Android developers, we investigated
code smells that developers perceive for this part of Android apps. We devised 20 specific
code smells and collected the developers’ perceptions of their frequency and importance. We
also implemented a tool that identifies the proposed code smells and studied their prevalence
in 619 open-source Android apps. Our findings suggest that: 1) developers perceive smells
specific to the presentation layer of Android apps; 2) developers consider these smells to be
of high importance and frequency; and 3) the proposed smells occur in real-world Android
apps. Our domain-specific smells can be leveraged by developers, researchers, and tool
developers for searching potentially problematic pieces of code.

Keywords Android mobile applications · Code smells · Empirical software engineering ·
Software maintenance and evolution

1 Introduction

“We are aware that good code matters, because we have had to deal with the lack of it for a
long time,” argues Martin (2008). However, how do we find potentially problematic pieces
of code? One answer might be by searching for smells. Code smells are anomalies that

Communicated by: David Lo, Meiyappan Nagappan, Fabio Palomba, Sebastiano Panichella

� Maurı́cio Aniche
m.f.aniche@tudelft.nl

Extended author information available on the last page of the article.

Empirical Software Engineering (2019) 24:3546–3586

Published online: 27 November 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09768-9&domain=pdf
http://orcid.org/0000-0002-8893-2835
mailto: m.f.aniche@tudelft.nl

indicate a potential violation of design principles (Suryanarayana et al. 2014). By looking
for code smells, developers find problematic code that can be refactored to improve software
quality (Fowler and Beck 1999).

Several code smells have been catalogued in the literature (Fowler and Beck 1999; Mar-
tin 2008; Suryanarayana et al. 2014; Webster 1995), e.g., Long Methods and God Classes.
These code smells are usually defined based on traditional concepts and technologies that
emerged during the 1970s and 1990s, such as object orientation and Java. In this paper,
we call these “traditional code smells.” However, in the last decade, new technologies have
emerged, raising questions such as “Do traditional code smells apply to new technologies?”
and “Are there code smells which are specific to new technologies?” (Aniche et al. 2019).
Some researchers have already proposed technology-specific code smells for CSS (Ghara-
chorlu 2014), JavaScript (Fard and Mesbah 2013), MVC (Aniche et al. 2016, 2017), and
spreadsheets (Pinzger et al. 2012), for example.

Android (Alliance 2007), a mobile platform launched in 2008 by Google, has also
attracted the attention of researchers. Some scholars have investigated the existence of tra-
ditional code smells in Android applications (Hecht 2015; Linares-Vásquez et al. 2014;
Verloop 2013). Others have studied Android-specific code smells related to efficiency
(i.e., proper use of features like memory and processing) and usability (i.e., software
capability to be understood) (Gottschalk et al. 2012; Reimann and Brylski 2014). Other
researchers have focused on understanding Android development features that set them
apart from traditional software development (Minelli and Lanza 2013). However, to
the best of our knowledge, no study has focused on the Android presentation layer,
which follows specific concepts and models. In this paper, we investigate the existence
of code smells related to the maintainability of the presentation layer of an Android
application.

To understand what developers consider code smells, we collected data employing two
questionnaires. In the first questionnaire (n=45), we asked developers about good and
bad practices they notice in the development of the Android presentation layer. From the
responses, we derived 20 code smells. We then conducted a confirmatory questionnaire
(n=201) investigating the frequency and importance of the 20 proposed code smells. We
also implemented a tool to assist in the identification of the code smells, and measured their
prevalence in 619 open-source apps from the F-Droid repository.

Therefore, the main contribution of this paper is the cataloguing and validation of 20 new
code smells related to the maintainability of eight types of components and resources of the
Android’s presentation layer: Activities, Fragments, Adapters, and Listeners (components),
Layouts, Styles, String, and Drawables (resources).

2 Background: Android and its Presentation Layer

Android is a Linux-based mobile development platform launched in 2008 by Google in
partnership with several companies (Alliance 2007; Google 2017). In early 2011, Android
became the leading mobile platform, having reached more than 87% market share in 2017.
While its main competitor, iOS, is only used by Apple’s products, totaling approximately 30
different models (Wikipedia 2017), Android is used by more than 24,000 different models
of mobile devices according to a survey conducted in 2015 (OpenSignal 2015). In terms
of software development, the wide variety of hardware configurations brings significant
challenges: from performance-related issues to issues related to user interface development,
screens, and resolutions.

Empirical Software Engineering (2019) 24:3546–3586 3547

This research focuses on analyzing elements related to the presentation layer of
Android apps. We reviewed the official Android documentation for the presentation layer
(Google 2016), from which we identified the following components: Activities, Fragments,
Adapters, and Listeners.

– Activities represent a screen in the app, which the end-user sees and interacts with.
– Fragments represent parts of an Activity and should indicate their corresponding layout

feature. Fragments are used inside Activities.
– Adapters are used to populate the UI (User Interface) with collections of data.
– Listeners are Java interfaces that represent user events.

Resources are also related to the presentation layer (Google 2017), and Android provides
more than fifteen different resource types (Google 2016a). They are “non-Java” files used to
build user interfaces, such as image, audio, or XML files. We relied on the existing resources
of the project created from the default template1 of Android Studio (Google 2016b), which
is the official integrated development environment for Android. The selected resources are:
Layout, Strings, Style, and Drawable.

– Layout Resources are XML files used for the development of the UI structure of
Android components. The development is done using a hierarchy of Views and View-
Groups. Views are text boxes, buttons, etc., while ViewGroups are a collection of Views
with a definition of how these Views should be shown.

– String Resources are XMLs used to define sets of texts for internationalization.
– Style Resources are XMLs used to define styles to be applied in layout XMLs. Their

goal is to separate code related to structure from code related to appearance and shape.
– Drawable Resources represent a general concept for a graphic that can be drawn on the

screen, including traditional images or specific XML files.

2.1 Developing a Presentation Layer in Android: A Running Example

In an Android app, a screen comprises two files: a Java class responsible for creating the
screen and responding to the user events, and a layout resource, which is an XML file
responsible for creating its visual interface.

An ACTIVITY is one of the major components of Android applications. It represents a
UI screen, comprising buttons, listings, text input boxes, etc. To implement an ACTIVITY,
it is necessary to create a class derived from the Activity, and to override some inherited
methods. We highlight the onCreate() method. One of its responsibilities is to configure the
user interface. In Listing 1, we illustrate the code for creating an ACTIVITY. In line 5, we
find the UI configuration, which indicates the layout “main activity” feature.

The UI of an ACTIVITY is built using layout resources, which are composed of XML
files. In the following, we show an example of a layout resource (Listing 2).

Although the examples presented are quite simple, real-world UIs tend to be much more
robust and richer in information and interactivity. Such rich and robust UIs may result in
large and complex code elements. Moreover, UI components usually have long and complex
life cycles. An ACTIVITY, for example, has 7 different states in its life cycle (onCreate(),
onStart(), onResume(), onPause(), onStop(), and onDestroy()), while FRAGMENTS have
11 different stages. These numbers are high compared to the life cycle of non-UI related

1Up to version 3.0 of Android Studio, the most current version at the time of this writing, the standard design
template, which is pre-selected in the creation of a new Android project, is an Empty Activity.

Empirical Software Engineering (2019) 24:3546–35863548

Listing 1 An example of an Activity class

components (e.g., a SERVICE has only four). In such contexts, challenges in developing
maintainable Android presentation code emerge.

3 RelatedWork

In this section, we present work related to traditional code smells, domain-specific smells,
and smells for Android applications.

3.1 Traditional Code Smells

Webster’s (1995) book was likely the first code smells catalog, which focused on object-
oriented software. Since then, several developers and researchers have studied this subject.
As an example, Riel (1996) has documented more than 60 different heuristics for object-
oriented code. Fowler and Beck (1999) suggests refactoring strategies for more than 20
smells.

Some researchers have focused on understanding the impacts of code smells on project
quality. Khomh et al. (2009), for example, conducted an empirical experiment in which
they found that classes affected by code smells tend to suffer more changes than classes

Listing 2 An example of a layout resource

Empirical Software Engineering (2019) 24:3546–3586 3549

without code smells. In another study, Khomh et al. (2012) noticed that classes affected
by code smells are also more prone to defects. Li and Shatnawi (2007) also empirically
analyzed the impact of code smells and found a high correlation between code smells
and detect-proneness. Yamashita and Moonen (2013) explored the implications of inter-
smell relations and explained how different interactions impact maintainability. On a related
research, Abbes et al. (2011), showed by means of a controlled experiment that the existence
of a single code smell in a class does not significantly diminish developers’ performance
during maintenance tasks; however, when classes suffer from more than one code smell,
performance is significantly reduced.

Other researchers have studied how developers perceive code smells. Palomba et al.
(2014) conducted an empirical experiment to evaluate the developers’ perception of tra-
ditional code smells. Their results showed that developers easily perceive “simple” code
smells. However, experience and knowledge play a significant role in identifying code
smells related to good practices of object-oriented development.

Arcoverde et al. (2011) conducted a survey to understand how developers react to the
presence of code smells. The results showed that developers postpone removal to avoid API
modifications. Peters and Zaidman (2012) analyzed the behavior of developers regarding
the life cycle of code smells. Their results showed that awareness of a code smell is not
enough to compel immediate refactoring.

3.2 Domain-Specific Code Smells

Several researchers have been investigating the existence of code smells that are specific
to a given technology, for example, MVC (Aniche et al. 2016), Object-Relational Map-
ping (Chen et al. 2014), CSS (Gharachorlu 2014), and formulas in spreadsheets (Pinzger
et al. 2012).

Chen et al. (2014) studied code smells in Object-Relational Mapping (ORM) frame-
works, since developers are usually unaware of the impact of their code in database
performance. The authors implemented an automated and systematic framework to detect
and prioritize anti-performance standards in applications developed using ORM, and
mapped two specific anti-patterns to ORM frameworks.

Aniche et al. (2016, 2017) investigated code smells related to the MVC architecture.
After interviewing and surveying developers, the authors proposed a set of six smells related
to the layers of an MVC application—Model, View, and Controller—and showed how each
of them affects classes’ change- and defect-proneness. Aniche et al. (2016) also performed
an empirical analysis in 120 open source systems and showed that each architectural role has
a different code metric values distribution, which is a likely consequence of their specific
responsibilities.

Gharachorlu (2014) investigated code smells in CSS code, a widely used language in the
presentation layer of web applications. According to the author, despite the simplicity of
CSS syntax, language-specific features make CSS creation and maintenance a challenging
task. A large-scale empirical study indicated that current CSS code suffers significantly
from inadequate standards. The author proposes the first CSS quality model derived from a
large sample to help developers estimate the total number of code smells in their CSS code.
His main contribution was a set of eight new code CSS smells that can be detected with the
CSSNose tool.

Finally, Fard and Ali (2013) investigated code smells in JavaScript. The authors claimed
that because of its flexibility, JavaScript is a particularly challenging language for writing
and maintaining code. According to the authors, one of the challenges is that, unlike Android

Empirical Software Engineering (2019) 24:3546–35863550

applications, which are compiled, JavaScript is interpreted. This means that there is usually
no compiler to help developers detect incorrect or non-optimized code. Besides these chal-
lenges, the authors also fault JavaScript’s dynamic, weakly typed, and asynchronous nature.
They propose a set of 13 code smells for JavaScript: seven as adaptations of traditional code
smells and six as language-specific smells. They also proposed an automated technique,
called JSNOSE, to detect these code smells.

3.3 Code Smells in Android Apps

Mannan et al. (2016) state that 10% of the articles published in major software mainte-
nance conferences between 2008 and 2015 considered Android projects in their research.
They also observed that, when compared to traditional software, little research has been
conducted on code smells in Android applications.

A significant portion of the research dedicated to code smells in Android applications
focuses on studying the effects of traditional code smells. For example, Linares-Vásquez
et al. (2014) used the DECOR tool (Moha et al. 2010) to perform the detection of
object-oriented anti-patterns in mobile applications developed with J2ME. Among their
conclusions, the authors noticed a significant difference in the values of quality metrics
in applications affected by code smells when compared to those that are not, and that
while code smells occur in all domains, some code smells are more prevalent in specific
domains.

Verloop (2013) investigated the presence of traditional code smells (Fowler and Beck
1999) in Android applications to determine whether these code smells occur more often
in “core classes,” classes in the Android project that need to inherit from Android SDK
classes, such as ACTIVITIES, FRAGMENTS, and SERVICES (as compared to “non-core”
classes). To that aim, the author used four automatic code smell detection tools: JDeodorant,
Checkstyle, PMD, and UCDetector. The author states that core classes tend to exhibit God
Class, Long Method, Switch Commands, and Type Check code smells due to their nature
of having many responsibilities. These smells were particularly high in ACTIVITIES, which
is the main component of the Android presentation layer. The author also found that the
traditional code smell Long List Parameters is less likely to appear in core classes, as most
of their method signatures come from classes defined in the Android SDK.

Reimann and Brylski (2014) correlated the concepts of code smell, quality, and refactor-
ing to introduce a catalog of 30 smells focused on usability, resource consumption, and secu-
rity. Hecht et al. (2015a) used the code smells detection tool Páprika (Hecht et al. 2015b)
to identify 8 code smells. The author searched for the code smells in 15 popular Android
applications, including Facebook, Skype, and Twitter. The author claims that traditional
code smells are as prevalent in Android as in non-Android applications, except for the Swiss
Army Knife code smell (Brown et al. 1998). Mannan et al. (2016) conducted a large-scale
empirical study to compare the prevalence and effects of code smells on mobile and desk-
top applications. The authors found that while code smell density is similar in both mobile
and desktop systems, some smells occur more often in mobile applications. For example,
data classes and data clumps happen more often in a mobile app, while external duplication
tends to happen more in desktop systems.

Researchers also showed that Android test code also contains test smells. More specif-
ically, Peruma (2018) explored the prevalence of test code smells in several open source
Android applications. The author found that Android apps exhibit test smells early on in
their lifetime, with varying degrees of co-occurrences with different smell types, and that
the existence of the test smells is also associated with higher change-proneness.

Empirical Software Engineering (2019) 24:3546–3586 3551

Gottschalk et al. (2012) conducted a study on ways to detect and refactor code smells
related to energy efficiency. The authors compiled a catalog with six code smells drawn
from other research. Linares-Vásquez et al. (2014), who also investigated energy consump-
tion, showed that APIs related to user interface and database represent around 60% of the
energy-greedy APIs. The authors also propose energy-saving recipes for Android develop-
ers, including “limit the use of the Model-View-Controller (MVC) pattern, especially when
used in apps with many views” and “carefully design apps that make use of several views.”

Other researchers also investigated performance and resource consumption. For exam-
ple, Hecht et al. (2016) studied the effects of three code smells (Internal Getter/Setter,
Member Ignoring Method, and HashMap Usage) on the performance and memory-usage
of two open source Android apps. Linares-Vásquez et al. (2017) investigated the effects
of micro-optimization in mobile applications. After a study of more than 3,500 mobile
apps, the authors concluded that developers rarely make use of micro-optimizations and that
the impact of these micro-optimizations on CPU/memory consumption is often negligible.
Although not directly related to code smells, Liu et al. (2014) conducted a study of 70 real-
world performance bugs collected from eight Android applications. Among their findings,
the authors show that most performance bugs (75%) are GUI lagging. In other words, they
reduce responsiveness or the smoothness of the user interface. GUI lagging is indeed a con-
cern of developers, as Linares-Vasquez et al. (2015) show after surveying 485 open source
developers.

Palomba et al. (2017) propose 15 Android-specific smells and lightweight rules for their
detection (that achieves an average precision and recall of 98%). The proposed code smells
relate to different parts of an Android application, ranging from performance issues (e.g.,
the smell Data Transmission Without Compression arises when a method transmits a file
over a network infrastructure without compressing it, and the Inefficient SQL Query, for
which the authors suggest that the use of JDBC over network introduces too much overhead)
to thread issues (e.g., the Leaking Thread happens when the application does not properly
stop unused threads).

Android security code smells have also been explored by Ghafari et al. (2017). After
reviewing scientific literature, the authors proposed a catalog of 28 smells that can lead to
security vulnerabilities. The smells touch different security problems, such as insufficient
attack protection, security validation, access control, data exposure, and input validation.
After investigating the frequency of these code smells in around 46,000 open source
mobile apps, the authors conclude that these smells occur in practice; some of them,
such as Dynamic Code Loading and XSS-like Code Injection, happen in more than 50%
of the apps.

4 Research Goals

The goal of our study is to catalog and empirically validate code smells that occur in the
presentation layer source code of Android applications. To that aim, we employed a mixed
method approach for understanding developers’ perceptions, as their points of view play
an important role in defining code smells related to a specific technology (Arcoverde et al.
2011; Palomba et al. 2014; Yamashita and Moonen 2013), especially considering the smells’
intrinsic subjective nature (Fard and Mesbah 2013; Van Emden and Moonen 2002).

We investigate the following research questions (RQ):

RQ1: What code smells do developers observe in the presentation layer of Android apps?

Empirical Software Engineering (2019) 24:3546–35863552

RQ2: How often do developers observe the identified code smells and what importance
do they give to them?

RQ3: How prevalent are the proposed code smells in real Android apps?

We employed two open online questionnaires to collect and confirm the smells, which
were answered by 45 and 201 developers, respectively. We also developed a tool that
automatically identifies the proposed code smells, and we analyzed the prevalence of the
proposed code smells in 619 Android apps.

As the results of each RQ influenced the design of the subsequent step of the research,
we present the method and results of each RQ in its own section.

5 A Catalog of Code Smells (RQ 1)

The first part of the study aimed to catalog code smells that occur in the presentation layer
of Android apps. We employed an online questionnaire asking about good and bad practices
related to components and resources of the Android’s presentation layer.

5.1 Methodology and Questionnaire

The online questionnaire comprises 25 questions organized into three sections. The first
section (6 questions) traces the participant’s demographic profile (age, residence, experience
in software development, experience with Android development, and schooling). The sec-
ond section focuses on understanding what developers consider good and bad practices in
each element of the presentation layer (Activities, Fragments, Adapters, Listeners, Layout,
Strings, Styles, and Drawables). We asked about good and bad practices since developers
may not be able to express code smells directly, but may report the measures they take to
avoid problems. This strategy has also been applied in previous work by Aniche et al. (2016,
2017) to identify code smells in MVC applications. This part of the questionnaire comprises
16 optional open-ended questions: for each of the eight elements of the Android presenta-
tion layer, we asked a question related to good practices and another to bad practices. As an
example, for the Activity element, we ask:

Q1 Do you have any good practices to deal with Activities?
Q2 Do you have anything you consider a bad practice when dealing with Activities?

The last section of the questionnaire comprises two open questions to capture any last
thoughts not captured in the previous questions and one inviting participants to provide their
email. The complete questionnaire can be seen in the online appendix (Carvalho et al. 2019).

Before the release, we conducted a pilot test with three Android developers. In the first
configuration of the questionnaire, almost all questions were mandatory. With the result
of the pilot test, we realized that developers do not always have good or bad practices to
comment on all elements. Thus, we made such questions optional. The responses from the
pilot study were disregarded to mitigate bias effects.

The questionnaire was released on Android forums, such as Android Dev Brasil,2

Android Brasil Projetos,3 and Slack Android Dev Br.4 The authors of this paper also made

2https://groups.google.com/forum/#!forum/androidbrasil-dev
3https://groups.google.com/forum/#!forum/android-brasil--projetos
4http://slack.androiddevbr.org

Empirical Software Engineering (2019) 24:3546–3586 3553

https://groups.google.com/forum/#!forum/androidbrasil-dev
https://groups.google.com/forum/#!forum/android-brasil--projetos
http://slack.androiddevbr.org

use of their Twitter social networks to share the questionnaire. The questionnaire was open
for approximately 3.5 months, from October 9, 2016, until January 18, 2017.

5.2 Participants

We obtained 45 responses. In Fig. 1, we show the experience in software and Android
development of our participants. Out of the 45 respondents, 90% had two years or more of
software development experience, and 71% had two years or more of experience in Android
development. It is noteworthy that the Android platform reached its 10th anniversary in
2018, i.e., five years of experience in this platform represented 50% of Android’s lifetime.
The questionnaire was replied to by developers from 3 continents and 7 countries. Most
responses came from Brazil (81%).

5.3 Data Analysis

Our analysis was inspired by the Grounded Theory approach (GT) (Corbin and Strauss
2007; Glaser and Strauss 2017), which is increasingly popular in software engineering
research (Adolph et al. 2011). GT is an inductive approach whereby qualitative data is ana-
lyzed to derive a theory. The goal of the approach is to discover new perspectives rather
than confirm existing ones. Our analysis started from 45 responses to the questionnaire and
occurred in 4 steps: verticalization, data cleaning, codification, and split, as detailed in the
following.

The verticalization consisted of considering each good or bad practice response as an
individual record to be analyzed. As each participant provided 18 answers to be analyzed,
we started with 810 records.

The next step was data cleaning. This step consisted of removing answers that were
not specific to the Android presentation layer, i.e., practices that could be applied to any
other Android layer or even Java systems. Out of the 810 answers, 352 were considered,
and 458 were disregarded. We could note that traditional code smells also apply to the
Android context. The high number of responses (352) that were specifically related to the
Android presentation layer shows that there are specific practices that take the architecture
into account. Out of the 352 answers, 45% of them related to bad practices and 55% to good
practices. In Table 1, we show how many answers we collected per survey question.

3
2

4
3 3

11
9

1
2

7

0

3

6

9

<= 1 2 3 4 5 6 7 8 9 10+

6 7

12

6

3

7

2 2
0.0

2.5

5.0

7.5

10.0

12.5

<= 1 2 3 4 5 6 7 8

Fig. 1 Participants’ experience in the part I of our research (N = 45). X axis represents years of experience,
Y axis represents the number of participants

Empirical Software Engineering (2019) 24:3546–35863554

Table 1 Participants and questions they answered (participants = 45)

Total of

Question participants Participants

Q1 Good practice / Activities 36 (80%) P1, P2, P4-P12, P14-P17, P19, P22,

P23, P25-P32, P34-P37, P39-P43, P45

Q2 Bad practice / Activities 35 (78%) P2, P4-P11, P14-P17, P19, P22, P23,

P25-P32, P34-P37, P39-P45

Q3 Good practice / Fragments 33 (73%) P4-P11, P14-P17, P19, P22, P23, P25-

P28, P30-P32, P34-P37, P39-P45

Q4 Bad practice / Fragments 31 (69%) P2, P4-P11, P14, P15, P17, P19, P22,

P23, P25-P28, P31,P32, P34-P37, P39-P43, P45

Q5 Good practice / Adapters 30 (67%) P2, P4-P11, P14, P15, P17-P19, P22, P23,

P26, P28, P29, P31,P32, P34-P37, P39-P43, P45

Q6 Bad practice / Adapters 27 (60%) P2, P4-P8, P10, P11, P14, P18, P19, P22, P23, P26,

P28, P31, P34-P37, P39-P45

Q7 Good practice / Listeners 24 (53%) P2, P4-P6, P8, P9, P11, P14, P22, P23, P26, P28,

P29, P31, P32, P34, P36, P37, P39-P43, P45

Q8 Bad practice / Listeners 23 (51%) P2, P4, P5, P8, P9, P11, P14, P19, P22, P23, P26,

P28, P31, P32, P34, P36, P37, P39-P44

Q9 Good practice / Layout 28 (62%) P4-P9, P11, P14, P19, P22, P23, P26-P29, P31,

Resources P32, P34-P37, P39-P45

Q10 Bad practice / Layout 23 (51%) P4, P5, P7-P9, P11, P22, P23, P26, P28, P31, P32,

Resources P34-P37, P39-P45

Q11 Good practice / Styles 23 (51%) P4-P9, P11, P18, P22, P23, P26, P28, P31,

Resources P32, P34-P37, P39-P43

Q12 Bad practice / Styles 22 (49%) P4-P8, P11, P18, P22, P23, P26, P28, P31, P32,

Resources P34-P37, P39-P43

Q13 Good practice / String 28 (62%) P4-P6, P8-P11, P14, P18, P22, P23, P26-P29, P31,

Resources P32, P34-P37, P39-P45

Q14 Bad practice / String 23 (51%) P4-P6, P8, P9, P11, P14, P18, P22, P23, P26, P28,

Resources P31, P32, P34-P37, P40-P43, P45

Q15 Good practice / Drawable 24 (53%) P4-P6, P8-P11, P14, P18, P22, P23, P26, P28,

Resources P31, P32, P34-P37, P39-P43

Q16 Bad practice / Drawable 21 (47%) P4-P6, P8, P11, P14, P18, P22, P23, P26, P28,

Resources P31, P32, P34, P36, P37, P40-P44

Q17 Other good practices 22 (49%) P2, P4, P8, P10, P11, P14, P18, P22, P23, P26,

P28, P31, P32, P34, P36, P37, P39-P43, P45

Q18 Other bad practices 20 (44%) P2, P4, P8, P10, P11, P18, P22, P23, P28, P31,

P32, P34, P36, P37, P40-P45

Next, we performed codification for good and bad practices (Corbin and Strauss
2007; Saldaña 2015). Codification is the process by which categories are extracted from
a set of statements through the abstraction of central ideas and relations between the
statements (Corbin and Strauss 2007). In our case, categories represented the code smells

Empirical Software Engineering (2019) 24:3546–3586 3555

themselves. For each statement about bad practice, we either defined a new code smell that
captured its essence or assigned it to an already identified smell. For the good practices, the
authors used their knowledge of the Android platform, analyzed the goal of the good prac-
tice, and either defined a new code smell or assigned the practice to an existing one. As a
single statement can belong to more than one code smell, some of them received more than
one category. In this step, we also disregarded more answers that were not “obviously dis-
posable” in the previous step. For each response not considered in this step, we recorded the
reason, which can be found in our online appendix (Carvalho et al. 2019).

Finally, we performed the split step, which consisted of dividing responses that belonged
to more than one category into two or more answers. As an example, “Do not make Activi-
ties to be callbacks of asynchronous executions. Always inherit from support classes, never
directly from the platform.” indicates one category in the first sentence and another one in
the second. In some cases, the complete response was necessary to understand both catego-
rizations, in which case we maintained the original answer. At the end of the analysis, 359
responses were individually categorized into 46 categories.

The first author of this paper conducted the verticalization, data cleaning, codification,
split, and categorization steps. The second author of the paper intervened whenever the first
author had questions about a specific coding. Both authors discussed until reaching a final
agreement. At the end of the coding process, the first and the second authors discussed all
the derived codes and together derived the final definition of the code smells.

In the usability community, Nielsen (2000) suggests that five repetitions are enough to
characterize a recurring problem, and successive repetitions tend not to aggregate new rel-
evant information. After experimenting with the number five as the minimum number of
mentions, we obtained 20 smells, which belonged to two different groups: 9 of them related
to the Java classes of the Android presentation layer, and 11 related to resources (string,
layout, style, and drawable). After some consideration from the authors, we decided that
this catalog met our criteria of having a reasonable number of recurrent smells covering the
Android presentation layer.

5.4 Results

Activities was the element with the highest number of answers: 35 (78%) out of the 45
respondents answered the question about good practices while 38 (84%) responded to the
question about bad practices. The element that received the least number of responses about
good practices was Listener, which was answered by 10 (22%) participants. The elements
that received the fewest responses about bad practices were Style resources and Drawable,
both of which were answered by 9 (20%) participants.

The coding process resulted in 46 categories. As aforementioned, to derive a code smell
we considered all 22 categories that presented occurrences greater than or equal to five. Out
of the 22, we disregarded 2 categories because they were either (i) too similar to a traditional
code smell (Large Class) or (ii) too focused on object-oriented programming (inheritance).
In the online appendix, we report the full coding results (Carvalho et al. 2019).

In Table 2, we present a summary of each code smell, and in Table 3, we show how often
our participants mentioned that smell. In the following paragraphs, we present the definition
of the code smells, as well as the elements affected and related symptoms. We provide
more information about each smell, such as code examples and refactoring suggestions, in
a dedicated website.5

5http://suelencarvalho.com/android-presentation-layer-code-smells.

Empirical Software Engineering (2019) 24:3546–35863556

http://suelencarvalho.com/android-presentation-layer-code-smells.

Table 2 The proposed code smells in the presentation layer of Android apps

Name Summary

Component BRAIN UI COMPONENT UI components with business logic.

smells COUPLED UI COMPONENT UI components with concrete references to

each other.

SUSPICIOUS BEHAVIOR Listener being implemented within an UI

component.

FOOL ADAPTER Adapters that do not use the ViewHolder

pattern.

ABSENCE OF AN ARCHITECTURE Presentation layer without a known/clear

architecture.

EXCESSIVE USE OF FRAGMENTS Use of fragments without an explicit need.

UI COMPONENT DOING I/O UI components making access to I/O, e.g.,

database.

NO USE OF FRAGMENTS The lack of Fragments prevents UI with

behavior reuse.

FLEX ADAPTER Adapters with any (business or view) logic.

Resource NO NAMING PATTERN No naming pattern in Resources.

smells MAGIC RESOURCE Strings, numbers, or colors hardcoded.

DEEP NESTED LAYOUT Layout resources with deep levels of nested

Views.

UNNECESSARY IMAGE Images that could be transformed into a

graphic resource.

LONG OR REPEATED LAYOUT Layout resources that are too long or with

duplicated code snippets.

MISSING IMAGE Image without all standard resolutions.

GOD STYLE RESOURCE Long Style resources that contain too much

data.

GOD STRING RESOURCE String resource without a clear naming

pattern.

DUPLICATE STYLE ATTRIBUTES Repeated attributes in layout or style

resources.

INAPPROPRIATE STRING REUSE Strings being reused improperly within

resources.

HIDDEN LISTENER Listeners being configured inside of layout

resources.

The smells are ordered by the number of times they were mentioned in the survey

BRAIN UI COMPONENT Activities, Fragments, and Adapters should be responsible for pre-
senting, interacting, and updating the UI only. Business logic should be implemented
elsewhere. This idea is similar to what Evans (2004) calls the separation of the “UI layer”
and the “domain layer.” The existence in presentation layer elements of code related to
business logic, I/O operations, conversion of data, or static fields is a sign of code smell.

Empirical Software Engineering (2019) 24:3546–3586 3557

Table 3 The origin of each of the code smells (participants = 45)

Code smell Qty of codes # of Participants

Brain UI Component 60 21 (P2, P6-7, P9, P10-11, P16-17,

P19, P23, P25, P27-28, P31, P34-

37, P39-41)

Coupled UI Component 18 13 (P2, P4, P6, P10, P19, P23,

P31, P36-37, P40, P44-45)

Suspicious Behavior 18 11 (P4, P6, P8-10, P32, P34, P37,

P42-44)

Fool Adapter 13 12 (P4, P6-8, P11, P17, P31, P35-

36, P39, P43, P45)

Absence of an Architecture 13 10 (P1, P4, P8, P12, P15, P26,

P28, P31, P42, P45)

Excessive Use of Fragments 9 7 (P2, P4, P7, P11, P30, P39, P41)

UI Component Doing I/O 9 4 (P2, P26, P37, P41)

No Use of Fragments 8 7 (P9-10, P31, P14, P19, P34, P45)

Flex Adapter 6 6 (P2, P7, P23, P39, P40, P41)

No Naming Pattern 23 10 (P4, P6, P8, P11, P27, P29,

P34, P37, P39, P43)

Magic Resource 23 14 (P14, P23, P26, P27, P29, P31-

32, P34-36, P41, P43-45)

Deep Nested Layout 21 15 (P2, P4, P6-8, P14, P19, P26,

P36-37, P39-41, P44-45)

Unnecessary Image 18 13 (P6, P8-9, P11, P14, P23, P28,

P35-37, P40-42)

Long or Repeated Layout 15 13 (P4, P6, P7, P9, P23, P26, P28,

P32, P34, P36, P40-42)

Missing Image 12 10 (P4, P8, P10, P11, P31, P34,

P36, P40, P42, P44)

God Style Resource 8 5 (P7-8, P28, P40, P42)

God String Resource 8 6 (P8, P26, P28, P32, P41, P42)

Duplicate Style Attributes 8 8 (P4, P8, P28, P32, P34, P39-41)

Inappropriate String Reuse 6 5 (P4, P6, P9, P32, P40)

Hidden Listener 5 3 (P34, P39, P41)

Quantity of codes represent the number of times the smell was mentioned. Note that a participant may have
mentioned the same smell more than once in their survey. Thes smells are ordered by the number of times
they were mentioned in the survey

NO NAMING PATTERN This smell happens when resources (layout, string, style, and draw-
ables) do not follow a naming pattern. More specifically, it happens when the file where the
resource is located and its internal name (i.e., how the resource is called inside the source
code) differ. These different names cause confusion among developers.

MAGIC RESOURCE A smell that occurs when resources (e.g., layout, string, and style) are
hard-coded instead of pointing to an existing resource file.

Empirical Software Engineering (2019) 24:3546–35863558

DEEP NESTED LAYOUT Deep nesting when constructing layout resources was considered a
code smell. Interestingly, the official Android website has more information and provides
automated tools to deal with this problem (Google 2017).

UNNECESSARY IMAGE Android has resources that can replace images. The smell occurs
when the system has images with, for example, pure solid colors or gradients, which could
be replaced by Android’s native shapes.

COUPLED UI COMPONENT In order to be reused, Fragments, Adapters, and Listeners should
not have a direct reference to who uses them. The existence of direct reference to Activities
or Fragments in these elements is an evidence of code smell.

SUSPICIOUS BEHAVIOR Activities, Fragments, and Adapters should not contain in their
source code the implementation of event handlers. First, event handling code, when embed-
ded into one of these components, is implemented through anonymous or internal classes.
As the interfaces that these event handlers need to implement are often complex, the source
code of Activities, Fragments, and Adapters becomes less readable. Second, an event han-
dler often makes use of business rules and domain models. A less attentive developer may
then write these business rules directly into the event handler (which then leads us to a
possible Brain UI Component smell). The use of anonymous classes or internal classes to
implement Listeners to respond to user events is a sign of code smell.

LONG OR REPEATED LAYOUT The code smell appears when long or duplicated layout
resources occur in the source code.

FOOL ADAPTER This smell occurs when Adapters do not reuse instances of the views that
represent the fields that will be populated for each item of a collection using the View Holder
pattern.

ABSENCE OF AN ARCHITECTURE This smell happens when one cannot easily identify how
the components are organized. Developers cannot identify whether the application makes
use of Model-View-Controller (MVC), Model-View-Presenter (MVP), or Model-View-
ViewModel (MVVM).

MISSING IMAGE This code smell happens when the system has only a single version of .png,
.jpg, or .gif images. The Android platform encourages images to be available in more than
one size or resolution to perform optimizations.

EXCESSIVE USE OF FRAGMENTS This smell emerges when Fragments are used without an
explicit need. Examples include applications that do not need to support tablets and when
Fragments are used in only a single screen of the app.

UI COMPONENT DOING I/O Activities, Fragments, and Adapters performing I/O operations,
such as database and file access, cause this smell.

NO USE OF FRAGMENTS FRAGMENTS can decouple UI with behavior pieces. The non-use
of fragments can be a smell in visually rich apps. Such apps have a high number of different
behaviors, animations, and events to handle. If all the implementation relies on a single
Activity, for example, this class will be highly complex and hard to understand. Moreover,

Empirical Software Engineering (2019) 24:3546–3586 3559

visually rich apps are also often responsive, i.e., have different UIs for different screen sizes.
In this case, not using fragments will hinder code reuse. This code smell emerges when
view components (e.g., EditTexts or Spinners) are directly used by an Activity instead of a
Fragment.

GOD STYLE RESOURCE Long style resources define this smell. Symptoms of this smell
happen when all styles are defined in the same styles.xml.

GOD STRING RESOURCE This smell is defined by Long string resources. Developers should
separate their string resources according to a rule: e.g., one string resource per screen.

DUPLICATE STYLE ATTRIBUTES Android developers often choose to define the style of a UI
element directly in the layout file. However, this might lead to unnecessary duplication (e.g.,
the same complex style appears in different components). The existence of duplicated style
definitions in different components indicates this code smell.

FLEX ADAPTER Adapters should be responsible for populating a view from a single object.
The code smell emerges when Adapters contain business or view logic. As we discussed
in the Brain UI Component smell, UI logic and business rules should remain separate from
each other.

INAPPROPRIATE STRING REUSE Developers reuse strings among the different UIs of the
application. For example, the string “Name” might appear in many parts of the app; thus,
developers write this string only once in a string resource file and reuse it whenever they
need it. However, the smell happens when developers reuse the same string in different
parts of the system because the string is coincidentally the same, and not because they rep-
resent the same concept in the UI. For example, in one part of the app, “name” might refer
to the name of the user, whereas in another part of the app, “name” might refer to the name
of the user’s favorite band. Reusing strings simply because of their similarity might lead to
two problems: First, if developers decide to change the string, they need to be aware that
the changes will be reflected throughout the entire application. Second, when adding sup-
port for multiple languages, one language might need two words to express what another
language can communicate in one.

HIDDEN LISTENER Layout resources should only be responsible for presenting data. This
smell appears when these resources also configure the listener that will respond to events,
such as the onClick event. Event handling in XML files makes it harder for developers to
identify which listeners are used and where. Although the most recent versions of IDEs
are able to show developers which events are declared in an XML file when reading the
respective Java file, events that are declared in XML files are “hidden” from developers who
primarily work in Java code.

RQ1. Based on developers’ reports of good and bad practices, we cataloged 20 code
smells for the presentation layer of Android apps: 9 related to components (Activities,
Fragments, Adapters, and Listeners), and 11 related to resources (Layout, String, Style,
and Drawable resources).

Empirical Software Engineering (2019) 24:3546–35863560

6 Importance and Frequency of the Code Smells (RQ 2)

The second part of the research aimed to understand the perceptions of the develop-
ers regarding the frequency and importance of the proposed smells. We collected these
perceptions through another survey.

6.1 Methodology and Survey

This survey has three sections (the full version is available in the appendix). The first section
(6 questions), as in the first step, collects the participants’ demographic profile (age, resi-
dence, software development experience, Android development experience, and education).
The second section captures developers’ perceptions about how often they come across the
smells in their Android systems. The third section captures perceptions of the developers
regarding the importance of mitigating the code smells. In this survey, we were not inter-
ested in collecting more code smells, but rather in confirming the ones we devised in the
first part. However, we did not indicate that code smells would be presented, nor did we
mention the names of the smells used in this research. We have chosen this approach to
avoid having to fully explain the code smells.

To investigate frequency (second part of the survey), we presented a list of statements
derived from RQ1 where each statement described in practical terms how the smells man-
ifest themselves in the source code. For each statement, the participant could choose one
of five scale options from the frequency range: very common, frequent, sometimes, rarely,
and never. We presented 25 statements to contemplate the 20 code smells from RQ1. The
difference in these numbers occurred because, for four of the code smells—SUSPICIOUS

BEHAVIOR, LONG OR REPEATED LAYOUT, GOD STYLE RESOURCE, and DUPLICATE

STYLE ATTRIBUTES)—more than one statement was presented, each addressing one symp-
tom. We chose to separate the symptoms into statements to understand which ones were
frequently perceived by developers.

To investigate importance (third part of the survey), we asked developers about the impor-
tance of mitigating the smells. We decided to present mitigation approaches instead of the
code smells, since: 1) in the previous question, we had already introduced the smells and
asked about how often they see the smells, and that would be too repetitive for the par-
ticipants; and 2) showing them ways to mitigate the problem would give them a different
perspective on the proposed code smells (which, we conjecture, can make them rethink their
answers). The participants were asked to indicate how important they considered 21 sen-
tences related to approaches that mitigate the proposed code smells. Again, the divergence
of the total number of code smells, and the total of mitigation statements can be explained
because of smells with more than one symptom. For each statement, the participant could
choose one of the following options: very important, important, fairly important, slightly
important, and not important.

Before publishing the questionnaire, we performed pilots with two experienced Android
experts, DEV-A and DEV-B. DEV-A has 10 years of software development experience and 5
years of experience in Android development, considers himself proficient in Java, Objective
C, Swift, and Android technologies, and holds a bachelor’s degree in Information Technol-
ogy. DEV-B has 7 years of software development experience and 6 years of experience in
Android development, considers himself proficient in Java, Objective C, and Android tech-
nologies, and has a postgraduate degree in Service Oriented Software Engineering. In these
pilot studies, we walked the experts through all the sentences we devised to the question-
naire and asked them to think aloud while reading each sentence. Our primary goal was to

Empirical Software Engineering (2019) 24:3546–3586 3561

make sure all sentences made sense and were clear. We used their feedback to improve the
formulation of the sentences. After all the improvements, the two experts agreed that all the
sentences in the survey were clear and conveyed our intention and that it was ready to go
public. Although we did not show the definitions of the code smells to the experts (only the
survey), as the survey is intrinsically related to the smells, their feedback also helped us in
sharpening the final definition of the smells.

The questionnaire was open for approximately three weeks in mid-September 2017 and
was shared in the same venues as in Part 1. The statements were presented randomly, and
201 developers answered the questionnaire. A possible explanation for the difference in the
number of answers (Part 1 received 45 answers) is due to the differences in format: while
Part 1 was focused on open questions that take a long time to respond to, Part 2 mostly
contained closed questions, which take less time to complete and are thus more attractive to
participants.

6.2 Participants

In Fig. 2, we show the experience of the 201 participants that answered our survey: 94%
indicated they had two years or more of experience in software development, and 74%
indicated two years or more of experience in Android development. In addition, 15% had
one or more post-graduation degrees, and 61% had a bachelor’s degree. Most participants
were between 20 and 35 years old. We also asked participants about their level of knowledge
in various object-oriented languages. More than 80% claim to have intermediate or expert
knowledge in Java and Android. Five participants (2%) stated that they did not know about
Android, so their answers were disregarded in the analysis. We obtained responses from
Android developers from 3 continents and 14 different countries. Similar to the previous
survey, 78% of participants are from Brazil.

6.3 Results

In Fig. 3a and b, we show the participants’ perception of the importance and frequency of
the identified code smells. In Table 4, we present the median, mode, and standard deviation
of their answers (varying from 1 to 5).

11
22 23 22 23

15 15 11 8

51

0

10

20

30

40

50

<= 1 2 3 4 5 6 7 8 9 10+

39 39
34

21 20
12

18

2 20

10

20

30

40

<= 1 2 3 4 5 6 7 8 9

Fig. 2 Participants’ experience in the part II of our research (N = 201). X axis represents years of experience,
Y axis represents the number of participants

Empirical Software Engineering (2019) 24:3546–35863562

God String Resource

Deep Nested Layout

Inappropriate String Reuse

Duplicate Style Attributes

God Style Resource

Brain UI component

Unnecessary Image

Magic Resource

Long or Repeated Layout

Excessive Use of Fragments

No Naming Pattern

Missing Image

Coupled UI component

Flex Adapter

Absence of an Architecture

Suspicious Behavior

UI Component doing I/O

Hidden Listener

No Use of Fragments

Fool Adapter

God String Resource

Deep Nested Layout

Inappropriate String Reuse

Duplicate Style Attributes

God Style Resource

Brain UI component

Unnecessary Image

Magic Resource

Long or Repeated Layout

Excessive Use of Fragments

No Naming Pattern

Missing Image

Coupled UI component

Flex Adapter

Absence of an Architecture

Suspicious Behavior

UI Component doing I/O

Hidden Listener

No Use of Fragments

Fool Adapter

Fig. 3 Frequency and importance of the proposed code smells, according to our participants’ perceptions

Most code smells are considered highly important by developers. We see that most code
smells (either related to components or resources) have a mode equal to or greater than

Empirical Software Engineering (2019) 24:3546–3586 3563

Table 4 Frequency and importance of the proposed code smells, according to our participants’ perceptions

Code smell Importance Frequency

Median Mode Std Median Mode Std

Dev dev

Brain UI Component 5 5 1.05 3 4 1.19

Magic Resource 4 5 1.00 3 4 1.24

Unnecessary Image 4 5 0.95 3 4 1.23

Long or Repeated Layout 4 5 0.95 4 4 1.07

Missing Image 5 5 0.95 3 4 1.25

Coupled UI Component 4 5 1.02 3 3 1.15

UI Component Doing I/O 5 5 1.03 3 3 1.29

Absence of an Architecture 5 5 0.82 3 3 1.30

Flex Adapter 4 5 0.91 3 3 1.15

No Naming Pattern 5 5 0.88 3 3 1.24

Fool Adapter 5 5 0.93 2 2 1.20

Hidden Listener 4 5 1.23 2 2 1.29

God Style Resource 4 4 1.06 4 5 1.18

God String Resource 3 4 1.22 4 5 1.18

Suspicious Behavior 3 4 1.19 3 4 1.19

Deep Nested Layout 4 4 1.12 4 4 1.06

Long or Repeated Layout 4 4 0.86 4 4 1.11

No Use of Fragments 3 4 1.34 3 2 1.21

Inappropriate String Reuse 3 3 1.29 4 4 1.12

Excessive Use of Fragments 3 3 1.36 3 3 1.17

Average SD 1.05 1.19

four, meaning that most developers considered them to be from “important” to “highly
important.”

Too many or too few fragments? Two of the code smells are opposite to each other:
EXCESSIVE USE OF FRAGMENTS and NO USE OF FRAGMENTS. Our data shows that there
is no definite perception of their importance. Interestingly, not even popular Android best
practice guides, such as Futurice (2018), have clear suggestions on when to use Fragments.
Quoting the guide: “We suggest you sail carefully, making informed decisions since there
are drawbacks for choosing a fragments-only architecture, or activities-only.” Our results,
together with the current best practice guidelines, suggest that better guidelines for how to
use Fragments are necessary.

Developers often encounter the proposed code smells in their apps. To all other code
smells (except two: FOOL ADAPTER and HIDDEN LISTENER), developers’ perceptions of
frequency range from “sometimes” to “almost always.” This means that developers often
find the code smells in their apps.

Empirical Software Engineering (2019) 24:3546–35863564

FOOL ADAPTER and HIDDEN LISTENER are highly important, but do not occur often. The
mode for these two code smells was smaller than 3, meaning that participants “seldom” or
“never” noticed them. However, they both are considered highly important: FOOL ADAPTER

was considered highly important by 58% of participants (the second most important code
smell), and HIDDEN LISTENER was considered highly important by 33% of participants.
These results suggest that developers already know the benefits of the ViewHolder pat-
tern (Google 2017) and are avoiding the FOOLADAPTER smell. In addition, developers
are already avoiding defining events in layout resources, and thus, avoiding the HIDDEN

LISTENER smell.

RQ2. Developers consider most of the proposed smells to be important and to happen frequently.

7 Prevalence of the Code Smells (RQ 3)

The third part of our study aimed to analyze how prevalent the proposed smells are in
real Android apps. To that aim, we devised a tool, named ANDROIDUIDETECTOR.6 Our
tool relies on a combination of AST visitors and heuristics and it was designed based on
two parsers: (i) JavaParser7 and (ii) JDOM.8 The former is used to parse Java files in a
lightweight and straightforward way, while the last is used to process XML files.

7.1 Code Smell Detection Strategies

We implemented detection strategies in our tool for 15 out of the 20 proposed smells.
We did not implement five smells: NO NAMING PATTERN, UNNECESSARY IMAGE,
LONG OR REPEATED LAYOUT, INAPPROPRIATE STRING REUSE, and ABSENCE OF AN

ARCHITECTURE, as they are more subjective and require more than static analysis.

7.1.1 Detection Strategies for the Component-Related Smells

This section presents the detection strategies used to identify the eight component-related
smells.

COUPLED UI COMPONENT Fragments, Adapters, and Listeners, to be reused,
should not have direct reference to who uses them. The detection strategy is as follows:
we collect all Fragments, Adapters, and Activities of the app. For each com-
ponent, we check whether any of its fields is a direct reference to another Activity or
Fragment. If so, we mark the component as smelly. Algorithm 1 depicts this detection
strategy.

6https://github.com/julioverissimo88/AndroidUIDetector
7https://javaparser.org/
8http://www.jdom.org/

Empirical Software Engineering (2019) 24:3546–3586 3565

https://github.com/julioverissimo88/AndroidUIDetector
https://javaparser.org/
http://www.jdom.org/

SUSPICIOUS BEHAVIOR Activities, Fragments, and Adapters should not be
responsible for implementing event behavior. The detection strategy is as follows: we col-
lect all Fragments, Adapters, and Activities of the app. For each component, we
verify whether it contains either an (i) inner class or (ii) an anonymous class (as inner and
anonymous classes are how developers often implement event behavior). If a component
possesses any of them, we mark it as smelly. Algorithm 2 presents this detection strategy.

BRAIN UI COMPONENT Activities, Fragments, Adapters, and Listeners
should only contain code responsible for presenting, interacting, and updating the UI.
The detection strategy is as follows: we collect all Fragments, Adapters, and
Activities of the app. For each component, we measure its (McCabe) code complexity
and identify whether it makes use of I/O operations, database access, or static fields. We
use this heuristic as a proxy for business rules, as there is no clear and unambiguous way
of deciding whether a piece of code has business logic. Algorithm 3 presents this detection
strategy. Please note that α and β are thresholds and we describe how we calculate them in
the next section.

Empirical Software Engineering (2019) 24:3546–35863566

FLEX ADAPTER : Adapters should be responsible for populating a view from a single
object. The detection strategy is as follows: for each Adapter in the app, we verify whether
its complexity is below a specific threshold. We use complexity as a proxy, as highly com-
plex Adapters often deal with more than one object. Algorithm 4 presents this detection
strategy.

FOOL ADAPTER Adapters should use the View Holder pattern to reuse instances of
the views that represent the fields that will be populated for each item of a collec-
tion. The detection strategy is as follows: for each Adapter (or any of its children, e.g.,
BaseAdapter, ArrayAdapter, and CursorAdapter), we detect whether there is
a call to findViewById() inside its getView() method. If so, we mark the class as
smelly. Algorithm 5 illustrates this detection strategy.

UI COMPONENT DOING I/O Activities, Fragments, and Adapters should not per-
form I/O operations, such as database and file access. The detection strategy is as follows:
for each Activity, Fragment, and Adapter, we check whether they make any call
to I/O, database, or internet request APIs. We created the dataset of APIs by scraping the
Android manual. Algorithm 6 depicts this detection strategy.

Empirical Software Engineering (2019) 24:3546–3586 3567

NO USE OF FRAGMENTS UI decoupling is recommended for improving maintenance.
Fragments are often used to accomplish this task. Thus, the non-use of Fragments
can represent a highly coupled UI. In practice, we can observe this smell when view
components, e.g., EditTexts, Spinners, and TextViews, are directly used by an
Activity, instead of small Fragments. The detection strategy is similar to what
we described above: for each Activity of the app, we check whether it contains any
view component (e.g., EditTexts, TextViews, Spinners, etc.). If so, we mark the
component as smelly. This detection strategy is depicted in Algorithm 7.

EXCESSIVE USE OF FRAGMENTS Although the use of Fragments is important for UI decou-
pling, these components should not be used without an explicit need. To automate the
identification of this smell, we count the number of Fragments in an app. If the number

Empirical Software Engineering (2019) 24:3546–35863568

is higher than a pre-defined threshold, we mark the app as smelly. We define the threshold
later in this paper. In Algorithm 8, we present the detection strategy, where α represents the
threshold.

7.1.2 Detection Strategies for the Resource-Related Smells

GOD STYLE RESOURCE This smell happens when a single style is overly complex. We detect
this smell by counting the number of lines in all resources of the app (i.e., XML files). All
resources that have the number of lines of code higher than a threshold are marked as smelly.
The detection strategy is presented in Algorithm 9, where α represents the threshold.

DEEP NESTED LAYOUT Hierarchies of long and deeply nested views in layouts should be
avoided. Any resource that has a nested view deeper than a pre-defined threshold is
considered smelly. Algorithm 10 depicts the detection strategy, where α represents the
threshold.

DUPLICATE STYLE ATTRIBUTES Duplicated styles are considered a smell. We detect this smell
by collecting all XML files available in the “res/values” folder of the app and looking for

Empirical Software Engineering (2019) 24:3546–3586 3569

repeated properties among these files. If we find a repeated property, we mark the resource
as smelly. Algorithm 11 depicts the detection strategy.

HIDDEN LISTENER Layouts should only handle information presentation. It is a sign of smell
to use event attributes, such as “onClick,” directly in layout files. We detect this smell
by searching for the usage of android:onClick in any layout resource file (i.e., any
XML file inside the “res/layout” folder of the app). Algorithm 12 depicts this detection
strategy.

MAGIC RESOURCE Every text or color used in the app should be created in its respective
resource file, and then reused throughout the app. It is a sign of the smell when strings and
colors appear directly in the source code rather than referencing an existing resource. We
detect this smell by observing the usage of all Android’s text and color markers in layout
resources (e.g., android:text and android:textColor). If the marker has a hard-
coded text or color (rather than referencing a resource file), we mark the resource as smelly.
Algorithm 13 depicts this detection strategy.

GOD STRING RESOURCE It is a good practice to separate string resources according to some
rules, e.g., one string resource per screen. To detect this smell, we compare the amount of
Activities and string resources (i.e., resource files that contain the string element
in the res/values folder of the app). If they are different, we mark the app as smelly.
Algorithm 14 depicts the detection strategy applied to this smell.

Empirical Software Engineering (2019) 24:3546–35863570

MISSING IMAGE This smell happens when the system contains only a single version of its
.png, .jpg, or .git images. We detect this smell by checking whether all images of
the app exist in all resolutions (i.e., that the same images exist in res/folders-hdmi,
res/folders-xhdpi, res/folders-xxhdpi, and res/folders-xxxhdpi
folders). We also verify whether the file sizes differ from each other. Algorithm 15 depicts
this detection strategy.

7.2 Sample Dataset

To study the prevalence of the proposed code smells, we randomly selected open-source
apps listed in the F-Droid directory9 and hosted on GitHub.10 We started with a random
dataset of 1,103 repositories. We then followed the guidelines proposed by Kalliamvakou
et al. (2014) to avoid “non-real apps.” For instance, we identified active mobile apps by
considering projects that had a reasonable lifespan and number of commits, stars, forks,
issues, and committers. We also removed repositories with no lines of Android code (typi-
cally, these projects are implemented in non-programming languages, like CSS or HTML).
The final selection comprises 619 repositories. The final dataset can be found in our online
appendix (Carvalho et al. 2019).

Table 5 shows descriptive statistics about the lifespan (in days), number of commits, size
(number of *.Java files and number of *.XML files), and number of contributors, stars,
forks, and issues of the selected repositories. For each metric, we report median, trimmed

9https://f-droid.org/
10https://github.com

Empirical Software Engineering (2019) 24:3546–3586 3571

https://f-droid.org/
https://github.com

Table 5 Descriptive statistics summarizing the selected mobile apps. LI=Lifespan, CO=Commits,
COn=Contributors, ST=Stars, FO=Forks, IS=Issues

Overview of the selected mobile apps

Line of Code GitHub’s Metrics

Java XML LI† #CO COn ST FO IS

Max 180,407 154,582 3,340 45,920 295 17,578 7,246 7,341

Min 65 40 52 2 0 0 0 0

Trimmed mean 5772.75 6009.73 1725.7 262.6 5.0 64.0 28.1 48.7

Median 3759 1362 1786 129 3 32 15 22

Std Dev 20910.95 24423.89 723.4 2390.4 21.2 854.5 379.5 579.8

MAD‡ 4477.45 1622.70 668.6 163.1 2.9 40.0 19.2 29.6

‡MAD stands for median absolute deviation. †Lifespan is presented in days

mean, median absolute deviation (MAD), and standard deviation (SD). On average, the apps
have around 3,759 lines of java code and 1,363 lines of XML code. Most of the apps have
up to 5 KLoC: 395 apps, which accounts for 59.6% of our sample. Approximately 40% of
the analyzed apps have more than 5 KLoC (268 projects).

Table 6 presents the three largest apps and the three smallest apps (in LOC). The three
smallest apps in our sample are: (i) IcsImport - imports events from calendars, (ii) Flash-
Light - uses the device as a flashlight, and (iii) BMI Calculator - computes the body mass
index (BMI). The three largest projects are: (i) OsmAnd - provides offline access to maps
from OpenStreetMap, (ii) GreenBits Wallet - a bitcoin wallet, and (iii) OpenExplorer - helps
to manage files from the device.

Since an app project’s age might indicate the app’s maturity, we also investigated the
lifespan of the projects. In the context of our study, a project’s lifespan represents the time
(in days) since the project’s repository was created on GitHub. The most mature analyzed
repository has existed for 3,340 days – approximately nine and a half years. The least mature
repository has 52 days (see Table 5). On average, the selected apps have been developed
and maintained for 1,786 days – almost five years.

Another indicator of project maturity is the number of commits to a project repository.
The selected apps have on average 129 commits (max = 45,920 commits), with an average
of 53.47 commits in the last six months.

Table 6 Three largest apps and the three smallest apps in the sample (in LoC)

Project Java Files/LOC XML Files/LOC Category

Largest OsmAnd 614/175,902 861/154,582 Maps

GreenBits Wallet 602/180,407 93/7,290 Finance

Open Explorer 929/130,231 50/4,500 Productivity

Smallest IcsImport 1/65 3/44 Productivity

FlashLight 2/77 3/40 Tools

BMI Calculator 1/93 23/273 Health

Empirical Software Engineering (2019) 24:3546–35863572

GitHub allows its users to “star” projects to show appreciation. Starring in GitHub can be
seen as the equivalent of “liking” in other social media platforms. Borges and Valente (2018)
report that 73% of developers consider the number of stars before using or contributing to
GitHub projects. The selected apps have on average 32 stars (max = 17,578 stars).

Forks and issues also indicate potential contributors to the repository (Borges and Valente
2018). Our sample has a median of 15 forks (Table 5), while 31 projects have never been
forked.

7.3 Threshold Tuning

In this section, we report how we defined the thresholds used in the detection strategies. We
use quantile analysis, similar to what has been done in previous code smells literature (Lanza
and Marinescu 2007; Aniche et al. 2016). More specifically, we define the threshold as the
third quantile plus 1.5 times the inter-quartile range:

T S = 3Q + 1.5 × IQR (1)

The thresholds used in this paper were derived from 200 random apps from our dataset.
Table 7 depicts the thresholds obtained for each smell.

7.4 Accuracy of the Detection Strategies

The ability of our heuristics to automatically detect code smells is intrinsically correlated
with the validity of our results. In this sub-section, we discuss the accuracy of our detection
strategies. Our smells can be divided into three groups based on their detection strategies:

– Group 1 (Decidable): Some of our smells can be detected via decidable, unambiguous,
rules. In our case, the smells No Use of Fragments, Duplicate Style Attributes, Hidden
Listener, Magic Resource, God String Resource, and Missing Image can be detected
via straightforward static analysis. For example, in the case of No Use of Fragments,
our tool detects whether FRAGMENTS are present or not in the system.

– Group 2 (Decidable, threshold-based): Some smells can also be detected via decid-
able rules, but they depend on a threshold. This is the case for the God Style Resource,
Deep Nested Layout, and Excessive Use of Fragments smells.

– Group 3 (Heuristic-based): Other smells do not have decidable rules and require a
heuristic (i.e., an approximation) for the detection. This is the case for Brain UI Com-
ponent, Coupled UI Component, Suspicious Behavior, Flex Adapter, Fool Adapter, and
UI Component Doing I/O.

Table 7 Thresholds used in the
detection strategies Smell Threshold

God Style Resource α = 11

Deep Nested Layout α = 4

Excessive Use of Fragments α = 10

Brain UI Component α = 56 and β = 9

Flex Adapter α =56

Empirical Software Engineering (2019) 24:3546–3586 3573

We use software testing to evaluate whether our tool is adequately implementing the
detection strategies from Groups 1 and 2. Since the strategies in Group 2 depend on a spe-
cific threshold to consider a class smelly, and we use extreme values as thresholds, some
smelly classes may not identified. We followed this approach to reduce false positives (at
the expense of false negatives). Consequently, the numbers we report for Group 2 smells
might underestimate the real amount of smells.

Given the nature of the strategies in Group 3, further validation is required. To measure
the accuracy of these detection strategies, we manually produced an oracle and compared
the results of the tool against it. To build the oracle, two authors of this paper inspected the
entire source code of three apps in our dataset and identified the smells (or the lack thereof)
that each class contained. Our selection procedure was as follows:

1. We looked at the aggregated number of smells of each app in our dataset; we used this
information to help us find a minimum set of apps that would have all the smells we
proposed,

2. We filtered out apps with less than 50 Java classes or with more than 200 classes. The
numbers 50 and 200 were chosen arbitrarily; we considered apps with less than 50
classes as too small and apps with more than 200 classes as too expensive for manual
analysis.

3. We selected the largest app with the highest diversity in smells. We then repeated the
process on the remaining smells.

The selected apps are: seadroid, an Android client for Seafile; tasks, an app that helps
users to organize their tasks; and yaaic, an IRC client. seadroid has 228 classes; tasks, 151
classes; and yaaic, 88 classes. Our entire oracle comprises 467 Java classes.

In Table 8, we show the precision, recall, and F1 measures for each of the six smells from
Group 3. We observe from these results:

1. The Brain UI Component and Flex Adapter detection strategies achieve a high precision
and recall (their F1 measures are 0.93 and 0.86, respectively).

2. The Suspicious Behavior detection strategy achieves a high recall (0.95), but its preci-
sion is just acceptable (0.57). After manual analysis in the false positives, we observed
that some classes made use of inner and anonymous classes which are not related to
event handling (note that out Suspicious Behavior detection strategy looks for any usage
of inner and/or anonymous classes inside Activities, Fragments, or Adapters). Future
work should focus on a more precise way of detecting event handling (e.g., take the
semantics of the inner/anonymous class into account).

Table 8 Precision (tp/(tp + fp)), recall (tp/(tp + f n)), and F1 (2 ∗ (precision ∗ recall)/(precision +
recall)) of our detection strategies

Smell Precision Recall F1 TP TN FP FN

Brain UI Component 0.91 0.94 0.93 93 360 9 5

Coupled UI Component 0.84 0.68 0.75 32 414 6 15

Suspicious Behavior 0.57 0.95 0.71 65 350 49 3

Flex Adapter 0.76 1.00 0.86 30 428 9 0

Fool Adapter 1.00 0.26 0.42 4 452 0 11

UI Component Doing I/O 0.94 0.6 0.73 18 436 1 12

N=3 systems, 467 Java classes. The true positive (TP), true negative (TN), false positive (FP), and false neg-
ative (FN) columns show the concrete number of instances in each category, used to calculate the precision,
recall, and F1

Empirical Software Engineering (2019) 24:3546–35863574

3. The Coupled UI Component and the UI Component Doing I/O detection strategies
achieve high F1 measures (0.75, 0.71, and 0.73, respectively). However, while their
precision are high (0.84 and 0.94, respectively), their recall are just acceptable (0.68
and 0.6, respectively). After manual analysis, we observed that, for the UI Component
Doing I/O detection, our tool makes use of a pre-defined list of APIs that handle I/O (the
list is available in our appendix). The false negatives made use of APIs other than the
ones in our list. To improve the effectiveness of the detection strategy, we thus suggest
the development of a systematic list of Android APIs that make use of I/O.

4. Finally, the Fool Adapter detection strategy present less accuracy: maximum precision
(1.0), but low recall (0.26), mostly because of the existence of 11 false negatives. After
manual analysis, we noticed our parser failing in case developers pass the Android’s
View class as a parameter to another method, and then invoke the findViewById()
method (used in the detection strategy). Future work should systematically explore all
the ways a developer might make use of the findViewById() method, with the goal
of refining the parsing strategy.

The manually produced oracle, the complete source code of the apps we used, as well
as the script that measures the precision and recall of our tool are available in our online
appendix (Carvalho et al. 2019).

7.5 Results

In Table 9, we present the smells identified in the 619 Android apps. The bar chart depicted
in Fig. 4 presents a macro view of the identified smells.

We found 26,509 instances of resource smells and 18,633 instances of component smells.
GOD STRING RESOURCE and SUSPICIOUS BEHAVIOR were the most common smells, with
8,581 resources (26% of all XML files in the sample) and 8,584 components affected (23%
of all Java files in the sample), respectively. On the other hand, MISSING IMAGE and FLEX

ADAPTER were the least identified smells, with 48 resources and 70 affected components,
respectively.

In Tables 10 and 11, we show the distribution of each code smell per app. Although we
observe that some projects have a critically high number of smells (e.g., a single project has
153 classes affected by the Brain UI Component smell), having a high number of classes
affected by specific smells is not the common behavior. The median number (as well as the
third quantile) of classes affected per project is quite low for all the studied smells. God
String Resource is the one with the highest median (14).

RQ3. All the proposed smells can be observed in real-world Android apps. At the
project-level, the number of classes affected by each smell is low.

8 Discussion

In this section, we discuss the main implications of our work.

A Catalog of Code Smells for the Presentation Layer of Android Apps Developing high-
quality user interface code for Android apps is challenging. Developers should make good

Empirical Software Engineering (2019) 24:3546–3586 3575

Table 9 Prevalence of the proposed smells in a sample of 619 Android apps

Smell # of Java/XML files %

Components

SUSPICIOUS BEHAVIOR 8,584 ≈23%

BRAIN UI COMPONENT 6,697 ≈18%

COUPLED UI COMPONENT 1,906 ≈5%

UI COMPONENT DOING I/O 810 ≈2%

NO USE OF FRAGMENTS 292 ≈0.78%

FOOL ADAPTER 187 ≈0.50%

EXCESSIVE USE OF FRAGMENTS 87 ≈0.23%

FLEX ADAPTER 70 ≈0.18%

Total of affected components 18,633

Resources

GOD STRING RESOURCE 8,581 ≈26%

GOD STYLE RESOURCE 8,528 ≈25%

DEEP NESTED LAYOUT 7,856 ≈23%

MAGIC RESOURCE 1,093 ≈3%

DUPLICATE STYLE ATTRIBUTES 208 ≈0.63%

HIDDEN LISTENER 195 ≈0.59%

MISSING IMAGE 48 ≈0.14%

Total of affected resources 26,509

Percentages are calculated over the total number of Java and XML files analyzed in the 619 Android apps
(37,026 Java files and 32,888 XML files.)

GSR GStR DNL MR DSA HL MI

Resource Smells Identified

0

2000

4000

6000

8000

8581
8528

7856

1093

208
195

48

SB BUIC CUC UIC NUF FAd EUF FA

Component Smells Identified

0

2000

4000

6000

8000

8584

6697

1906

810

292
187

87 70

Fig. 4 Identified smells. DNL=Deep Nested Layout, DSA=Duplicate Style Attributes, GStR=God Style
Resource, HL=Hidden Listener, MR=Magic Resource, GSR=God String Resource, MI=Missing Image.
BUIC=Brain UI Component, UIC=UI Component Doing I/O, SB=Suspicious Behavior, EUF=Excessive
Use of Fragments, CUC=Coupled UI Component, NUF=No Use of Fragments, FAd=Fool Adapter,
FA=Flex Adapter

Empirical Software Engineering (2019) 24:3546–35863576

Table 10 Prevalence of the Component smells per app

BUIC UIC SB CUC FAd FA

1st Qu. 1 0 2 0 0 0

Median 4 0 5 0 0 0

Mean 11 1 14 3 0.3 0.11

3rd Qu. 12 1 14 2 0 0

Max. 153 33 279 78 11 6

BUIC=Brain UI Component, UIC=UI Component Doing I/O, SB=Suspicious Behavior, EUF=Excessive
Use of Fragments, CUC=Coupled UI Component, NUF=No Use of Fragments, FAd=Fool Adapter,
FA=Flex Adapter

use of the limited screen space and cannot take advantage of the full range of features that
a traditional web application provides (Wasserman 2010). Our work paves the road for a
catalog of bad practices that arise in such an important part of the source code. When it
comes to the presentation layer, smells not only occur in classes, such as Activities and
Fragments, but also in resources, such as layout and strings, which are mostly XML-based.
It is common for developers to see XML files as “simple” configuration files; however, they
play a key role in Android apps, and their quality should also be monitored.

In this work, we proposed smells that go beyond the “traditional smells” in the literature.
In a more abstract way, one can see how foundational concepts in object-oriented design
can help developers tackle smells. For example, a class affected by the Brain UI Compo-
nent smell would benefit from a better separation of concerns (Booch 2006), and classes
affected by the Coupled UI Component smell would benefit from better dependency man-
agement (Martin 2002). Moreover, we observe that developers considered both the intensive
use and lack of use of FRAGMENTS problematic. Interestingly, the set of participants who
reported the intensive use of FRAGMENTS as problematic differs from the set of participants
who saw the lack of FRAGMENTS as problematic (see Table 3). Deciding whether to use
small or large fragments is a similar problem as deciding how to modularize a software sys-
tem (Booch 2006); in practice, it is hard to know when to stop creating more modules. Thus,
as a recommendation, we suggest developers should understand foundational OO practices
deeply, as some of the smells can be explained by what is already in the OO literature.

The Relationship Between our Study and the Existing Body of Knowledge As we present
in the Related Work (Section 3), different authors have proposed catalogs of code smells

Table 11 Prevalence of Resource smells per app

DNL DSA GStR HL MR GSR

1st Qu. 2 0 2 0 0 1

Median 5 0 4 0 0 2

Mean 13 0.33 14 0.31 2 14

3rd Qu. 15 0 10 0 2 9

Max. 219 13 446 11 48 454

DNL=Deep Nested Layout, DSA=Duplicate Style Attributes, GStR=God Style Resource, HL=Hidden
Listener, MR=Magic Resource, GSR=God String Resource, MI=Missing Image

Empirical Software Engineering (2019) 24:3546–3586 3577

and/or best practices for Android mobile applications, e.g., Palomba et al. (2017) proposed
a generic catalog of smells, Ghafari et al. (2017), of security code smells, Hecht et al. (2016)
and Linares-Vásquez et al. (2017) of performance, and Linares-Vásquez et al. (2014) and
Gottschalk et al. (2012) of energy consumption smells.

Our research complements the existing body of knowledge in the following ways:

– Two security smells from Ghafari et al.’s catalog are related to the presentation layer
of Android apps. More specifically, Broken WebView’s Sandbox, which is relevant to
developers rendering web content in an unsafe manner, and SQL Injection, which com-
monly happens when user input goes straight to an SQL query. This result shows that
issues in the presentation layer can also lead to security flaws. Therefore, as future
work, we suggest researchers study the relationship between the presentation layer code
smells and security vulnerabilities.

– Palomba et al. (2017)’s code smells catalog does not touch on any presentation layer
code smells, and thus, our catalog is complementary to it. However, UI developers
should be aware of the Leaking Thread code smell proposed in their catalog, as most of
what happens in presentation layers occurs in threads (we discuss the life cycle of the
components in Section 2).

– Linares-Vásquez et al. (2014) showed that UI-related APIs (GUI and image manipu-
lation) represent around 40% of the energy greedy APIs in the Android platform. As
actionable advice, authors suggest developers carefully design apps that make use of
several views and to avoid refreshing views. We see their results as a complementary to
ours. Our catalogue has several smells related to complex UIs (i.e., Brain UI Compo-
nent, UI Component Doing I/O, Deep Nested Layout, and Unnecessary Image). Besides
being harmful for maintenance, we conjecture that these smells also impact energy con-
sumption, and therefore suggest developers consider not only the maintenance cost but
also the energy costs of classes affected by these smells.

– While performance studies by Hecht et al. (2016), Linares-Vásquez et al. (2017) and
Liu et al. (2014) lacked focus on the presentation layer, our smells can be related to
performance issues. Linares-Vásquez et al.’s study, in particular, showed that unused
strings (and other resources) can be costly to mobile apps. Our catalog indeed has smells
related to how developers organize their resources in their software (i.e., God String
Resource, Inappropriate String Reuse, Duplicate Style Attributes, God Style Resource,
Long or Repeated Layout, Deep Nested Layout). Thus, we suggest developers also
consider elements affected by resource-related smells as candidates for performance
improvements. In future work, we suggest researchers investigate the relationship
between our smells and performance issues.

– Companies and independent developers have been working on guides and best prac-
tices catalogs that go beyond “traditional smells,” such as Google’s Jetpack Best
Practices (Google 2018a, b) and Futurice, a software house which hosts a GitHub repos-
itory on Android best practices with around 17,000 stars (Futurice 2018). Our catalog
complements this effort.

– In our research, we focused on smells related to the presentation layer of Android apps.
Nevertheless, we noticed that many of our participants often mentioned “traditional”
smells, such as Long Methods and God Classes (Lanza and Marinescu 2007; Fowler
and Beck 1999) as problems they also face in this layer. As we show in the Related Work
section, researchers have also investigated the role of traditional smells in Android apps.
Therefore, when developing the presentation layer, we recommend developers be aware
of both traditional and presentation layer-specific smells.

Empirical Software Engineering (2019) 24:3546–35863578

Smells in Different Mobile Platforms We acknowledge that some of our smells may
become less important to practitioners over time. For example, the Flex Adapter smell,
although considered an important smell for developers to tackle, was less perceived
in practice. We conjecture this is due to the Android’s new Adapter component, the
RecyclerView.Adapter, which appeared in Android 5.1 Lollipop and facilitates the
implementation of the ViewHolder pattern. Before that, developers had to implement the
pattern themselves, which required previous knowledge about best practices. We hope that
our results can inspire new tools, strategies, and modifications to the underlying technology
to make the mitigation strategies easier to implement.

It is also important to notice that our current catalog solely focuses on Android mobile
apps. Since its launching in 2008, Android native apps have been developed using the Java
language. In May 2017 (after we started this research), Google announced Kotlin as the
official language for the platform (Kotlin on android 2017). Although research (Flauzino
et al. 2018) shows that Kotlin leads to more concise and clearer code and tends to contain
less “traditional code smells” when compared to Java, we argue that the Android framework
is still the same. In other words, developers still need to write ACTIVITIES, LISTENERS,
and all the other components, as well as resources. Thus, we see our smells as important for
Kotlin-based Android apps as well.

Moreover, although this catalog cannot be directly transported to iOS (Swift and
Objective C), Windows Phone, or Xamarin development, it can serve as inspiration for
future research on these platforms. Interestingly, previous research (Habchi et al. 2017)
has shown that iOS apps contain the same proportions of code smells regardless of the
development language (Swift and Objective C), but they seem to be less prone to code
smells compared to Android apps. Thus, understanding whether our smells impact iOS
apps as much as they do Android apps seems to be the natural continuation of this
research.

9 Threats to Validity

Internal Validity Threats to internal validity concern how external factors that we do not
consider can affect the variables and relationships investigated. In the literature, code smells
are derived from the empirical knowledge of experienced developers (Fowler and Beck
1999; Riel 1996; Martin 2008; Webster 1995). Research also showed that experience and
knowledge play an important role in the perception of code smells (Palomba et al. 2014;
Taibi et al. 2017). We removed from our analysis answers to our questionnaires (parts 1 and
2) from developers with no experience with Android development; most of our respondents
have two or more years of experience.

In addition, as the participation was anonymous, we did not control for developers who
participated in the multiple steps of our study. However, as all the parts of our research
have different goals, and Part 2 had many more participants than Part 1, this threat has a
limited effect. Nevertheless, we propose replications of this work as a way to strengthen our
findings.

The coding analysis in Part I was conducted by the first author of this paper, and the
second author acted as a mediator whenever a question arose (as explained in Section 5). At
the time of the analysis, the first author had five years of industry experience with Android
development. To improve the validity of the identification of the smells, in later stages of
our research we revisited the proposed smells with external Android experts, and they all

Empirical Software Engineering (2019) 24:3546–3586 3579

agreed with the proposed smells (RQ2 methodology, Section 6.1). Moreover, the fact that
many developers also face these smells (RQ2 results, Section 6.3) is also an indication of
their validity. However, we acknowledge that different researchers could interpret the data in
different ways (and thus derive a different set of smells). We make all our raw data available
in our online appendix (Carvalho et al. 2019) to enable researchers to further validate our
work and make additional analyses.

Regarding the study on the prevalence of code smells in mobile applications, we set
out to mitigate the selection bias issue by using randomization. However, no blocking
factor was applied to reduce the threat of possible variations in, for instance, the com-
plexity of the apps, usability, and performance. Thus, we cannot rule out the possibility
that the chosen apps stem from other quality factors as opposed to the amount of code
smells.

Construct Validity Threats to the construct validity concern the relationship between theory
and observation. The questionnaire in Part 2 aimed at measuring developers’ perceptions on
the frequency and importance of the code smells. Thus, the questions were derived from our
catalog of code smells. In retrospect, we noticed that we had not added any control questions
that would help us measure biases from our participants. Nevertheless, while the number of
answers we collected in this survey is quite significant (201 responses) and one could argue
that biased answers would be a minority, we suggest the replication of this survey as future
work.

Finally, in Part 3, given that all code smells have been identified by a tool, it is possible
that some data is incorrect due to misguided or ill-identified code smells. Thus, our data
might not reflect the actual amount of code smells (given to possible false negatives and
false positives). We nevertheless discuss the accuracy of our tool in Section 7.4. As we show
there, the proposed detection strategies can be improved, and we leave it as future work.

External Validity Threats to external validity refer to the generalization of our results. We
define the presentation layer as the eight elements we show in Section 2. Although this
definition has been based on official documentation, we acknowledge that there are other
resources and there may be less commonly used classes that also relate to the presentation
layer. Therefore, we do not claim that the presentation layer is limited to the eight elements
studied here.

In addition, the first part of our research aimed at devising the catalog of smells. In
the end, we obtained 359 pieces of information from 45 different (mostly Brazilian) soft-
ware developers. We were able to derive 20 code smells that were observed by more than
5 participants. However, we do not claim that this catalog is complete; as an example, if
we reduce the number of required repetitions (e.g., from 5 to 4), we would have a broader
set of code smells. In practice, we indeed expect this catalog to continue to expand as
the Android framework keeps evolving. We expect researchers to join forces and use our
proposed methodology to continuously collect the perceptions of developers on new code
smells.

Regarding the study on the prevalence of code smells in mobile applications, the sam-
ple we collected from the open source repository might not be representative of the target
population. As aforementioned, we randomly selected apps from the F-Droid repository.
However, our set is diverse and includes active and largely used projects. Replications are
encouraged to explore the smells in industrial settings.

Empirical Software Engineering (2019) 24:3546–35863580

10 Conclusion

In this paper, we propose a catalog of 20 code smells specific to the presentation layer
of Android apps, employing two online questionnaires and a study with real projects. Our
results show that developers are aware of good and bad practices specific to the Android
platform. From the reported practices, we devised the smells, which were validated with a
second questionnaire and analysis of the source code of real projects. The proposed smells
are particularly relevant, as Android became the world’s leading mobile platform in 2011
and since then has increased its share of the market, having reached 86% (Statista 2017) in
2017.

This study answered the following questions:

RQ1: What Code Smells Do Developers Observe in the Presentation Layer of Android
Apps? We cataloged 20 code smells in the presentation layer of Android apps, 9 related to
components (Activities, Fragments, Adapters, and Listeners), and 11 related to resources
(Layout, String, Style, and Drawable resources). The complete catalog can be found in
Section 5.4.

RQ2: How Often Do Developers Observe the Identified Code Smells and What Impor-
tance Do They Give to Them? Developers perceive most of the proposed smells as impor-
tant, and most of them have previously encountered these code smells. Their perceptions
are discussed in Section 6 of this paper.

RQ3: How Prevalent are the Proposed Code Smells in Real Android Apps? All the pro-
posed smells can be observed in real-world Android apps. Some of them, such as Brain
UI Component (29% of all components) happen very often, whereas others, such as Flex
Adapter and Duplicate Style Attributes happen less often.

Our contributions are a small but important step in the search for higher code quality on
the Android platform. Researchers can use our results as a starting point to conceive tools
and heuristics to suggest refactorings in Android applications, and Android developers can
use our catalog to search for problematic pieces of codes.

Our work opens space for future research and tool development. More specifically:

Evaluate the Effects of the Proposed Code Smells in Other Contexts In this paper, we
collected diverse empirical evidence about the relevance of the smells. Further investigation
is necessary about the impacts the smells bring to software developers. Some suggestions
regarding future evaluations are: 1) controlled experiments about the relationship between
the proposed smells and maintainability and other development activities (e.g., do develop-
ers take more time to comprehend and maintain a smelly class when compared to a clean
class?), 2) to quantitatively measure how these presentation-layer smells affect the change-
and the defect-proneness of the smelly classes, 3) understand whether these code smells
can have an impact on different quality attributes of a mobile app, such as performance and
energy consumption.

Generalizability of our Results to Other Mobile Platforms Although Android has a sig-
nificant market share of mobile development, it is not the only one; iOS (Apple phones)
and Windows phones are also popular platforms. The reasons we focused on Android
are twofold: First, our research method requires in-depth knowledge of the platform. The

Empirical Software Engineering (2019) 24:3546–3586 3581

authors of this paper are well versed on the Android platform, but not so on the other plat-
forms. Second, by focusing on a single mobile architecture, we could ask highly focused
questions to our participants, which we argue increases the quality of the answers. Never-
theless, coining code smells for other mobile platforms is also important, and our study can
be replicated to other platforms.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Martin RC (2008) Clean code: A handbook of agile software craftsmanship, 1st edn. Prentice Hall PTR,
Upper Saddle River

Suryanarayana G, Samarthyam G, Sharma T (2014) Refactoring for software design smells: Managing
technical debt. Morgan Kaufmann

Fowler M, Beck K (1999) Refactoring: improving the design of existing code. Addison-Wesley Professional
Webster BF (1995) Pitfalls of object-oriented development. M & T Books
Aniche M, Yoder J, Kon F (2019) Current challenges in practical object-oriented software design. In: 41st

ACM/IEEE international conference on software engineering. IEEE, United States
Gharachorlu G (2014) Code smells in cascading style sheets: An empirical study and a predictive model.

University of British Columbia, PhD thesis
Fard AM, Mesbah A (2013) JSNOSE: Detecting javascript code smells, pp 116–125
Aniche M, Bavota G, Treude C, Gerosa MA, van Deursen A (2017) Code smells for model-view-controller

architectures. Empir Softw Eng 9:1–37
Aniche M, Bavota G, Treude C, Van Deursen A, Gerosa MA (2016) A validated set of smells in model-view-

controller architectures, pp 233–243
Pinzger M, Hermans F, van Deursen A (2012) Detecting code smells in spreadsheet formulas, IEEE

Computer Society, Washington
Alliance OH (2007) Open handset alliance releases android SDK. https://www.openhandsetalliance.com/

press 111207.html, [Last access: 25 de Novembro de 2017]
Hecht G (2015) An approach to detect android antipatterns. In: 2015 IEEE/ACM 37th IEEE international

conference on software engineering, vol 2, pp 766–768. IEEE Press
Linares-Vásquez M, Klock S, McMillan C, Sabané A, Poshyvanyk D, Guéhéneuc Y-G (2014) Domain

matters: bringing further evidence of the relationships among anti-patterns, application domains, and
quality-related metrics in java mobile apps, pp 232–243

Verloop D (2013) Code smells in the mobile applications domain. PhD thesis. Delft University of Technology,
TU Delft

Gottschalk M, Josefiok M, Jelschen J, Winter A (2012) Removing energy code smells with reengineering
services. GI-Jahrestagung 208:441–455

Reimann J, Brylski M (2014) A tool-supported quality smell catalogue for android developers
Minelli R, Lanza M (2013) Software analytics for mobile applications, insights & lessons learned. In:

Proceedings of the 2013 17th European conference on software maintenance and Reengineering
Google (2017) Android – plataform architecture. https://developer.android.com/guide/platform/index.html.

Last access: 25 de Novembro de
Wikipedia (2017) IOS — Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php?IOS&

oldid=812046680, [Last access: 25 de Novembro de 2017]
OpenSignal (2015) Android fragmentation visualized. http://opensignal.com/reports/2015/08/

android-fragmentation, [Last access: 25 de Novembro de 2017]
Google (2016) Documentação site android developer. https://developer.android.com, [Last access: 25 de

Novembro de 2017]
Google (2017) Android – fundamentals. https://developer.android.com/guide/components/fundamentals.

html, [Last access: 25 de Novembro de 2017]
Google (2016) Android – resource type. https://developer.android.com/guide/topics/resources/

available-resources.html, [Last access: 25 de Novembro de 2017]

Empirical Software Engineering (2019) 24:3546–35863582

http://creativecommons.org/licenses/by/4.0/
https://www.openhandsetalliance.com/press_111207.html
https://www.openhandsetalliance.com/press_111207.html
https://developer.android.com/guide/platform/index.html
http://en.wikipedia.org/w/index.php?IOS&oldid=812046680
http://en.wikipedia.org/w/index.php?IOS&oldid=812046680
http://opensignal.com/reports/2015/08/android-fragmentation
http://opensignal.com/reports/2015/08/android-fragmentation
https://developer.android.com
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/topics/resources/available-resources.html
https://developer.android.com/guide/topics/resources/available-resources.html

Google (2016) Android – building your first app. https://developer.android.com/training/basics/firstapp/
creating-project.html, [Last access: 25 de Novembro de 2017]

Riel AJ (1996) Object-Oriented Design Heuristics, vol. 335. Addison-Wesley Publishing Company
Khomh F, Di Penta M, Guéhéneuc Y-G (2009) An exploratory study of the impact of code smells on soft-

ware change-proneness. In: Proceedings of the 2009 16th Working Conference on Reverse Engineering,
WCRE ’09. IEEE Computer Society, Washington

Khomh F, Penta MD, Guéhéneuc Y-G, Antoniol G (2012) An exploratory study of the impact of antipatterns
on class change-and fault-proneness. Empirical Softw Engg 17:243–275

Li W, Shatnawi R (2007) An empirical study of the bad smells and class error probability in the post-release
object-oriented system evolution. J Syst Softw 80(7):1120–1128

Yamashita A, Moonen L (2013) Exploring the impact of inter-smell relations on software maintainability:
An empirical study, IEEE Press, Piscataway

Abbes M, Khomh F, Gueheneuc Y-G, Antoniol G (2011) An empirical study of the impact of two antipat-
terns, blob and spaghetti code, on program comprehension. In: 2011 15th European conference on
Software maintenance and reengineering (CSMR), pp 181–190 IEEE

Palomba F, Bavota G, Penta M, Oliveto R, Lucia A (2014) Do they really smell bad? a study on developers’
perception of bad code smells, pp 101–110

Arcoverde R, Garcia A, Figueiredo E (2011) Understanding the longevity of code smells: preliminary results
of an explanatory survey. In: Proceedings of the 4th workshop on refactoring tools, pp 33–36. ACM

Peters R, Zaidman A (2012) Evaluating the lifespan of code smells using software repository mining. In:
2012 16th European conference on software maintenance and reengineering (CSMR), pp 411–416. IEEE

Chen T-H, Shang W, Jiang ZM, Hassan AE, Nasser M, Flora P (2014) Detecting performance anti-patterns
for applications developed using object-relational mapping, pp 1001–1012

Aniche M, Treude C, Zaidman A, van Deursen A, Gerosa MA (2016) SATT: Tailoring code metric thresholds
for different software architectures. In: 2016 IEEE 16th international working conference on source code
analysis and manipulation (SCAM), pp 41–50. IEEE

Mannan UA, Ahmed I, Almurshed RAM, Dig D, Jensen C (2016) Understanding code smells in android
applications. In: 2016 IEEE/ACM international conference on mobile software engineering and systems
(MOBILESoft), pp 225–236. IEEE

Moha N, Gueheneuc Y-G, Duchien L, Le Meur A-F (2010) Decor: A method for the specification and
detection of code and design smells. IEEE Trans Softw Eng 36(1):20–36

Hecht G, Rouvoy R, Moha N, Duchien L (2015) Detecting antipatterns in android apps. In: 2015 2nd ACM
international conference on mobile software engineering and systems, pp 148–149

Hecht G, Rouvoy R, Moha N, Duchien L (2015) Páprika. https://github.com/geoffreyhecht/paprika, Last
access on April 2018

Brown WH, Malveau RC, McCormick HW, Mowbray TJ (1998) AntiPatterns: refactoring software,
architectures, and projects in crisis. John Wiley & Sons Inc.

Peruma ASA (2018) What the smell? an empirical investigation on the distribution and severity of test smells
in open source android applications

Linares-Vásquez M, Bavota G, Bernal-Cárdenas C, Oliveto R, Di Penta M, Poshyvanyk D (2014) Mining
energy-greedy api usage patterns in android apps: an empirical study. In: Proceedings of the 11th working
conference on mining software repositories, pp 2–11. ACM

Hecht G, Moha N, Rouvoy R (2016) An empirical study of the performance impacts of android code smells.
In: Proceedings of the international conference on mobile software engineering and systems, pp 59–69.
ACM

Linares-Vásquez M, Vendome C, Tufano M, Poshyvanyk D (2017) How developers micro-optimize android
apps. J Syst Softw 130:1–23

Liu Y, Xu C, Cheung S-C (2014) Characterizing and detecting performance bugs for smartphone appli-
cations. In: Proceedings of the 36th international conference on software engineering, pp 1013–1024
ACM

Linares-Vasquez M, Vendome C, Luo Q, Poshyvanyk D (2015) How developers detect and fix perfor-
mance bottlenecks in android apps. In: 2015 IEEE international conference on software maintenance
and evolution (ICSME), pp 352–361. IEEE

Palomba F, Di Nucci D, Panichella A, Zaidman A, De Lucia A (2017) Lightweight detection of android-
specific code smells: The adoctor project. In: 2017 IEEE 24th international conference on software
analysis, evolution and reengineering (SANER), pp 487–491. IEEE

Ghafari M, Gadient P, Nierstrasz O (2017) Security smells in android. In: 2017 IEEE 17th international
working conference on source code analysis and manipulation (SCAM), pp 121–130. IEEE

Yamashita A, Moonen L (2013) Do developers care about code smells? an exploratory survey. In: 2013 20th
working conference on reverse engineering (WCRE), pp 242–251. IEEE

Empirical Software Engineering (2019) 24:3546–3586 3583

https://developer.android.com/training/basics/firstapp/creating-project.html
https://developer.android.com/training/basics/firstapp/creating-project.html
https://github.com/geoffreyhecht/paprika

Van Emden E, Moonen L (2002) Java quality assurance by detecting code smells. In: Proceedings of the
working conference on reverse engineering (WCRE), pp 97–106. IEEE Computer Society

Carvalho SG, Verı́ssimo A, Gerosa D (2019) An empirical catalog of code smells for the presentation layer
of android apps: Appendix. https://doi.org/10.5281/zenodo.3256367

Corbin J, Strauss A (2007) Basics of qualitative research: Techniques and procedures for developing
grounded theory. SAGE Publications Ltd 3 ed.

Glaser BG, Strauss AL (2017) Discovery of grounded theory: Strategies for qualitative research. Routledge
Adolph S, Hall W, Kruchten P (2011) Using grounded theory to study the experience of software

development. Empir Softw Eng 16(4):487–513
Saldaña J (2015) The coding manual for qualitative researchers. SAGE Publications Ltd 2 ed.
Nielsen J (2000) Why you only need to test with 5 users. https://www.nngroup.com/articles/

why-you-only-need-to-test-with-5-users, [Last access: 25 de Novembro de 2017]
Evans E (2004) Domain-driven design: tackling complexity in the heart of software. Addison-Wesley

Professional
Google (2017) Android – optimizing view hierarchies. https://developer.android.com/topic/performance/

rendering/optimizing-view-hierarchies.html, [Last access: 25 de Novembro de 2017]
Futurice (2018) Android best practices. https://github.com/futurice/android-best-practices, 2018. Last

accessed on October 29th
Google (2017) Android – recyclerview. https://developer.android.com/reference/android/support/v7/widget/

RecyclerView.html, [Last access: 25 de Novembro de 2017]
Kalliamvakou E, Gousios G, Blincoe K, Singer L, German D, Damian D (2014) The Promises and Perils

of Mining GitHub. In: Proceedings of the 11th working conference on mining software repositoriesa
(MSR), pp 92–101. ACM

Borges H, Valente MT (2018) What’s in a github star? understanding repository starring practices in a social
coding platform. J Syst Softw 146:112–129

Lanza M, Marinescu R (2007) Object-oriented metrics in practice: using software metrics to characterize,
evaluate, and improve the design of object-oriented systems. Springer Science & Business Media

Wasserman AI (2010) Software engineering issues for mobile application development. In: Proceedings of
the FSE/SDP workshop on Future of software engineering research, pp 397–400. ACM

Booch G (2006) Object oriented analysis & design with application. Pearson Education India
Martin RC (2002) Agile software development: principles, patterns, and practices. Prentice Hall
Google (2018) Guide to app architecture. https://developer.android.com/jetpack/docs/guide, 2018. Last

accessed on October 29th
Google (2018) Optimizing layout hierarchies. https://developer.android.com/training/improving-layouts/

optimizing-layout, 2018. Last accessed on October 29th
Kotlin on android (2017) Now official. https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-

official/, JetBrains blog
Flauzino M, Verı́ssimo J, Terra R, Cirilo E, Durelli VHS, Durelli RS (2018) Are you still smelling it?: A

comparative study between java and kotlin language. In: Proceedings of the VII Brazilian symposium
on software components, architectures, and reuse, pp 23–32. ACM

Habchi S, Hecht G, Rouvoy R, Moha N (2017) Code smells in ios apps: How do they compare to
android?. In: 2017 IEEE/ACM 4th international conference on mobile software engineering and systems
(MOBILESoft), pp 110–121. IEEE

Taibi D, Janes A, Lenarduzzi V (2017) How developers perceive smells in source code: A replicated study.
Inf Softw Technol 92:223–235

Statista (2017) Global mobile OS market share in sales to end users from 1st quarter 2009 to 1st quarter 2017.
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems,
[Last access: 25 de Novembro de 2017]

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Empirical Software Engineering (2019) 24:3546–35863584

https://doi.org/10.5281/zenodo.3256367
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users
https://developer.android.com/topic/performance/rendering/optimizing-view-hierarchies.html
https://developer.android.com/topic/performance/rendering/optimizing-view-hierarchies.html
https://github.com/futurice/android-best-practices
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
https://developer.android.com/jetpack/docs/guide
https://developer.android.com/training/improving-layouts/optimizing-layout
https://developer.android.com/training/improving-layouts/optimizing-layout
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems

Suelen Goularte Carvalho Suelen holds a master degree in Com-
puter Science at University of São Paulo (Brazil) and a specialization
degree in strategic project management at the Aeronautics Institute
of Technology (Brazil). Suelen is also a certified leader and coach by
the University of La Verne (USA).

Maurı́cio Aniche Maurı́cio is an Assistant Professor in Software
Engineering at Delft University of Technology, The Netherlands.
Maurı́cio’s line of work focuses on how to make developers more
productive during maintenance and testing. His research has been
published in top-tier conferences (ICSE, FSE, ASE) and journals
(TSE, EMSE). Maurı́cio always had a foot in industry. Maurı́cio has
given training and consultancy on software development and testing
to 27 different companies, from 2010 to 2015. Moreover, he pub-
lished three books focused on practitioners (“OOP and SOLID for
ninjas”, “Test-Driven Development in the real world”, and “A Prac-
tical Guide on Software Testing”), which, altogether, have sold 10k
copies.

Júlio Verı́ssimo is a MSc student in Computer Science Department
at the Federal University of Lavras. He is a member of the software
engineering research group (PQES).

Empirical Software Engineering (2019) 24:3546–3586 3585

Rafael S. Durelli is an adjunct Professor in the Computer Science
Department at the Federal University of Lavras. He is a member of
the software engineering research group (PQES).

MarcoAurélio Gerosa Dr. Gerosa is an Associate Professor at North-
ern Arizona University and affiliated advisor at the University of
São Paulo. He researches Software Engineering and CSCW. Recent
projects include the development of tools and strategies to support
newcomers onboarding to open source software communities and the
design of chatbots. He published more than 200 papers. He serves on
the program committee (PC) of important conferences, such as FSE,
CSCW, SANER, and MSR, and as a reviewer for several journals.
Moreover, he served as the PC Chair of IEEE ICGSE, CRIWG, SBES
and as a co-editor of several journals special issues.

Affiliations

Suelen Goularte Carvalho1 ·Maurı́cio Aniche2 · Júlio Verı́ssimo3 ·Rafael S. Durelli3 ·
Marco Aurélio Gerosa4

Suelen Goularte Carvalho
suelengcarvalho@gmail.com

Júlio Verı́ssimo
julio.santos@posgrad.ufla.br

Rafael S. Durelli
rafael.durelli@ufla.br

Marco Aurélio Gerosa
marco.gerosa@nau.edu

1 University of São Paulo, São Paulo, Brazil
2 Delft University of Technology, Delft, Netherlands
3 Federal University of Lavras, Lavras, Brazil
4 Northern Arizona University, Flagstaff, AZ, USA

Empirical Software Engineering (2019) 24:3546–35863586

http://orcid.org/0000-0002-8893-2835
mailto: suelengcarvalho@gmail.com
mailto: julio.santos@posgrad.ufla.br
mailto: rafael.durelli@ufla.br
mailto: marco.gerosa@nau.edu

	An empirical catalog of code smells for the presentation layer of Android apps
	Abstract
	Introduction
	Background: Android and its Presentation Layer
	Developing a Presentation Layer in Android: A Running Example

	Related Work
	Traditional Code Smells
	Domain-Specific Code Smells
	Code Smells in Android Apps

	Research Goals
	A Catalog of Code Smells (RQ 1)
	Methodology and Questionnaire
	Participants
	Data Analysis
	Results
	Brain UI Component
	No Naming Pattern
	Magic Resource
	Deep Nested Layout
	Unnecessary Image
	Coupled UI Component
	Suspicious Behavior
	Long or Repeated Layout
	Fool Adapter
	Absence of an Architecture
	Missing Image
	Excessive Use of Fragments
	UI Component Doing I/O
	No Use of Fragments
	God Style Resource
	God String Resource
	Duplicate Style Attributes
	Flex Adapter
	Inappropriate String Reuse
	Hidden Listener

	Importance and Frequency of the Code Smells (RQ 2)
	Methodology and Survey
	Participants
	Results
	Most code smells are considered highly important by developers.
	Too many or too few fragments?
	Developers often encounter the proposed code smells in their apps.
	Fool Adapter and Hidden Listener are highly important, but do not occur often.

	Prevalence of the Code Smells (RQ 3)
	Code Smell Detection Strategies
	Detection Strategies for the Component-Related Smells
	Coupled UI Component
	Suspicious Behavior
	Brain UI Component
	Flex Adapter
	Fool Adapter
	UI Component Doing I/O
	No Use of Fragments
	Excessive Use of Fragments

	Detection Strategies for the Resource-Related Smells
	God Style Resource
	Deep Nested Layout
	Duplicate Style Attributes
	Hidden Listener
	Magic Resource
	God String Resource
	Missing Image

	Sample Dataset
	Threshold Tuning
	Accuracy of the Detection Strategies
	Results

	Discussion
	A Catalog of Code Smells for the Presentation Layer of Android Apps
	The Relationship Between our Study and the Existing Body of Knowledge
	Smells in Different Mobile Platforms

	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusion
	RQ1: What Code Smells Do Developers Observe in the Presentation Layer of Android Apps?
	RQ2: How Often Do Developers Observe the Identified Code Smells and What Importance Do They Give to Them?
	RQ3: How Prevalent are the Proposed Code Smells in Real Android Apps?
	Evaluate the Effects of the Proposed Code Smells in Other Contexts
	Generalizability of our Results to Other Mobile Platforms

	References
	Affiliations

