Empir Software Eng (2018) 23:3535-3577 @ CrossMark
https://doi.org/10.1007/s10664-018-9616-7

Comparison of release engineering practices in a large
mature company and a startup

1 1

- Maria Paasivaara" -
1

Eero Laukkanen
Juha Itkonen! - Casper Lassenius

Published online: 28 March 2018
© The Author(s) 2018

Abstract Modern release engineering practices provide multiple benefits for software com-
panies, but organizations have struggled when trying to adopt the most advanced practices,
such as continuous delivery. It is not known in which contexts the most advanced practices
are applicable and what can be achieved by adopting them. In this study, we discuss the
effect of the organizational context on adopted release engineering practices and what out-
comes are achieved with the practices. We study two organizational contexts: the startup and
the large mature company context. The effect of the product context is mitigated by studying
two case organizations with similar products, a rare research opportunity. We performed 18
interviews with various roles in the case organizations. The number of production environ-
ments, the number of customers, the control over the production environment, the available
resources, the organization size and the distribution of the organization affected the release
engineering practices and the ability to release frequently. Having less internal verifica-
tion and more customer verification enabled fast feedback and customer experimentation
in the startup context, but increased the number of production defects. However, having
more internal verification in the large mature company context surprisingly did not prevent
production defects. The organizational context had a large effect on how achievable mod-
ern release engineering practices, such as continuous delivery, were. In the startup context,

Communicated by: Hakan Erdogmus

>4 Eero Laukkanen
eero.laukkanen @ alumni.aalto.fi

Maria Paasivaara
maria.paasivaara@aalto.fi

Juha Itkonen
juha.itkonen @iki.fi

Casper Lassenius
casper.lassenius @aalto.fi

1 Department of Computer Science, PO Box 15400, 00076 Aalto, Finland

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9616-7&domain=pdf
http://orcid.org/0000-0003-1622-0473
mailto:eero.laukkanen@alumni.aalto.fi
mailto:maria.paasivaara@aalto.fi
mailto:juha.itkonen@iki.fi
mailto:casper.lassenius@aalto.fi

3536 Empir Software Eng (2018) 23:3535-3577

the lack of resources was the main factor hindering the improvement of release engineer-
ing practices, while in the large mature company context, the number of stakeholders and
products were the main factors.

Keywords Release engineering - Startup - Continuous integration - Continuous delivery -
Case study

1 Introduction

Release engineering is the process of delivering the individual contributions of developers
to the end users of a software product, consisting of version control, build and test with
continuous integration, additional testing, deployment and release (Adams and McIntosh
2016). In modern release engineering practices, such as continuous delivery (CD) (Humble
and Farley 2010), all the steps in release engineering process are automated, meaning that
in principle, individual changes can be released, if needed, immediately after building and
testing them.

There are many organizations, especially in the web application domain, that have
adopted modern release engineering practices (Rahman et al. 2015). However, numerous
cases have been reported of difficulty in adopting the practices (Laukkanen et al. 2017).
While the existence of successful cases proves that the practice is applicable in some sit-
uations, adopting modern release engineering practices outside the sweet spot might not
be as feasible. To avoid fruitless attempts to adopt the practices, we need a better under-
standing of how the organizational context affects the feasibility of adopting modern release
engineering.

In this study, we discuss the effect of the organizational context on release engineer-
ing practices. We focus on two, previously less studied contexts: the startup and the large
mature company context. Software engineering in startups has been empirically studied
only recently (Paternoster et al. 2014; Giardino et al. 2016), but specific studies on release
engineering are missing. In the large mature company context, modern release engineering
has been discussed by a few studies (Debbiche et al. 2014; Laukkanen et al. 2015, 2016;
Savor et al. 2016). Previous research has investigated adoption challenges and described
the implemented practices, no systematic analysis of the effect of the context has been
conducted.

In addition, only a few large, mature companies have reported successful adoption of
modern release engineering, and understanding the organizational context in depth could
reveal why such examples are so scarce. Companies, such as Facebook (Savor et al. 2016),
have successfully adopted modern release engineering practices, but it is not known what
separates them from other large companies and what difficulties there might be when the
target system is not a web application. Furthermore, in some of the web application compa-
nies, the practices might have been in place from the beginning, and therefore no adoption
process would have been needed after the organization had transformed to a large mature
company.

We study two organizations that were building directly competing products for the same
market. The first organization, a large mature company, was building a product that could
be used by customers world-wide. The second organization, a young startup, had built its
product according to the needs of one specific customer. After gaining success with the first
customer, the startup was trying to attract other customers for the product.

@ Springer

Empir Software Eng (2018) 23:3535-3577 3537

As the products were similar, this helps isolate the effects of the organizational context
from the product context when studying the release engineering practices. In addition, the
large mature company had acquired the startup organization after the startup had proved to
be more successful in the market. Thus, we could gain insights from experts that represented
the large organization, but had familiarized themselves with the startup. The experts could
compare the organizational contexts and provide insights into why something worked in one
context but not in the other. We performed a total of 18 interviews, nine in the large mature
company and nine in the startup.

The main contribution of this research is the identification of organizational context fac-
tors that have an effect on the release engineering practices. This identification serves as
a starting point for understanding the phenomenon of modern release engineering prac-
tices in various contexts. To practitioners, we contribute by providing insights into release
engineering practices in two contexts.

This paper is structured as follows: we provide a background for the study and review
previous related studies in Section 2. The case organizations and our research methods are
described in Section 3. The results of the study are presented in Section 4. Finally, the results
and the threats to validity are discussed in Section 5 and the study is concluded in Section 6.

2 Background

In this section, we first introduce the concept of release engineering followed by a discussion
of what we mean by organizational context. Finally, we review related empirical studies on
the subject.

2.1 Release Engineering

Release engineering means the process of bringing the individual changes made by devel-
opers to the end users of the software with high quality (Adams and McIntosh 2016).
Release engineering combines four software development activities: software configuration
management (Berczuk and Appleton 2002) practices that define how changes, builds and
releases are identified and tracked; software testing (Desikan 2006), the process of testing
the software to find defects; software release management (van der Hoek et al. 1997), which
defines how software is made available to and obtained by its users; and IT operations
(Roche 2013) that ensures that the software is functioning properly in use in the production
environment. Release engineering views the activities as a combination in order to avoid
local optimization and to improve the release process as a whole.

Typically, release engineering covers six areas (Adams and McIntosh 2016):! 1) version
control: branching and merging; 2) deployment pipeline (Humble and Farley 2010): building
and testing; 3) build systems: compilation, linking and packaging; 4) infrastructure-as-
code: automation of the configuration of servers, middleware, applications, firewalls, etc.;
5) deployment: installing a new version of software; 6) release: publishing a new version of
software.

Designing the release engineering process is often a trade-off between release confi-
dence and velocity (Schermann et al. 2016). Release confidence measures how confidently

ISame list as in (Adams and McIntosh 2016), except continuous integration is replaced with deployment
pipeline in order to have a consistent terminology.

@ Springer

3538 Empir Software Eng (2018) 23:3535-3577

changes can be deployed after passing the release engineering process, and release velocity
measures the time from the version control commit to the deployment to production envi-
ronment. For example, having a large amount of manual testing in the deployment pipeline
increases release confidence, but decreases release velocity substantially. Automatic tests
provide a balance between confidence and velocity.

Modern release engineering practices (Adams and MclIntosh 2016) aim to increase the
release velocity of individual changes, but also ensure sufficient level of release confidence.
The practices emphasize five principles: 1. build artifacts, application and environment con-
figurations are version controlled similarly to software source code (Adams and McIntosh
2016); 2. different organizational functions of development, testing and operations collab-
orate tightly (DevOps) (Roche 2013); 3. the build, testing and deployment processes are
automated (Humble and Farley 2010); 4. changes can be released individually instead of as
parts of larger releases (Humble and Farley 2010); 5. in addition to detecting defects before
production deployments, attention is given to defect identification during deployments and
ability to rollback failed deployments (Fitz 2009).

In the industry, there has been three common characterizations of release engineering
maturity: Continuous integration (CI) (Fowler 2006) is a practice of integrating and testing
individual changes frequently. The changes are not necessarily deployable to the produc-
tion environment all the time, but instead can require additional testing before production
deployment. Continuous delivery (CD) (Humble and Farley 2010) is CI combined with
the requirement that changes, after passing automated tests, can be deployed to production
environment. However, production deployments are not necessarily done for each verified
change. Continuous deployment (CDep) (Fitz 2009) is CD combined with the requirement
that verified changes are automatically deployed to production environment. Even after pro-
duction deployment, the change might not be released, because it can be made hidden from
the users with feature toggles (Rahman et al. 2016).

2.2 Organizational Context

Software engineering (SE) research has suffered from having too little contextual under-
standing of the phenomena related to the field (Dyba et al. 2012). Although non-
contextualized, generalized knowledge can be applied universally, SE results are often
context-specific (Dyba et al. 2012), and misinterpreting them as universal can lead to hasty
generalization. To mitigate this, SE researchers emphasize the importance of linking the
results to the context they are found in (Dyba et al. 2012; Kruchten 2013).

In this study, we focus on the effects of the organizational contexts on release engi-
neering practices in the case organizations. We do not use any predefined factors to
determine organizational context, but instead derive the factors inductively based on the
collected data. Thus, our definition of organizational context might differ from other
sources, e.g., Kruchten who divides context between organizational and project context
(Kruchten 2013). In this paper, we make a logical division between the organizational and
the product context: the product context defines who the end users of the software are,
what the product provides to them, and how and why the product is used; the organiza-
tional context defines, who develops the software, and where, when, why and how is it
developed.

Example organizational contexts are: a startup company (Giardino et al. 2016), a mid-
sized company (Neely and Stolt 2013), a development unit in a larger company (Laukkanen
et al. 2015), an open source software development community (Michlmayr 2007) and an
engineering project course (Lehtinen et al. 2014). From these, we focus on the startup and

@ Springer

Empir Software Eng (2018) 23:3535-3577

3539

\4

(CAT4)
Team is the

catalyst of
development

A4

A4

(CAT7) (CAT1) (CAT5) (CAT6)
Severe lack of dspeled-up . | Accumulated R Inlﬁianldgerro;wth
evelopmen > ; >
resources technical debt
(Core category) performance

(CAT3)

(CAT2)

_ | Product quality
" | has low priority

Evolutionary
approach

l

Fig. 1 Greenfield startup model (Giardino et al. 2016)

development unit in a large company context, because those are two radically different
contexts that have received little research attention regarding release engineering.

Startups are known for their ability to innovate (Yoffie and Cusumano 1999; Freeman
and Engel 2007). However, the amount of empirical research about the nature of startup soft-
ware development is limited (Paternoster et al. 2014). Nevertheless, a recent mapping study
provides a characterization of startup software development: “The most frequently reported
contextual features of startups concern the general lack of resources, high reactiveness and
flexibility, intense time-pressure, uncertain conditions and fast growth.” (Paternoster et al.
2014). The dynamics of startup software development are captured in the greenfield startup
model (Giardino et al. 2016), see Fig. 1.

Despite the fact that software development in large mature companies is common, few
studies investigate what makes the large mature company software development context
unique. Certain aspects of the development are investigated in individual studies: scale and
responsiveness (Olsson et al. 2014), overscoping (Bjarnason et al. 2012), large-scale agile
(van Waardenburg and van Vliet 2013; Dikert et al. 2016), configuration management (Fauzi
et al. 2010), dependencies and communication (Sekitoleko et al. 2014), distributed develop-
ment (Wagstrom and Datta 2014) and heavy processes (Laukkanen et al. 2016). The studies
focus on different aspects of large mature companies: number of customers (Olsson et al.
2014), plan-driven processes (Laukkanen et al. 2016; Bjarnason et al. 2012; van Waarden-
burg and van Vliet 2013), number of personnel (Dikert et al. 2016), and organizational
distance (Fauzi et al. 2010; Sekitoleko et al. 2014; Wagstrom and Datta 2014).

2.3 Empirical Studies on Release Engineering

Release engineering as a whole has been studied only in a few studies. Two dissertations on
release engineering have been published, focusing on the open source context (Michlmayr
2007; Wright 2012). Modern release engineering practices (Adams and McIntosh 2016),
like continuous integration, continuous delivery and continuous deployment have been
under empirical investigation only recently, and most of the related publications have been
experience reports (Laukkanen et al. 2017). A few studies have been made of individual

@ Springer

3540 Empir Software Eng (2018) 23:3535-3577

aspects of release engineering, such as feature toggles (Rahman et al. 2016) and release
stabilization (Rahman and Rigby 2015). However, the studies often lack contextual infor-
mation (Laukkanen et al. 2017), while it has been acknowledged that the context plays a
large role in release engineering (Wright 2012).

Release engineering has not been specifically studied in startups, but the studies of
startup software development have identified some characteristics of release engineering,
too (Paternoster et al. 2014; Giardino et al. 2016): lack of overall testing, lack of auto-
mated tests, manual smoke tests, user reports mitigate the lack of testing, reasonable level
of automated testing for critical components, deploying multiple times per day, progressive
roll-outs, direct contact and observation of users, automated feedback collection, analy-
sis of product metrics, product quality has low priority, UX has the highest priority and
development speed is emphasized over product quality. In addition, given that startups
generally lack resources (Giardino et al. 2016) and the lack of resources is one key prob-
lem preventing adopting modern release engineering practices (Laukkanen et al. 2017),
we can hypothesize that startups generally have not adopted modern release engineering
practices.

Adoption of modern release engineering practices in large mature companies has been
investigated in a few previous studies. Many adoption challenges have been revealed related
to the development and release processes, system architecture and distribution of the orga-
nization (Debbiche et al. 2014; Laukkanen et al. 2015, 2016), and the adoption has been
either limited (Laukkanen et al. 2015) or entirely stagnant (Debbiche et al. 2014; Laukkanen
et al. 2016). However, it is not clear why the adoption is an issue in large mature compa-
nies, although it has been identified that the used product development process (Laukkanen
et al. 2016), architecture and distribution of the organization (Laukkanen et al. 2015) play a
critical role.

In summary, we identify a gap in the current state of the research that we aim to contribute
to with this study. First, release engineering studies in general currently lack contextual
understanding, although it has been acknowledged that the context has a large effect on
the release engineering practices. Second, research on release engineering practices in star-
tups has been limited to some characterizing aspects, but holistic understanding of them
is missing. Finally, release engineering in large mature companies has been identified to
be difficult, but the essence why the situation is different to other contexts has not been
explored well enough.

3 Method

In this section, we introduce the research method used. First, we summarize the case orga-
nizations of the study briefly, as more in-depth description is provided in Section 4.3. After
that, we present our research goal and questions. We continue by discussing the case selec-
tion rationale, followed by data collection and analysis methods. Finally, we present how
we validated our results and mitigated the threats to validity.

3.1 Case Organizations
Both organizations were building competing software products. Case BigCorp was a prod-
uct development unit in a large mature company, whereas Case SmallOrg was a small startup

company (see Table 1). The company of BigCorp acquired SmallOrg after the SmallOrg
product proved to be more successful in the market. In this study, we performed interviews

@ Springer

Empir Software Eng (2018) 23:3535-3577 3541

Table 1 Summary of the case organizations before the acquisition

Theme Case BigCorp Case SmallOrg

Organizational context Product development unit in Startup company

a large mature company

Company size >20,000 50
Case organization size 180 50
Distribution of the organization Two sites in Europe, one site in Asia One site in North America

in both case organizations after the acquisition (see Fig. 2). However, in our analysis we
focus on the release engineering practices before the acquisition.

3.1.1 Case BigCorp

BigCorp is a product development unit in a mature, large, multi-national company. The
product was a continuation of other older products, but the current development was started
approximately two years before the acquisition (see Fig. 2). At the time of the acquisition,
BigCorp’s product had tens of existing customers, but was not getting new deals due to
competition by, e.g., SmallOrg. In order to be competitive in the market, the company of
BigCorp acquired SmallOrg.

3.1.2 Case SmallOrg

SmallOrg was a relatively young startup, having started the development of the product
approximately four years before the acquisition (see Fig. 2). During the initial years, the
number of personnel in the case was low, but after acquiring its first customer, it had
scaled its software development personnel to three teams and 20 developers. As the prod-
uct had gained success when demonstrated to new customers, SmallOrg realized that it
would need either more investments or be acquired by a larger company to support the
growth of the product. Thus, both BigCorp and SmallOrg considered the deal to be a
win-win.

Preliminary research Acquisition
BigCorp Product started, Duercélcllg;a:ce
first customer P

Interviews
More
customers
-4 -3 -2 : 1
time ‘
(years) : el
: Data
Product First
started customer Second
———| customer
SmallOrg

Fig. 2 Timeline of the case organizations and the research

@ Springer

3542 Empir Software Eng (2018) 23:3535-3577

3.2 Research Goal and Questions

In this study, our goal is to understand how the organizational context affects release engi-
neering practices in a startup compared to a large mature company. We aim to reach this
goal by answering the following research questions:

RQI1. What release engineering practices had the case organizations implemented?
RQ2. What outcomes did the implemented release engineering practices have for the
case organizations?

RQ3. What were the reasons for differences in release engineering practices in the case
organizations?

3.3 Case Selection Rationale

The case study comparing BigCorp and SmallOrg is revelatory (Yin 1994), as it is not often
possible to mitigate the effect of product context when comparing software development
organizations. Thus, this setting provides a rare opportunity for research. In addition, Smal-
10rg was acquired by BigCorp and the employees of BigCorp had acquired understanding
of the SmallOrg before this study, first, during the due diligence process (see Fig. 2), and
second, after the acquisition when the employees started to work with the SmallOrg prod-
uct a few months before the interviews. Thus, we were able to get expert insights of the
differences in the case organizations and the reasons for the differences. Finally, we were
able to compare release engineering practices, as both organizations had implemented some
modern practices in their work.

3.4 Data Collection

In order to justify the use of BigCorp interviews as evidence for SmallOrg practices, we
summarize the due diligence process briefly. The due diligence process started half a year
before the acquisition, although BigCorp had done preliminary assessments of the SmallOrg
even a year before the due diligence process had been started. During the due diligence
process, BigCorp employees visited the SmallOrg and asked questions, received demos
and documentation of the system and could see the source code. One of the architects we
interviewed took part in the due diligence process. The rest of our interviewees started to
work with SmallOrg after the acquisition decision had been made. Thus, they had already
been working with them for several months before the interviews and were sufficiently
familiar with SmallOrg.

We performed 18 interviews using an interview guide approach (Patton 2002). The first
two interviews with BigCorp managers were more flexible, as we familiarized ourselves
with the cases and the situation. In the first interview, two managers participated in order to
have different viewpoints when planning the subsequent interviews. After the initial inter-
view, we designed an interview guide with topics to discuss, see Table 2 for the themes
covered. An interview guide does not have explicit questions, but instead lists topics to dis-
cuss (Patton 2002) to allow flexibility during the interviews. We allowed flexibility in the
later interviews too, in order to adapt to the different roles of the interviewees and to identify
and discuss emerging issues.

In order to be able to compare the two contexts, we focused data collection and analysis
on the time period before the acquisition. As the interviews were performed post-acquisition
(see Fig. 2), we emphasized during the interviews that we wanted to discuss the time period

@ Springer

Empir Software Eng (2018) 23:3535-3577 3543

Table 2 Themes of the interview guide used in the interviews

Theme Topics

Background info Interviewee role before the acquisition, place in the organization,
responsibilities, relations to others in the organization

Organizational differences Differences between SmallOrg and BigCorp, explanations for the
differences, consequences of the differences

Software development process Customer requests, planning and prioritization, quality
assurance, release

Continuous integration Practices, test automation, tools, problems, future plans

Organizational structure Teams, responsibilities, division of labor, communication,

decision making

Product Features, architecture, technologies
Metrics Release cycle, CI cycle, defect counts
Other topics Explanations for the SmallOrg’s market success

before the acquisition instead of the current situation. In addition, during the data analysis
we were cautious to not use any quotations that described the current situation instead of
the time before the acquisition.

In BigCorp, we interviewed employees that had familiarized themselves with SmallOrg:
six managers and three architects (see Table 3). The managers were responsible for manag-
ing the development of the BigCorp product and later integrating SmallOrg into BigCorp.
The architects were responsible for the system design and release engineering practices.

We did not interview any developers or testers in BigCorp, as we had performed pre-
liminary research in the case organization earlier (see Fig. 2 and Table 4). The preliminary
research consisted of a background interview, CI data collection and two group interviews.
In the two group interviews, we had heard the developers and testers about the release engi-
neering practices in BigCorp and did not consider it necessary to interview more of them
in this study. The preliminary research data was used for describing the release engineer-
ing process (see Fig. 4) and triangulating the other interviews. Otherwise, the interviews in
Table 3 were the data source for the results of the study.

From SmallOrg, we attempted to get a holistic view of the organization by interviewing
all the roles in the organization: a manager, an architect, three development team members,
two service team members and two domain experts.

The number of interviewers and the length of the interviews varied, see Table 3. Most of
the BigCorp interviews were performed by at least two researchers, whereas all SmallOrg
interviews were performed by only one researcher due to the geographical distance to the
SmallOrg offices. The BigCorp managers who were interviewed by the single researcher
were visiting the SmallOrg site during the interviews. The interviews took 50—110 min.

We also collected quantitative data from CI systems, and had access to the SmallOrg
wiki pages, where information about the development process and practices was stored. The
wiki pages were used to gain an early understanding of the process and practices, but were
not used in the actual data analysis, because written processes and practices do not always
correspond the actual used processes and practices. The quantitative CI data from the CI
systems contained the history of product builds, their duration and results, see Table 5 for

@ Springer

Empir Software Eng (2018) 23:3535-3577

Table 3 Overview of the interviews. The flexible interviews without the interview guide are denoted with

Interviewees Interviewee’s role (at the time of the interviews) Length
and experience (min)
2 BigCorp managers Business improvement manager. 23 years at BigCorp 83
on Site A (*) in different R&D management positions.
(For the second manager see the next row.)
BigCorp manager Head of business line transformation. Manager at 110

on Site A (*)

BigCorp manager
on Site A

BigCorp manager
on Site C

BigCorp manager
on Site D

BigCorp manager
on Site D

BigCorp architect

on Site B

BigCorp architect
on Site B

BigCorp architect
on Site B

BigCorp for 21 years. Led the agile transformation
and agile coaching. Was involved in the assessment
of the SmallOrg before the acquisition.
R&D leader. Assessed SmallOrg methods and 50
tools in the acquisition. 22 years in various roles
at BigCorp, e.g., testing manager, program
manager and agile and lean coach.
Manager and Coach. Was involved in the evaluation 74
of the SmallOrg before the acquisition and after
the acquisition became part of the joint integration
team in the areas of IT and HR. Started 12 years
ago as at BigCorp as software engineer. Various
positions in R&D and R&D management.
Business PO. Responsible of the studied business 74
area at BigCorp. One year in the project. 21 years
in BigCorp, starting as a developer. Various
positions such as project management, program
management, product customization and pre-sales.
Program manager. 2,5 years in the program 57
management of the studies product. Joined BigCorp
17 years ago as a developer, then architect, line
manager and program manager.
Head architect. Head technical assessor in the 84
acquisition of SmallOrg. 21 years at BigCorp,
17 years in related products.
System Architect. Was involved in the technical 74
evaluation of the SmallCorp’s product and has worked
in the integration of the products since the acquisition.
Joined BigCorp 11 years ago as a developer. Worked
already for the predecessor product.
Technical Product Owner. Was involved in planning 107
the integration of the two products and companies
since the beginning of the acquisition, concentrating
especially in continuous integration and continuous

delivery aspects.

Empir Software Eng (2018) 23:3535-3577 3545

Table 3 (continued)

Inter- Interviewees Interviewee’s role (at the time of the interviews) Length
viewers and experience (min)
1 SmallOrg manager Head of Product Strategy at BigCorp. Before the 81

acquisition the CEO of SmallOrg, one of the founders
of the SmallOrg. Over 20 years in this business area.
1 SmallOrg architect Chief architect. One of first employees at SmallOrg, 72
started as a senior developer. 15 years in this
business area.
1 SmallOrg domain Head of systems engineering. One of the original 77
expert founders of SmallOrg. Has worked in this business
area over 20 years. Technical background, started
in hardware design.
1 SmallOrg domain Systems engineer. Has worked in this business area 62
expert for more than 10 years in several companies, first
on the customer side and then in design.
1 SmallOrg development Technical lead. Leads an integration team. 79
team member
1 SmallOrg development Technical lead and line manager. 9 years in software 84
team member development, started 8 years ago in the predecessor

of SmallOrg and 3 years ago in this product as a

developer.
1 SmallOrg development Developer. Has worked at SmallOrg since graduation 51
team member from the university, i.e., 1,5 years.
1 SmallOrg service Head of engineering services. 18 year of experience 67
team lead in this business area. Previously field

support engineer meeting customers. One of the founders
of the SmallOrg.
1 SmallOrg service Customer support and services manager. 3 years 62
team member in SmallOrg, first as a developer and moved two
years ago to the customer support team to

perform customer trials.

an overview of the collected CI data. The data was not used in the primary analysis in
this study, but was employed in triangulating observations from the interviews. In addition,
the CI data was used to illustrate the difference in CI discipline between the two cases
by calculating descriptive statistics (see Table 9). The collected CI data was from the time
before the acquisition (see Fig. 2).

BigCorp’s CI data was half a year older than SmallOrg’s due to data availability. Big-
Corp deleted old CI data after few weeks to save disk space and thus the data had to be
actively collected by us every week. We think that the time difference did not bias the
results, because there is no improvement visible in the collected BigCorp CI data. If there
was improvement in the data, BigCorp could have performed better during the same time
period when the SmallOrg data was collected. Furthermore, the difference between BigCorp

@ Springer

3546 Empir Software Eng (2018) 23:3535-3577

Table 4 Summary of the preliminary research we had done in BigCorp before this study

Method Description

Background interview An interview with a person responsible for improving release engineering
practices in BigCorp. The length of the interview was 102 min. The
interview consisted of the following themes: case background information,
used software development methods, testing strategy, use of devops, used

development tools, challenges and benefits of CD in the case organization.

CI data collection CI data was collected for the analysis of broken builds.

Two group interviews Two group interviews were performed with managers, testers and developers
on one site of the case organization. The interviews lasted 104 and 160 min
and both of them had 10 interviewees. The group interviews discussed

the adoption problems of modern release engineering practices.

data and SmallOrg data is so large that we believe it cannot be explained with the difference
in time period only.

3.5 Data Analysis

The interviews were audio recorded and transcribed by a professional transcription com-
pany. The transcriptions were qualitatively coded (Patton 2002) by the first author. First,
quotations from the transcriptions were selected for later analysis when the quotations dis-
cussed either the organizational or product context, release engineering practices or the
outcomes of the practices. Second, the first author gave descriptive codes for the individ-
ual concepts in the quotations, see Table 6 for the codes used in the analysis. The codes
were categorized either to be product context codes, organizational context codes, release
engineering implementation codes or outcome codes.

Third, the first author wrote an initial draft of the result section of this paper, structuring
it by the identified codes. The other authors read the initial draft and gave critical comments
on whether the results were valid and how could they be improved. Through many iterations,
the results gained their final form when all the authors were satisfied and confident that they
truthfully represent the interview material and the case reality. Finally, key stakeholders in
BigCorp validated the results by reading a nearly finished version of the article. They could
also verify the results from the viewpoint of SmallOrg, as they had worked closely with the
organization after the acquisition.

Table 5 Collected quantitative CI data from the CI systems

Case First data point Time period # of builds
BigCorp Year before acquisition 22 weeks 1889
SmallOrg Half a year before acquisition 24 weeks 760

@ Springer

Empir Software Eng (2018) 23:3535-3577 3547

Table 6 Codes used in the article

Product context
Customer-specific customization required, customer traditionally do not want frequent
releases, need to react fast to customer requests, some customers ready for frequent releases,
complex product, early market, customers want to test the product in their environment
Organizational context — Customers
Single customer, friendly customer, multiple customers, strict service level agreement
Organizational context — Organizational structure
Co-location, collaborative organization, functional organization, large organization,
multi-site, rigid organization, small organization
Organizational context — Product development process
Flexible process, plan-driven process, risk-avoiding organization, high system quality
requirements, daily prioritization, product portfolio, overtime work on weekends
Organizational context — Resources
Amazon AWS, no production-like test environment, getting test environment takes minutes,
getting production-like test environment takes months
Release engineering practices — Code review
Code review gate, build in branches, no code review
Release engineering practices — Continuous integration discipline
Fast build, build kept green, build in branches, build only changed components, failing
build, slow build
Release engineering practices — Internal verification scope
Low test automation, manual system tests, integration tests in CI, simulators with customer
data, low verification, smoke tests, no definition of done, low performance verification,
dedicated testers, definition of done, production-like test environment, unit tests
Release engineering practices — Domain expert testing
Domain expert testing
Release engineering practices — Testing with customers
Customer acceptance testing, closed-loop testing, open-loop testing, strict service
level agreement, manual progressive deployments
Release engineering outcomes — Feedback from customers
Fast reacting to customer needs, two week release capability, direct feedback from
production, fast development cycle, no feedback from production, slow development cycle, slow
reacting to customer needs, slow release capability
Release engineering outcomes — Number of defect reports
Many defect reports
Release engineering outcomes — Quality issues with new customers
Quality problems, product not ready for general availability, technical debt, elementary

programming mistakes, scalability problems

3.6 Mitigating Threats to Validity

We mitigated the threats to validity of case study research (Runeson and Host 2009) by
using the following strategies for construct validity, internal validity and external validity.

@ Springer

3548 Empir Software Eng (2018) 23:3535-3577

Construct validity: by using inductive data collection and analysis methods, we made
sure that the used constructs are the same as used by the case organization mem-
bers. This means that we did not try to investigate constructs that were external to
the case organizations, but instead allowed the case organization members themselves
decide which words or meanings they use when describing their release engineering
practices.

Internal validity: we only used such evidence from the interviews that was logi-
cally consistent with other interviewees’ experiences. This mitigated the possibility
that the evidence would be an opinion of single persons and might not repre-
sent the truth. We also interviewed persons in different roles in the case orga-
nizations and therefore the results represent a holistic viewpoint. In addition, we
collected quantitative data from actual CI systems (see Table 5) to triangulate the
qualitative evidence. We had multiple researchers who took part in the interviews
and analysis, thus the consistency is not dependent on single researchers either. In
addition, we validated our results with two case organization members after the
analysis.

External validity: in a case study, we do not attempt statistical generalization but
instead analytical generalization (Yin 1994). To achieve this, we extracted generalizable
variables and their relationships based on the two case studies (see Fig. 8).

4 Results

In this section, we present the results of the study. First, we present overview descriptions
of the development processes of the case organizations. Second, we cover the product con-
text which was common for both case organizations. Third, we introduce the organizational
contexts of the case organizations. Fourth, we show what kind of release engineering prac-
tices were in place in the case organizations. Fifth, we investigate what kind of outcomes the
case organizations achieved with their release engineering practices. Finally, we synthesize
the results by comparing the cases to understand the reasons for the differences in release
engineering practices.

4.1 Overview of the Development Processes
4.1.1 Case BigCorp

The BigCorp product had multiple world-wide customers whose feature requests went
through a typical roadmapping and prioritization process. The features were specified
and grouped into releases by the product management unit which was external to Big-
Corp. BigCorp received the detailed release plans which BigCorp implemented in a
three month development cycle. During development, the continuous integration sys-
tem was used to verify the product continuously. The product still required additional
testing near the end of the development cycle. When the release development was fin-
ished by BigCorp, it was sent to an external unit who performed end-to-end testing for
the product. After that, the release would be installed to pilot customers and finally,
given that the quality of the release was sufficient, it would receive general availability
status.

@ Springer

Empir Software Eng (2018) 23:3535-3577 3549

4.1.2 Case SmallOrg

The SmallOrg product had one friendly customer who was heavily involved in the product
development. SmallOrg domain experts worked closely with the friendly customer experts
to specify features for the product. After that, the domain experts discussed the features
directly with the software developers who were responsible for implementing the features.
Every code change to the product was reviewed by a lead developer and a continuous inte-
gration system would run automated tests for each change. Every two weeks the product
was manually release tested by SmallOrg and after that the release was taken to the cus-
tomer test environment for external testing. If there were no problems with the release, it
would be gradually installed to the whole production environment of the friendly customer.

4.2 Product Context

The product is a software product sold to the customers of the case organizations world-
wide. The product is installed to customer premises and integrates with customer-specific
production systems.

The market for the product is still in its early stages, which means that there is ambi-
guity in product requirements, but also potential for substantial growth. The product has
to integrate to different kinds of production environments, which can vary technologically
between customers and regions.

In Asia, the customer needs are different than in USA. [...] And then, Korea and Japan
have their own quality and other requirements. —BigCorp Manager

Due to the requirement ambiguity and production environment differences, the product has
to be customized for each customer. Thus, the business is a combination of product and
service business, where a general product is customized for each customer’s needs. Some
customer-specific customizations can be productized later on to provide the customizations
to other customers too. In addition, customers want to have a proof of concept (PoC) before
buying the product. In a PoC, the product provider demonstrates the benefits of the product
by running it in the customer’s environment. During PoCs, customers often have customiza-
tion requests specific to their own needs and being able to address those requests is a good
way to assure the customer of the benefits of the product.

In the end, [the business] is closer to service business than product business. You
cannot make [the product] in a factory that work adequately well, but instead you have
to go to the customer’s [environment], or at least to a test [environment] and do little

testing and fix them there. —BigCorp Manager
Usually you have to implement some things [...] that are gonna be [customer] depen-
dent. — SmallOrg Dev
Team

When you do a proof of concept to a customer, then there will be things that the
customer wants to have really quickly. Like, “if you can put this [feature] there, then
[will buy it.” —BigCorp Manager

The product is installed to the customer premises, and thus each customer has its own
instance of the product running. After buying the product, the customers traditionally do
not want frequent updates to the system, because a malfunctioning product can cause seri-
ous harm to the customer. A typical release cycle to customers, including new features

@ Springer

3550 Empir Software Eng (2018) 23:3535-3577

and defect fixes, can be from six months to one year. The actual product release cycle can
be faster, as it was in both BigCorp and SmallOrg, but individual customers are not typi-
cally willing to accept more frequent updates. This puts pressure on the release engineering
practices, since there is no possibility to easily fix defects after a release.

If a product gets a good reputation, that typically it does not cause any hiccups, then
maybe three months could be the fastest release cycle. And even then you would need
to have a very willing [customer]. Half a year is the most probable release cycle, in my
opinion. Because it is not a trivial thing for the [customers], ever. [...] If you release an
immature [product], you can get the whole [production environment] down suddenly,
totally. —BigCorp Architect

I know there has been some customer requirements or requests to say, we want a
product [version] to be supported for six months, and only be installed once a year or
something like that. —SmallOrg Dev Team

However, since the customer environments differ a lot from each other, it is difficult or
practically impossible to verify the release quality in a laboratory setting, and often some
defects are only discovered in customer environments. Luckily, there are some customers
that are more risk-tolerant and allow monthly or even more frequent releases.

We did work with the [customer] [...] a lot to actually go ahead and, verify, what the
impact of the changes will be in the [production environment]. That also uncovered
[many other issues], because now you’re connecting to an actual [environment], the
information in the actual [environment] can be different, and, data can be missing
sometimes and so, the hardening of [the product] takes a lot of time. —SmallOrg
Domain Expert

That’s kind of like the biggest source of our, defects and bugs. Is just running on new
sets of data that we didn’t run before. That exposes new, assumptions in our system
that were not correct. —SmallOrg Dev Team

4.3 Organizational Context
In this section, we introduce the organizational contexts of the case organizations. Con-
sidering what would be the most noteworthy aspects related to engineering practices, we

divided the organizational context into four themes (see Table 7): customers, organizational
structure, product development process and resources.

Table 7 Comparison of the organizational contexts in the case organizations

Theme Case BigCorp Case SmallOrg

Customers Tens One, Friendly

Organizational structure Large, Distributed, Functional Small, Co-located,

Collaborative

Product development Long-term, Multiple stakeholders Short-term, Few stakeholders,
process and products One product

Resources Sufficient workforce and Limited workforce and Test

Test equipment equipment

@ Springer

Empir Software Eng (2018) 23:3535-3577 3551

4.3.1 Customers

The number of customers and customer intimacy differed a lot between the two case orga-
nizations. BigCorp had multiple existing customers, whereas SmallOrg worked mostly with
only one but friendly customer.

BigCorp BigCorp had tens of existing customers for their product at the time of acqui-
sition. Having so many customers globally makes the development processes heavier for
three reasons. First, requests from different customers need to be prioritized, because it is
not feasible to implement every requirement on demand. The prioritization will decrease
customer satisfaction, because every request cannot be served.

If you have five, ten or fifty customers things will change completely. Every customer
will do their own requests and they are typically different from each other.
—DBigCorp Architect

You have to have global market view what are the most important things. Which leads
to unsatisfied customers because you cannot fulfill every customer’s priority requests.
—DBigCorp Architect

Second, different releases to different customers need to be tracked, in order to be able to
provide customer support and defect fixes to different customers. In addition, updating to
newer releases has to support many previous versions, because different customers might
have many different versions running.

When you think globally, you have to think how do you release to different customers,
how do you track what each customers has, what patches has gone to where.
—BigCorp Architect

Finally, you have to be more careful with the quality of the product, because getting defect
reports from many customers simultaneously would congest the development pipeline
quickly, as different kinds of defects can be found by different customers.

With many customers, you have to pay more attention to product quality. [...] If you
have released the product to fifty customers and you find a defect, find a second and
a third defect, then it will get harder to fix the defects in time. —BigCorp Architect

SmallOrg For most of the time before the acquisition, SmallOrg had only one paying
customer. They had signed a contract with a second one a few months before the acquisition
(see Fig. 2), but the second customer was not using the product before the acquisition.
Thus, it is accurate to say that SmallOrg had only one customer before the acquisition when
discussing release engineering practices.

SmallOrg’s relationship with their first customer was intimate and friendly. The customer
was geographically located near SmallOrg and they had tight communication from early
on during the product development. The customer was willing to get frequent updates to
the product and gave SmallOrg direct access to the production environment, which helped
SmallOrg discover requirements for the product and fix issues that would only appear in the
production environment.

We already were building a product and [the SmallOrg customer] said oh, why don’t
you put this and that, and we changed the whole product to match what they were
asking for. —SmallOrg Service Team

@ Springer

3552 Empir Software Eng (2018) 23:3535-3577

[SmallOrg] set up this kind of, ways of working, that they have this weekly, project
management meeting with [SmallOrg customer]. Over there basically they have
access to a quite large [environment] and, kind of the daily issues with that [environ-
ment]. That is a powerful addition, for the development of the product. What we did
with [BigCorp product], I think [...] we haven’t been that close, to the customer.
—BigCorp Manager

They had a very good relationship with [SmallOrg customer], where they could
develop the software, in the [SmallOrg customer environment] so you could, take a
software which is half-ready, to the [SmallOrg customer environment], test, improve,
test, improve, and then deploy it, throughout. —BigCorp Manager

SmallOrg could prioritize and release new content quickly compared to BigCorp, because
there was only a single customer and production instance. In addition, SmallOrg had made
a strict service-level agreement (SLA) with the customer so that if there were any defects
in the released product, the defects would be fixed fast and the customer would still be
satisfied. The SLA demanded that SmallOrg had to respond to critical requests in 5 min,
although actually fixing the issues could take longer time.

At [SmallOrg] they managed to do somehow that, the customer was quite satisfied
and, the main reason for that was this really really short, feedback, cycle that, they
had. So when the customer reported the issue, [...] they were, kind of, replying in the
five-minute time frame. And then also the, correction package arrived [...] in a very
short time. —BigCorp Manager

4.3.2 Organizational Structure

BigCorp was a large and functionally divided organization, and the company of BigCorp
was developing multiple products. The studied product was one product in a larger product
portfolio. In contrast, SmallOrg focused only on the studied product and was a small co-
located organization (see Fig. 3).

BigCorp In order to efficiently manage multiple product portfolios and a global cus-
tomer base, BigCorp was organized functionally and was distributed over the world (see
Fig. 3). Functional organization meant that BigCorp had different organizations for product
management, product development, customer support, sales and delivery. The product man-
agement and development organizations were specific to the product portfolio where the
BigCorp product resided, whereas the customer support, sales and delivery organizations
instead worked with all the products in the BigCorp company.

Site A in Country A Site B in Country A
(Europe) (Europe)
Headcount: 15 Headcount: 15 Site in North America
Headcount: 50
Site C in Country B Site D in Country C
(Europe) (Asia)
Headcount: 30 Headcount: 120
BigCorp SmallOrg

Fig. 3 Structural difference between the product development organizations of the studied products

@ Springer

Empir Software Eng (2018) 23:3535-3577 3553

I think this is quite a typical structure what we have in BigCorp. We have a business
line where is the product development. Then we have sales in another organization and
delivery in a third organization. And there comes the challenge that how to work over
the different functions that work with different logic, incentives and success criteria.
How to get the whole to work together. —BigCorp Manager

The power from a BigCorp point of view is to also see, we have a huge portfolio. And
how do you really interplay across this portfolio in order to really get value to the
customer. —BigCorp Manager

From the viewpoint of the studied product, the functional organization was a major chal-
lenge, because the product differed from the other products of the BigCorp company. Being
an early market small software product, it had lower priority than other mature, large prod-
ucts. The prioritization prevented other organizations, such as sales, support and delivery,
from adapting their ways of working to match how software could be developed efficiently
from sales to delivery. In addition, as the product development was a separate organization
with little interaction with the customers, it had a limited possibility to gain fast feedback
from the changes done to the product.

The size and distribution of the organization also had an effect on the release engineering
practices. There were both geographical and timezone differences even inside single func-
tions, such as product development. The size and distribution made communication more
difficult and decision-making took more time.

However, when you have a big team which is distributed to many sites, and you have
many customers, so you’re not so, let’s say flexible. So that’s why, actually, I think,
one reason why [BigCorp product], development was, became very slow, is that the
[BigCorp product] team was growing too fast. —BigCorp Architect

But in case of [BigCorp product] [...] lead designers or even architects [are] on differ-
ent sites. And if we need to agree on something, it takes much more time so, because
of time zone difference and, anyway, even if we are in the same time zone, it’s a
different thing when you discuss it over the phone or, just, in the same room.
—DBigCorp Architect

SmallOrg SmallOrg was a small, co-located and collaborative organization. The organi-
zation was functionally divided into management, domain experts (employees with years
of experience in the product domain), software development, and customer service. Due
to the small size and organizational culture, the functions did not become silos, as people
collaborated closely over the functional borders.

The co-location and size of the organization made communication easy and
decision-making fast. Only a small number of people were needed for decision-
making, all of which were available directly to each other through physical interac-
tion or electronic communication tools. There was less need for written documenta-
tion, because any information needed could be asked straight from the knowledgeable
person.

The SmallOrg employees did not themselves report the small organizational size
as important for their success. However, the BigCorp employees emphasized the size
difference in the interviews.

@ Springer

3554 Empir Software Eng (2018) 23:3535-3577

[SmallOrg] was still a small company it was a bit easier because of course they were
kind of co-located in the same room. So if there were some, say, problems or some
synchronization was needed, so they just talked to each other. [...] In my opinion this
is a very big advantage, when the team is co-located. —BigCorp Architect

The fact that the [SmallOrg] was in one place and that, let’s say, the most, diffi-
cult parts, they were done by a few lead developers. [...] So, if you want to do some
changes, or implement some urgent customer requests, it was quite easy to do because
these three guys are, in the same room, and they can agree with each other how to do
it quickly. —BigCorp Architect

The software development teams did not have direct contact with the customers, but the
distance was nevertheless short, because the domain experts and service teams, who were
in contact with the customers, had direct communication with the developers. The domain
experts and customer service team members could either contact the developers face-to-face
in the SmallOrg office, or use a chat application.

I: So the connection between the [proof of concept] and software engineering is very
tight?
R: Super. Very, like direct communication. —SmallOrg Service Team

In addition to the tight collaboration, the domain experts were responsible for the customer
requests from specification to delivery. Thus, there were no hand-overs between different
functions, which is typical in a larger functional organization and often results in delays and
lower quality.

[SmallOrg] had domain experts and all the requirements to the developers came
through the domain experts. And when a new feature goes to a customer, the experts
are responsible for it end-to-end. Their responsibility does not end when the require-
ment is specified but only when it is used by a customer and customer verifies that it
is good. —BigCorp Manager

4.3.3 Product Development Process

BigCorp had a heavy plan-driven process. SmallOrg was flexible and agile, changing
priorities constantly.

BigCorp Due to the functional and distributed organization, the size of the product port-
folio and number of customers, BigCorp’s product development process was a heavy and
plan-driven stage-gate process (Cooper 1990). While the actual software development had
elements from Scrum and Kanban and was performed iteratively with cross-functional
teams, other parts of the product development process were not flexible. The release scope
and deadlines were fixed before starting the software development.

Customer requests went through a typical roadmapping and prioritization process before
they reached the development organization. The lead-time from customer request to delivery
could be as long as 18 months, although the product release cycle was three months. The
features were delivered as quarterly releases, and the customers paid for each release.

The [BigCorp] system is much more rigid and slower. We say that we can put [a
customer request] on the roadmap and it will come after 18 months.
—BigCorp Manager

@ Springer

Empir Software Eng (2018) 23:3535-3577 3555

Since there was a long organizational distance from the sales and marketing to the devel-
opment organization, it was important that the plans would be realized completely, because
otherwise there would be implications for the other organizations too. Failure to fulfill com-
mitments would be punished with a bureaucratic process where one would need to explain
what went wrong. Therefore, the development organization tried to make commitments they
were totally sure they could deliver and plans would not be changed after initiation.

In [BigCorp] the work is very Waterfall-like. You have to certainly commit to things
and just those things have to be delivered. Even if only a little bit is not delivered, you
will be punished enormously. —BigCorp Architect

In practice, however, software development is highly complex and unpredictable work. Even
when the development organization tried to minimize the risk of missing the planned targets,
it became clear that there was too much work in the plans. The plan-driven process caused
burden on the product development organization, because the execution of the long-term
plans was not feasible in practice. The burden was visible in being late in development and
in having to do overtime work.

For [BigCorp product], we have had to work over the weekends for a year now.
—BigCorp Manager

During the development process, there were quality gates whose intent it was that certain
criteria would be met and the release was proceeding as planned. In practice, however,
those quality criteria did not prevent low quality software from entering the last stage, gen-
eral availability, in the process. Still, the quality gates generated lots of bureaucracy to be
managed for the development organization.

We have lots of [quality gates], long lists. Now, if you think [BigCorp product], we
have a customer who uses a release which has passed general availability a long time
ago. The quality of that release is very low. This illustrates what our extremely heavy
process can do. —BigCorp Manager

SmallOrg To be able to react to customer requests quickly, SmallOrg had a flexible prod-
uct development process. Although new features were specified and implemented typically
in a few months, smaller changes could be started immediately after customer requests. The
developers were organized in three component teams and used elements from Scrum in their
development work. New changes could be delivered every two weeks, which was the release
cycle of the product. Especially during the proof of concepts, it was valuable to be able to
react to customer requests fast, and even the two weeks release cycle could be too slow for
reacting to the customer requests during the PoCs. Thus, during the PoCs, some changes
were applied immediately after implementing them, overriding the official release cycle.

I think it’s the, start-up, let’s say, mode of working that they, try to do as fast as
possible what the customer requests. —DBigCorp Architect

There were two downsides of the flexible process: the accumulation of technical debt and
constant reprioritization. Because changes were made frequently, the technical debt kept
building up. SmallOrg was aware of the issue, but having limited resources and a need to
satisfy customers, it made a conscious decision to let the technical debt accumulate.

But I think that, [SmallOrg was] investing more in feature development rather than,
kind of, trying to reduce this technical debt, they were building up.
—BigCorp Manager

@ Springer

3556 Empir Software Eng (2018) 23:3535-3577

[SmallOrg]’s focus has been, building a product that has usefulness. Sometimes.. we
take a trade-off between a highly scalable product. Versus a product that you can do
things, well. And do useful things. —SmallOrg Architect

Software developers were under a constant interference due to reprioritization. It was good
for the business to react quickly to customer requirements, but some developers thought
that there could have been some protection measures that would have allowed better
concentration and productivity for the developers.

It seems like we just have to switch what we’re working on a lot. [...] For example,

the support team will just come over to developers and ask them things or email them

directly. [...] The developers are being pulled in different directions a lot.
—SmallOrg Dev Team

4.3.4 Resources

BigCorp had vast resources for product development, but adjusting the amount of resources
given to the product development organization had delays. SmallOrg was struggling with
limited resources, which is common for startups. However, when resources would provide
direct value for the organization, it was a short decision to provide those resources.

BigCorp Having a globally recognized brand, BigCorp had high standards for their prod-
uct quality and system-level requirements. The requirements included concepts of high
availability, load balancing and scalability. Thus, BigCorp had resources to implement and
verify that these system-level requirements are in place. In addition, BigCorp was a large
organization with plenty of workforce for product development.

As we are [BigCorp], we have to have certain system-level features, such as high
availability, scalability etc. in place. —BigCorp Architect

Despite the fact that there were lots of resources, the processes of the large organization were
slow to provide new hardware for test environments, for example. Thus, having resources
did not necessarily mean that they could be used quickly.

It takes two to three months to get a laboratory equipment with dedicated hardware.
—BigCorp Manager

SmallOrg Being a startup, SmallOrg was constantly struggling with limited resources.
The lack of resources was visible in that the organization did not have any production-like
test environment for internal verification of the product. Thus, SmallOrg was forced to use
the customer’s environments for verification and testing.

[SmallOrg] was lacking the resources of, testing the software in a, close-to-customer
environment. —BigCorp Manager

Despite the overall lack of resources, SmallOrg had invested in elastic cloud from Amazon
that they used for testing purposes and running their CI system. Given that there was a need
for something in the organization, investments could be made rather easily if they would
bring value for the product development.

We looked into using Amazon Web Service to help us to easily, elastically scale the
hardware that we need. —SmallOrg Architect

@ Springer

Empir Software Eng (2018) 23:3535-3577

3557

Component #1 Cl Pipeline

Component #2 CI Pipeline

2.7 hours

2.5-3.5days
(every week)

Product.Cl Pipelinel |—{1 * Manualisystem

. Tests ‘|

. every three

: 2 weeks 2 - 3 months months
End-to-end Tests Pilots with Existing | | -
by a Separate Unit Customers CremeEl AETEEE)

Component #N CI Pipeline

Fig. 4 Case BigCorp release engineering process

4.4 Release Engineering Practices

In this section, we show what kind of release engineering practices were in place in the
case organizations. BigCorp, in general, had a sophisticated release engineering pipeline
(see Fig. 4), although it had not achieved good CI discipline. SmallOrg had a faster pipeline
(see Fig. 5) and had achieved good CI discipline, but its verification scope, both automated
and manual, was lower than BigCorp’s. SmallOrg mitigated the lower verification scope
with other release engineering practices. We compare the cases by looking at five areas (see
Table 8): code review, CI discipline, internal verification scope, domain expert testing and
testing with customers.

4.4.1 Code Review

SmallOrg had a code review process that was both strict and fast. BigCorp, however, did not
have a formal code review practice in place and was struggling with low quality code partly
because of that.

BigCorp BigCorp did not have a formal code review practice in place. There was no clear
reason why code review was not practiced. Due to the lack of code review and a high number
of new and inexperienced developers, there were signs of bad code quality.

every two
0 -2 days 22 minutes weeks
Pre-Commit cl Manual
Code Review Release Tests
after release [increase
release
Tests in Open-Loop in Closed-Loop scope
Customer Lab Production in Production

Fig. 5 Case SmallOrg release engineering process

@ Springer

3558

Empir Software Eng (2018) 23:3535-3577

Table 8 Comparison of release engineering practices in the case organizations

Practice

Case BigCorp

Case SmallOrg

Code review

ClI discipline

Internal verification

scope

Domain expert
testing
Testing with

customers

No systematic code review

Slow CI, broken most of the
time

Strict definition of done,
dedicated testers, integration and

non-functional testing in test labs

No domain experts in the
development organization

Pilots with existing customers
performed by other organization
than development, low feedback

from production use

All code is reviewed through
pull requests

Fast CI, unbroken most of the
time

No definition of done, no
dedicated testers, low unit test
coverage, lack of integration and
non-functional testing

Domain experts test every feature

Extensive testing in customer
labs and production environment
by domain experts and service

team members, fast feedback to

development

In practice, I think we do not do any code review. There has been much talk about it,
but it is so laborious, so no. —BigCorp Manager

In [BigCorp product] for instance, there was, maybe another extreme that we have
too many developers [...] and a lot of them were quite, fresh. And, I think that partly
because of that we have quite a lot of, bad code, which was not reviewed, by more
experienced guys. —BigCorp Manager

SmallOrg SmallOrg had a well functioning code review process. Developers worked in
feature branches during development. When a piece of work was thought to be ready, a
pull request was opened and a lead developer and a few other developers were assigned
to it. The assignees reviewed the changes, gave critical feedback and suggested whether
or not the changes should be accepted to the product. The developer could improve the
changes in the branch based on the feedback. The branch was also continuously tested
by the CI system and it would not be integrated to the product if all the tests would not
pass.

Pull request is to merge from the current branch to the main branch. At that time, the
code reviewers, watch it and they comment and they disapprove if they find something
wrong. Until it gets fixed they do not approve it, and there are some merge privileges
only for a few people here. —SmallOrg Dev Team

The code review process had multiple benefits for SmallOrg. First, all code changes were
reviewed by experienced lead developers, which helped onboarding new developers and
prevented low quality code from entering the product. Second, the changes were not inte-
grated into the product until the code review was completed and the CI build would pass for
the feature branch. Thus, the product build was green almost all the time, as build-breaking
changes would not be accepted for integration.

@ Springer

Empir Software Eng (2018) 23:3535-3577 3559

Table 9 Comparison of CI metrics in the case organizations

Metric (mean) Case BigCorp Case SmallOrg

Green builds / week 1.6 (min—max: 0-10) 24.3 (min—-max: 8-44)

Build success rate 1.9% (weekly min—max: 0-14%) 76.7% (weekly min—max: 38-97%)
CI execution time 2.7 h (weekly min—max: 0.23-5.0 h) 22 min (weekly min—max: 16-41 min)

BigCorp metrics include only the product CI pipeline (see Fig. 4), the actual success rate and execution time
are longer when including the component CI pipelines. See Table 5 for data description

4.4.2 Continuous Integration Discipline

BigCorp did not have disciplined CI usage, as the build was slow and often broken. Smal-
10rg, on the other hand, had achieved a disciplined use of CI, and benefited more from
it.

BigCorp BigCorp had structured the CI pipeline according to the architecture of the prod-
uct (see Fig. 4). First, the individual components of the product were build and tested.
Successful component CI pipelines would feed into the product CI pipeline, where the
components would be integrated. On a component-level, builds might have passed, but the
product build was often failing.

Everybody says okay my module is working and I am green. [...] But [when] you put
them together, it’s not green. —BigCorp Architect

In addition to failing, the build took multiple hours to execute (see Table 9). Thus, fixing a
failing build was hard, because one had to wait multiple hours to see if the build would be
functional again after fixes. The slow build also delayed the feedback on the changes made
by the developers.

A major reason for the failing build was that changes were integrated into the product
before the CI was run. One could integrate non-functional changes and others could start
building on top of those changes even when the changes had not been verified by the CI.
Learning from SmallOrg, the build could have been improved by not allowing changes that
would break the build.

In [BigCorp product] it was a problem with how it builds that if somebody breaks the,
build and the whole team suffers. —BigCorp Architect

Other reasons for the failing builds were fragile third party components in the product archi-
tecture and the organizational distribution. The third party components were claimed to
make the build fail randomly. Distribution of the organization made communicating changes
more difficult, and conflicting changes were made because of that.

SmallOrg SmallOrg’s product was continuously integrated in a single phase (see Fig. 5).
The phase was relatively fast, taking approximately 22 min (see Table 9), and was
kept unbroken most of the time. The build time was also monitored and if it started
to take too long time, it would be optimized. SmallOrg had reduced the build time by
building only components that had changed after previous run and by running tests in
parallel.

@ Springer

3560 Empir Software Eng (2018) 23:3535-3577

[Note: the quotation explains the situation during the interviews, not before the acqui-
sition, although the situation is similar based on the CI data.] We’ve actually been
pretty good about keeping [the main branch] working. So we got like last 30 days..
84% successful so it’s pretty good. I just made a change around there that reduced the
duration of the build because it was getting up to like 29—30 min, so I made a change
that got it back down to 17 or 18 min, which is nice.

—SmallOrg Dev Team

The CI was run for all the feature branches in addition to the main branch. Running the CI
in branches allowed developers to see the CI results before integrating the branch into the
product. Thus, build failures rarely affected other developers’ work.

Our [CI] system will build every single branch and run all of the checked in tests. And
deploy the system. Then it runs some very light integration tests with new data. Then
you can see, if I merge this in, I’m not gonna break the system. Which would happen
sometimes. —SmallOrg Dev Team

4.4.3 Internal Verification Scope

BigCorp had high internal quality standards and put a lot of resources on verifying the
quality before giving the product to the customers. SmallOrg had only limited internal
verification scope, somewhat due to the lack of resources.

BigCorp BigCorp had put plenty of resources to verify the quality of their product before
giving it to the customers. First, the organization had dedicated testers that created auto-
mated test cases but also performed manual testing on the product. Second, the organization
had a definition of done that included test coverage criteria for automated tests. Third, the
organization had invested in production-like laboratory environments that allowed in-depth
functional and non-functional testing of the product.

In [BigCorp product] I think our [definition of done] was quite strict. That you should
[create] all the unit tests or the automated tests if you have [made UI changes].
—DBigCorp Architect

So in [BigCorp] we have these labs, which we call [environment] verification or
system verification. But that requires quite serious.. upfront investment.
—BigCorp Manager

However, after certain production deployments, it became clear that even after putting a lot
of resources on internal verification, there would be issues that would reveal themselves
only in the production system. Thus, even a rigorous internal verification can be insufficient
if the production environment cannot be simulated totally.

We have a customer that is really taking the product into use. And it shows that we
have slipped in the test system verification a lot. That we have not tried to test the
system against the load that is present in a customer environment.

—BigCorp Architect

SmallOrg The internal verification scope of SmallOrg was limited compared to BigOrg’s.

First, the test automation coverage of SmallOrg was lower than BigCorp’s. The unit test
code coverage varied from 20 to 50% between different modules of the product. The reason

@ Springer

Empir Software Eng (2018) 23:3535-3577 3561

for low test code coverage was that early in the development, SmallOrg did not focus on
unit testing at all and they had increased the coverage only afterwards. Instead of aiming at
a high test coverage, SmallOrg had created smoke tests which allowed fast verification that
nothing was critically broken.

I was quite amazed that how low [SmallOrg’s] test automation is. They are having,
some automated tests but, by far not the level we are requiring at [BigCorp].
—BigCorp Architect

I: How much do you rely on manual testing?
R: Fairly heavily. —SmallOrg Dev Team

The smoke tests essentially just run most modules and verify that there’s no errors
and, that does actually catch quite a bit. Surprisingly. —SmallOrg Dev Team

Second, the CI included some light integration tests, but there was no integration to the real
production-like environments. The reason for this was that the environments are expensive
and SmallOrg lacked the resources to acquire such test systems. Nevertheless, SmallOrg had
acquired test data from customer systems, so at least that data could be used for partially
simulating the production environments. However, that data was used only in the manual
release tests, not in the CI integration tests.

Yeah the integration tests so we.. start a virtual machine on AWS and then we install

our software. And then we run tests on that software. So it’s.. you can test things like

database access and things like that but there isn’t usually [production-like data].
—SmallOrg Dev Team

Since the earliest days, ever since we connected into the, first time into the [SmallOrg
customer environment], we have a snapshot of actual configuration, actual data from
the [SmallOrg customer environment]. —SmallOrg Domain Expert

Third, there were no performance, high availability or scalability tests. These would again
require investments that SmallOrg did not have resources for. Instead, when performance
issues were discovered during other verification activities, they were fixed reactively.

Then another big, problem in my opinion is that they did not perform at all the perfor-
mance testing, performance and capacity testing. When you asked them for instance,
how big [environment] the [SmallOrg product] [...] can handle. So they [don’t even
know] the answer. —BigCorp Architect

Fourth, SmallOrg did not have resources for dedicated testing personnel and relied on devel-
opers and domain experts for manual release testing that took a few days. Some parts
of the manual testing were still semi-automated; they were executed automatically but
required a human to verify the results. Finally, SmallOrg did not have any formal definition
of done in place. Thus, developers created automated test cases when they considered it
useful.

[SmallOrg’s] definition of done, that I mentioned earlier that they were, kind of it
was not so strict so, they were able to cut some corners, here and there. [...] So, you
implement the code, the code is reviewed, it is done. And test automation I think, used
to be more or less, voluntary. So if you want to do it, you do it. If not, you don’t do it,
in [SmallOrg product]. —BigCorp Architect

@ Springer

3562 Empir Software Eng (2018) 23:3535-3577

4.4.4 Domain Expert Testing

BigCorp had dedicated testing personnel, but they did not have any domain expertise.
SmallOrg had domain experts who both specified and tested the product functionality.

BigCorp BigCorp had dedicated testing personnel for internal verification. They could
verify that the software worked as specified. However, they lacked domain expertise and
could not verify the software from the viewpoint of the users of the software.

In [BigCorp product] we have a set of people who only do test. They don’t do
development at all. —BigCorp Architect

SmallOrg SmallOrg had domain experts that both specified features and could verify them
from the viewpoint of the users of the product. Domain experts also leveraged collected data
from the customer and could simulate some parts of the production environments internally.

A software engineer develops a prototype that they then hand off to the [domain expert
who] will do their own validation, their own testing, [to] see if the expected function-
ality is there. [...] A lot of times [...] software developer [does not understand] fully
the requirements or [...] what needs to be implemented.

—SmallOrg Domain Expert

4.4.5 Testing with Customers

BigCorp had little interaction with the customers. Instead, they relied on production-like
test environments that they used internally. SmallOrg did not have resources for such inter-
nal test environments, and was forced to perform additional verification at the customer
premises.

BigCorp BigCorp relied only on internal verification with production-like test environ-
ments. They did not perform any testing with the customers. After finishing a release
internally, the release would be sent to specific existing customers for pilots of new the
functionality (see Fig. 4). The pilot customers were those who had requested the new fea-
tures in the release and were willing to do piloting. However, the pilots were performed by
a separate delivery organization and did not involve product development.

SmallOrg SmallOrg relied on multiple ways to test the product with its friendly customer.
First, the customer had a test laboratory where SmallOrg could for the first time integrate
with real production-like environments. Second, when the software was actually deployed to
production-use, SmallOrg used open-loop, closed-loop and progressive deployments, which
are introduced after the next paragraph.

Another thing is, another way that we do testing, it’s the monitoring of the production
server. So it’s, that becomes a field testing. Sometimes, because the product nature
itself, it is very costly to build a test lab to mimic the production [environment]. Some
of the test cases you really cannot cover in the test lab. What you can do, it’s moni-
toring production [environment] and trying to detect issues, as it goes. That’s another
way to compromise, [complement] our testing effort. —SmallOrg Architect

Without own production-like test environments, SmallOrg had to verify the integration in
the customer’s laboratory together with the customer’s domain experts. Thus, integration

@ Springer

Empir Software Eng (2018) 23:3535-3577 3563

testing was sufficiently fulfilled only after the product had passed internal verification and
passed to customer testing.

It was more, the integration at the beginning was the most challenging part. Once it’s
integrated with one system, because it’s the same [integration point] everywhere it’s
just a matter of tweaking a little pieces, when it’s a different software on a lease. [...]
But once those interfaces were developed then it was very straightforward.
—SmallOrg Service Team

Open-loop verification means running new functionality in a production environment, but
while the functionality receives data from the production environment, all the effects it
would have to the production environment are turned off. Thus, its behavior can be safely
observed in a real environment. In addition, the service team always had a rollback plan if
something would go wrong. After verifying that the product worked in open-loop mode, it
was switched to closed-loop mode where the product had an actual effect on the production
system.

[After internal verification we] run the module [in the production environment] first
and open loop, then when they’re happy with the output, the recommendations from
the module then to proceed with closed loop. —SmallOrg Domain Expert

The, open-loop, again, so, depends on the scenario. If it’s a new customer, we’re
doing a [proof of concept], we always do open-loop and so we can review the changes
with the [customer]. That gives them a better sense for what the tool is doing, helps
to understand it, and also more confidence that, OK, it’s making the right types of
decisions. And then, closed-loop obviously, as we get more, field experience with
modules then, we’ll become a lot more comfortable [...] that there’s no, unexpected
behavior or surprises. —SmallOrg Domain Expert

We would [be] monitoring very very very closely any changes being made, making
sure that, there’s no, issues being caused by, [...] errors in the software. [...] So that’s
a process that can take some time to complete. —SmallOrg Domain Expert

Progressive deployments meant that a release was not applied straight away to the whole
customer’s production environment. Instead, the release was first verified in a small part
of the environment, and after successful verifications the release scope was progressively
increased to cover the whole production environment.

We didn’t deploy to even all the servers at the same time. So, normally we would,
have two servers, [one for different technologies], where we did the first, upgrade,
and we would test it. Always we find some kind of issue that gets solved and a new
build is made before we start deploying [to] the other servers. So it’s like a soaking
period of two three days. Once it’s stable enough, now we go ahead and upgrade all
of them. So, it’s pretty time consuming. —SmallOrg Service Team

Due to the friendly relationship and SLA with the customer, SmallOrg could perform and
monitor the releases directly. Thus, any problems that were encountered in the produc-
tion system could be fixed immediately. However, the cost of that was the strict SLA (see
Section 4.3.1).

And they had managed to develop, a product which, was allowed to be kind of tested,
inside the [SmallOrg customer], environment. But the price for that was that the, level
of service, they, kind of agreed with [SmallOrg customer] was a really crazy one. [...]

@ Springer

3564 Empir Software Eng (2018) 23:3535-3577

If a critical, issue came up, related to [SmallOrg product], the, response time, from,
[SmallOrg] was 5 min. —BigCorp Manager

4.5 Outcomes of the Release Engineering Practices

In this section, we investigate what kind of outcomes the case organizations achieved with
the release engineering practices. We summarize three outcomes (Table 10): feedback from
the customers, the number of defect reports and quality issues with new customers.

4.5.1 Feedback from the Customers

The amount and granularity of customer feedback received by the BigCorp product devel-
opment unit was low. In contrast, SmallOrg received direct feedback from customers and
from the production-use of the product and could react fast to the customer requests.

BigCorp Although the customer service, sales and delivery organizations were in direct
contact with the customers, BigCorp did not receive much feedback about the product use.
The only channel for feedback was defect reports that came through the customer service
organization. However, BigCorp could not verify whether the lack of defect reports from
modules meant that the module quality was good, or simply that the module was not used
by the customers.

Because we have a long distance to the customers, the developers do not have infor-
mation on what modules the customers really use. The only way to deduce that is to
see which modules generate defect reports from the customers.

—BigCorp Manager

SmallOrg SmallOrg received direct feedback from its customer. Since the product was
released every two weeks, SmallOrg quickly received feedback on recent changes, both by
seeing it running in the production environment, and by discussing with the customer. The
service team and the domain experts worked closely with both the customer and the soft-
ware developers. In addition, the service team could monitor the production environment
directly. Thus, SmallOrg received insights from the customer production environments and
the product usage. This allowed them to learn from production issues and improve the
customer value of the product.

The customer support team, they’re in charge of testing the module making sure it
runs properly, before doing closed-loop execution. Sometimes we’ll find problems
there. We document all the issues and pass it to R&D. —SmallOrg Service Team

Table 10 Comparison of release engineering outcomes in the case organizations

Outcome Case BigCorp Case SmallOrg
Feedback from the customers Low feedback from the Frequent feedback from the
production use production use
Number of defect reports Low number of defect reports High number of defect reports
Quality issues with Elementary programming Scalability and other issues
new customers mistakes revealed

@ Springer

Empir Software Eng (2018) 23:3535-3577 3565

We basically manage the servers ourselves. So we manage the release. And I think in
[SmallOrg customer], [...] we’re still the ones that do the deployment and monitor the
system. —SmallOrg Dev Team

4.5.2 The Number of Defect Reports

When the BigCorp and SmallOrg products were compared by the BigCorp organization,
it was noticed that the number of defect reports was higher for the SmallOrg than for the
BigCorp product. This was caused by the fact that the internal verification scope was not
high in SmallOrg. However, the number of defect reports was not an issue for the SmallOrg
customer, because the defects were fixed quickly.

[SmallOrg] gets over thirty defects per week from the customer. Which is a lot... We
cannot deliver to fifty customers, with that kind of quality. —BigCorp Manager

4.5.3 Quality Issues with New Customers

Both BigCorp and SmallOrg had observed quality issues when deploying the product to
new customers.

BigCorp Even though BigCorp paid high attention to internal verification, there were qual-
ity issues when trying to use the product with new customers. The experienced architects
believed that this was caused by inexperienced new software developers and the lack of
code review by more experienced developers.

And we have revealed, from the software, so many shocking things [...] Due to, maybe
inexperienced developers, it is not understood that, when there is a small error, some
temporary problem in customer environment, the software just crashes. [...] And this
is the problem we have with [BigCorp customer] at the moment.

—BigCorp Architect

SmallOrg SmallOrg had quality issues during proof of concepts. This was caused by lack
of internal verification, having only one customer that had used the product and not having
high quality requirements for the product. When quality problems were discovered, they
were fixed fast during proof of concepts.

It was quite a large [environment] and, basically the [SmallOrg product] was, not
working as expected, and it was not scaling, as it was, promised to. Then, the, normal
ways of, kind of normal ways of working at [SmallOrg] was that, they were, sending
back this information to the R&D and the R&D was fixing it really fast, and sending
it back to the customer. —BigCorp Architect

4.6 Synthesis

In this section, we first synthesize the case findings individually, and finally combine the
evidence into relationships between contextual variables.

BigCorp’s release engineering practices were affected by the high quality standards and
organizational structure (see Fig. 6 and Table 11). High quality requirements made CI more
complex and combined with large and distributed organization, CI became undisciplined.
Thus, BigCorp required additional manual verification, which slowed the release capability.

@ Springer

3566

Empir Software Eng (2018) 23:3535-3577

Large
Distributed
Organization

Multiple Undisciplined
Customers St Cl
High Quality Slow Slow Release
Standards Verification Capability

Fig. 6 Case BigCorp release engineering explained

SmallOrg’s release engineering practices were affected by the lack of resources. How-
ever, being a co-located small organization, keeping the CI discipline was easier (see Fig. 7
and Table 12). The lack of resources caused lack of test automation and internal verifi-
cation which was mitigated by the code review and disciplined CI practices. The lack of
internal verification allowed fast release capability and gaining feedback from production.
The product was verified externally in customer environments, in order to avoid critical
defects. Having a friendly customer that allows external verification enabled lower internal
verification.

To synthesize the two cases, we found five variables that affected release engineering
practices (see Fig. 8 and Table 13): number of production environments (instances where
different versions of the product are run simultaneously), number of customers, control over

Table 11 Explanations for the arrows in Fig. 6

Arrow

Explanation

Multiple customers — High quality standards

High quality standards — Complex CI

High quality standards — Slow verification
Complex CI — Undisciplined CI
Large distributed organization — Undisciplined

CI

Undisciplined CI — Slow verification

Slow verification — Slow release capability

BigCorp had a large number of customers, which
required high quality standards. See Sections 4.3.1
and 4.3.4.

High quality standards meant that the system had to
be tested more rigorously in the CI system. See
Section 4.4.2.

High quality standards also required additional testing
after the CI pipeline. See Section 4.4.3.

The complexity of the CI system made the CI practice
more undisciplined. See Section 4.4.2.

In addition, the distribution of the organization made
the CI practice more undisciplined. See Section 4.4.2.

As the CI process was not functioning well enough,
additional manual verification had to be performed,
which slowed down the verification. See Sections 4.4.2
and 4.4.3.

Due to slow verification, BigCorp had slow release
capability. See Fig. 4.

@ Springer

Empir Software Eng (2018) 23:3535-3577 3567

Disciplined CI Fast Internal Fast Rell Feedback From
p Verification Capability Production
enables.
More Defect T
Reports
Lack of Internal Customer
Verification Testing
Lack of Lack of Test Friendly
Resources Automation Customer
mitigated by
¥
Code Review

Fig. 7 Case SmallOrg release engineering explained

production, available resources and organization size and distribution. The four first vari-
ables affect the requirement for internal quality standards. The quality standards affect the
complexity of the CI system. CI system complexity and organizational size and distribution
affect the possibility to achieve CI discipline. Together, CI discipline and internal quality
standards affect the release capability and the ability to gain feedback from production.

5 Discussion

In this section, we answer the research questions of the study, compare the results to
previous studies, discuss implications to practitioners and threats to validity.

5.1 What Release Engineering Practices Had the Case Organizations
Implemented?

There were five major differences between the release engineering practices implemented
in the case organizations (see Table 8). First, SmallOrg used a code review practice, while
BigCorp did not. Second, the CI discipline was better in SmallOrg than in BigCorp. Third,
the scope of the verification performed internally by the organization was higher in BigCorp
than in SmallOrg. Fourth, SmallOrg made use of domain experts when internally verifying
the product, but BigCorp did not have such domain experts available. Finally, SmallOrg
focused more on the external verification in the customer environment, whereas BigCorp did
not perform such external verification themselves, but it was done by a separate organization
in the company.

The release engineering practices of BigCorp were structurally similar to common prac-
tice (Adams and MclIntosh 2016), although the achieved CI discipline was not good. Slow
and failing builds are a common problem when adopting modern release engineering
practices (Laukkanen et al. 2017).

The approach of SmallOrg was different. Their focus was not on the automated test-
ing scope, but instead on code review, domain expert testing and customer testing. Similar
findings have been reported in previous startup studies (Paternoster et al. 2014; Gia-
rdino et al. 2016) that identified the same characteristics: lack of overall testing, lack of

@ Springer

3568

Empir Software Eng (2018) 23:3535-3577

Table 12 Explanations for the arrows in Fig. 7

Arrow

Explanation

Disciplined CI — Fast internal verification

Fast internal verification — Fast release
capability

Fast release capability — Feedback from
production

Lack of internal verification — Fast internal
verification

Lack of internal verification — More
defect reports

Lack of internal verification — Customer
testing

Customer testing enables lack of
internal verification

Customer testing — Feedback from
production

Friendly customer — Customer testing

Lack of resources — Lack of internal

verification

Lack of resources — Lack of test
automation
Lack of test automation — Lack of internal

verification

Lack of test automation mitigated

by code review

SmallOrg’s Disciplined CI kept the software
continuously in a good condition and allowed fast
internal verification. See Section 4.4.2.

Fast internal verification allowed fast release
capability. See Fig. 5.

Frequent releases enabled getting feedback from
production use. See Section 4.5.1.

Due to SmallOrg’s small internal verification scope,
the internal verification was faster. See Section 4.4.3.

Lack of internal verification caused more defect
reports from customers. See Section 4.5.2.

Due to the lack of internal verification, more testing
had to be done with customers. See Section 4.4.5.

Being able to test with customers reduced the need
for internal verification. See Section 4.4.5.

Through customer testing, SmallOrg gained feedback
from the production use. See Section 4.4.5.

SmallOrg’s friendly customer allowed performing
customer testing. See Sections 4.3.1 and 4.4.5.

Due to the lack of resources, SmallOrg’s internal
verification scope was smaller. See Sections 4.3.4
and 4.4.3.

Lack of resources also restricted SmallOrg’s amount
of test automation. See Sections 4.3.4 and 4.4.3.

Small amount of test automation meant that less
testing was performed internally in SmallOrg.

See Section 4.4.3.

SmallOrg’s functional code review practice
mitigated the lack of test automation, because
errors were caught by more experienced

developers. See Section 4.4.1.

automated testing, manual smoke tests, user reports mitigate the lack of testing and

progressive roll-outs.

Only code review was not identified as an important aspect in the earlier studies (Pater-

noster et al. 2014; Giardino et al. 2016), which can be explained with that the companies in
the earlier studies were smaller than SmallOrg; previously studied cases had 3—20 employ-
ees, whereas SmallOrg had 50 employees. We speculate that code review becomes necessary
after the development team size grows and more experienced developers need to guide the
more inexperienced ones.

In general, our findings illustrate the differences in mindsets regarding the role of the cus-
tomer. In the startup, the practices emphasized the capability of releasing early and often to

@ Springer

Empir Software Eng (2018) 23:3535-3577 3569

Number of
Production
Environments

Number of

Customers /v Defect Reports
+

Control Over | — | Internal Quality
Production Standards

!

Available
Resources

Release

Cl Complexity Capability

Org. Size & - o f
Distribution Cl Discipline

\'4

Fig. 8 Synthesis of the release engineering driving forces in the two cases

get customer feedback. The large corporation, instead, emphasized the internal verification
before releasing to the customers and avoiding negative customer feedback.

5.2 What Outcomes Did the Implemented Release Engineering Practices Have
for the Case Organizations?

Release engineering practices have a trade-off between confidence and velocity (Scher-
mann et al. 2016). BigCorp achieved good release confidence on its product, but release
velocity was not as good due to not being able to continuously verify the product
quality. In addition, BigCorp had encountered problems when deploying their prod-
uct to new customers and therefore release engineering confidence did not remove
the need to fix problems in production environments. SmallOrg had better velocity,
but the release confidence was not as good after internal verification. Thus, Smal-
10rg relied heavily on customer testing, which allowed learning from production
issues.

Having the capability to release the product more frequently and performing additional
testing in the customer environment allowed SmallOrg to iterate the product develop-
ment more quickly than BigCorp and discover valuable features that were required in the
customer environments. Generally, more flexible processes suit better situations that are
complex and hard to predict (Ralph and Narros 2013).

However, release engineering outcomes were not the only factor that explained the mar-
ket success of SmallOrg. A small and collaborative organization, a high level of domain
expertise and tight customer collaboration seem to have played a large role in the market
success, as having release engineering practices in place does not ensure that developed
features are valuable. Nevertheless, the release engineering practices enabled continuous
experimentation with the customer, which would not have been possible through tight com-
munication alone. In addition, without having sufficient release engineering practices in

@ Springer

3570

Empir Software Eng (2018) 23:3535-3577

Table 13 Explanations for the arrows in Fig. 8

Arrow

Explanation

Number of production
environments + — Internal
quality standards

Number of customers + — Internal

quality standards

Control over production — — Internal

quality standards

Available resources + — Internal quality

standards

Internal quality standards — — Defect reports

Internal quality standards + — CI complexity

Internal quality standards — — Release

capability

CI complexity — — CI discipline

Organization size and distribution — CI

discipline

CI discipline — — Release capability

BigCorp had a large number of customers and
production environments, which required higher internal
quality standards. See Sections 4.3.1 and 4.4.3.

Similarly, BigCorp’s larger number of customers
increased the internal quality standards. See
Sections 4.3.1 and 4.4.3.

SmallOrg could control its friendly customer’s
production environment and thus did not need as high
internal quality standards as BigCorp, whose control
over production environments was limited.

See Sections 4.3.1, 4.4.3 and 4.4.5.

SmallOrg did not have enough resources to have
internal quality standards as high as BigCorp.
See Sections 4.3.4 and 4.4.3.

BigCorp had verified its product more rigorously
internally than SmallOrg, and thus SmallOrg received
more defect reports for its product. See
Sections 4.4.3 and 4.5.2.

BigCorp’s internal quality standards were higher than
SmallOrg’s, which added complexity to the CI system.
SmallOrg did not have as high internal standards and
had a simple CI system. See Figs. 4 and 5 and
Sections 4.4.3 and 4.4.2.

BigCorp’s larger internal quality standards increased
the time and resources needed for the release
engineering process, whereas SmallOrg’s lower internal
quality standards allowed more frequent releases.

See Figs. 4 and 5 and Section 4.4.3.

BigCorp had more complex CI, which made it more
difficult to keep CI usage disciplined. SmallOrg had
a simple CI system and also good CI discipline.

See Section 4.4.2.

BigCorp’s large and distributed organization structure
made it more difficult to have disciplined CI. SmallOrg
was small and co-located, which made it easier to keep
CI discipline. See Sections 4.3.2 and 4.4.2.

SmallOrg had a good CI discipline and was able to do
releases frequently, whereas BigCorp’s undisciplined
CI required additional release stabilization efforts,
which reduced release capability. See Figs. 4 and 5
and Section 4.4.2.

@ Springer

Empir Software Eng (2018) 23:3535-3577 3571

place, the risk of regression defects increases and the quality threshold of customers might
not be exceeded anymore.

As a more general implication of our findings, we hypothesize that disciplined and auto-
mated CI practice and team level development quality practices are important enablers of
fast deployment and release capability. Practices, such as CI automation and code reviews,
help establishing good enough low level code quality that enables sufficiently fast deploy-
ment to production environment. Fast customer feedback and domain expert validation can
ensure more valuable deliveries and mitigate the lack of comprehensive automated tests, if
recoverability from release failures is also high.

5.3 What Were the Reasons for Differences in Release Engineering Practices
in the Case Organizations?

BigCorp’s more complex situation required stringent release engineering practices. It turned
to be difficult to fulfill such stringent requirements continuously, because the large and
distributed organization structure made the communication between different parts of the
organization more arduous. SmallOrg’s situation was simpler, but its lack of resources
played a significant role in determining the release engineering practices. SmallOrg had
mitigated the difficulties caused by the lack of resources with close customer collaboration,
which reduced the need for internal verification.

We identified that the organizational structure, size and distribution affected the com-
munication between different parts of the organization. Communication is a key element
in modern release engineering, because to keep software releasable most of the time, the
whole development organization has to be able to keep the CI disciplined (Laukkanen et al.
2015). In addition, in a situation that a product cannot be fully verified internally, it is
important to have working communication between different functional parts, development
and deployment, or more traditionally, development and operations (DevOps) (Dyck et al.
2015).

We also identified that complexity factors, such as having multiple customers with dif-
ferent versions, increases the complexity of release engineering practices, too. Thus, more
resources are needed for release engineering practices in more complex situations. If such
resources are not available in an organization, it can be that having frequent release cycle is
not possible, and the organization in question has to use other means, such as lengthy testing
periods, instead of automatic verification.

Finally, we identified that while the lack of resources can prevent comprehensive internal
verification, it is still possible to verify the product with the customer directly. A simi-
lar approach was used by Netscape (Yoffie and Cusumano 1999): “By downloading the
beta, trying it out, and filing their complaints, customers served — sometimes unwittingly —
as Netscape’s virtual quality-assurance team.” Customer testing can be leveraged if it can
be ensured that encountered bugs do not cause any actual harm or that they can be fixed
sufficiently fast. Thus, fast release capability can enable the use of customer testing.

In general, we hypothesize that a complicated product and customer environment
requires higher internal standards for definition of done and test automation coverage,
but challenges the release capability. We also hypothesize that high test automation cov-
erage levels are not required for fast deployment capability in the range of 1-2 weeks, but
test automation becomes crucial when approaching one-day release capability, as a similar
finding was made in an earlier study (Mékinen et al. 2016).

@ Springer

3572 Empir Software Eng (2018) 23:3535-3577

Table 14 Pros and cons of the release engineering practices in the case organizations

Case BigCorp Case SmallOrg
Pros Internal verification, capable to serve Customer verification, release velocity,
multiple customers capable to serve a single customer well
Cons Release velocity, new customer satisfaction Internal verification

5.4 Implications for Practitioners

For practitioners, it is important to understand the pros and cons of the release engineering
practices of the two organizational contexts (see Table 14). BigCorp was more successful in
internal verification and was capable of serving multiple customers. SmallOrg had a good
customer verification processes, better release velocity and was capable to serve a single
customer excellently. As cons, BigCorp had lower release velocity and could not satisfy
potential new customers in proof of concepts. SmallOrg had less mature internal verification
processes, which caused more defects to slip to the customers.

To mitigate the cons of the organizational contexts, some strategies can be applied.
First, for BigCorp, release velocity could be increased by automating the release engineer-
ing processes. Some parts of the process had been automated, but the automation was not
well-functioning according to the CI metrics (see Table 9). Second, BigCorp’s customer
satisfaction could be improved by mimicking the SmallOrg strategy to have the develop-
ment team work directly with the customer service team. Olsson et al. (Olsson et al. 2014)
describe how large-scale software development organizations can achieve both scale and
responsiveness by implementing customer-specific software development teams. Finally,
SmallOrg’s internal verification processes could be improved by providing more resources
for the organization. After the acquisition, BigCorp started to increase the test automation
scope for the SmallOrg product in order to be able to support more customers.

As more general implications from this study we present the following lessons learned
for small start-ups and large mature organizations. First, when beginning the building of
release engineering practices it is important to start with disciplined and well functioning
CI practices and deployment automation to ensure fast release capability. For growing start-
ups, fast customer feedback is more achievable and valuable than comprehensive internal
verification. Because there will always be customer problems, it is more important to build
fast feedback loops and recovery capability than long internal verification phases. The level
and coverage of the internal verification should be increased gradually as the environment
and product becomes more complex, continuously maintaining the fast release capability.

Second, for large mature organizations the key implications are improving the discipline
and cycle time of the CI and deployment practices. The rigorous team level review and
testing practices are crucial to build consistent continuous delivery capability. The delivery
pace is dependent on the length of the feedback loops that can be shortened by bringing
the separated roles closer together, improving collaboration and breaking the silos. Testing
can be moved closer to the production by phased testing and open / closed loop testing and
other modern release engineering practices, such as dark launches (Feitelson et al. 2013) and
feature toggles (Rahman et al. 2016). Working closely with selected pilot customers would
enable fast customer feedback to develop right features and value for customers. On the
other hand, a large number of customers requires sufficient internal verification and can be
supported by organizing the development into customer specific teams (Olsson et al. 2014).

@ Springer

Empir Software Eng (2018) 23:3535-3577 3573

5.5 Threats to Validity

In this section, we use the classification by Runeson and Host (2009) to discuss the threats
to validity of our results.

Construct validity addresses whether the constructs that are operationalized represent
what the researcher has in mind and what is investigated according to the research ques-
tions. In this study, we used constructs such as organizational context, product context and
release engineering. As the data collection and analysis were performed inductively, it is
possible that the used constructs are not the same as used in other research. Furthermore, the
constructs are not mature, as release engineering has gained research attention only recently
and there has been disagreement about contextual constructs (Dyba et al. 2012).

Internal validity addresses whether the causal relations identified in a study are correct.
In this study, we found several relations between release engineering constructs (see Figs. 6,
7 and 8). However, the relations are not causal in nature, but rational explanations given
by the interviewees. Thus, the validity of the relations is limited, because they rely on the
subjective views provided by the interviewees. In addition, we could not interview all parts
of BigCorp and did not employ other data collection methods than interviews and CI data
analysis. Using other methods, such as observation, would have strengthened the results.
Finally, we performed the interviews after the acquisition and the interviewees might have
remembered the situation before the acquisition differently than it actually was, since the
situation had changed considerably after the acquisition.

External validity addresses whether the results are generalizable to other cases than the
ones that were studied. Some of the results are specific only to the case organizations, e.g.,
we could not analytically generalize, why code review was used in SmallOrg and not in
BigCorp. Furthermore, the results are generalizable only to similar situations, considering
the product context and organizational contexts.

Reliability addresses whether the data collection and analysis could be conducted by
other researchers. The procedures used in this study contained interpretative elements. The
interviews were flexible and allowed interviewers to ask questions based on their intuition.
The data analysis was performed by the first author and relied on interpretations, although
the interpretations were reviewed by other authors too. Nevertheless, the interpretative
elements reduce the reliability of the results.

6 Conclusions

Modern release engineering practices have been known to the industry for some years
(Humble and Farley 2010) and have recently gained academic attention (Adams and MclIn-
tosh 2016). However, there is a clear gap of empirical research concerning how applicable
the modern release engineering practices are in different contexts (Laukkanen et al. 2017).
In this study, we have addressed this gap by comparing the release engineering practices in
two differing organizations that were developing similar software products.

We found that the number of production environments and customers, control over the
production and available resources affected the release engineering practices through higher
quality standards (see Fig. 8). In addition, the lack of resources substantially affected the test
automation and internal verification scope, which was mitigated with customer testing prac-
tices in the smaller organization (see Fig. 7). Furthermore, with proper techniques in place,
such as open- and closed-loop testing and progressive deployments, customer testing could
be performed safely even in the context where production defects are harmful. Code review

@ Springer

3574 Empir Software Eng (2018) 23:3535-3577

and CI discipline were achievable in a low-resource context, because CI requirements were
not set too high. Otherwise, CI discipline was difficult to achieve even in a high-resource
context (see Table 9).

Faster release capability allowed faster customer feedback, although the number of defect
reports increased (see Table 10). However, the lack of defect reports did not necessarily
mean that the software product was of good quality. Indeed, trying to achieve good release
confidence with just internal verification might not be possible in all contexts, and verifica-
tion in production environment was required for detecting certain defects. The organization
with faster release capability could fix these production-only defects faster. Fast release
capability did not explain market success directly, but it was a critical enabler for frequent
customer experimentation while still assuring the quality. Not all customers were ready for
fast release cycles, and there was still market for high quality products with slower release
cycles.

We contribute to research by introducing a revelatory comparison case study. In soft-
ware engineering research, it is difficult to draw conclusions from case study research,
because the product context affects the development practices substantially. In this study,
we achieved to mitigate this difficulty by having two cases that build similar products. Our
results can be validated in other case studies or even surveys addressing the gap of empirical
research on release engineering.

We contribute to practitioners by showing that neither of the organizational contexts
was perfect in all situations. The large mature organization was better in serving multiple
customers, while the small startup was better serving a few customers with exceptional
customer satisfaction. Employing the strategies of startups can help larger organizations
to improve release engineering velocity and customer responsiveness, while startups can
benefit from additional resources to release engineering processes.

As future work, the recognized constructs and their relations (see Fig. 8) can be veri-
fied and extended in future case studies and surveys. For example, the following research
questions could be pursued:

— How does organizational size and distribution affect continuous integration discipline?
— How does continuous integration discipline affect release capability?
— How could internal quality standards be measured?

In addition, it would be interesting to study how the release engineering practices evolve
after the acquisition.

Acknowledgments The authors would like to thank the case companies and in particular our interviewees.
This work has been supported by TEKES as part of the Need for Speed research program of DIMECC
(Finnish Strategic Center for Science, Technology and Innovation in the field of ICT and digital business).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Adams B, Mclntosh S (2016) Modern release engineering in a nutshell—why researchers should care. In:
2016 IEEE 23rd international conference on software analysis, evolution, and reengineering (SANER),
vol 5, pp 78-90, https://doi.org/10.1109/SANER.2016.108

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SANER.2016.108

Empir Software Eng (2018) 23:3535-3577 3575

Berczuk SP, Appleton B (2002) Software configuration management patterns: effective teamwork, practical
integration. Addison-Wesley Longman Publishing Co. Inc, New York

Bjarnason E, Wnuk K, Regnell B (2012) Are you biting off more than you can chew? A case study on causes
and effects of overscoping in large-scale software engineering. Inf Softw Technol 54(10):1107-1124.
https://doi.org/10.1016/j.infsof.2012.04.006

Cooper RG (1990) Stage-gate systems: a new tool for managing new products. Bus Horiz 33(3):44-54

Debbiche A, Dienér M, Berntsson Svensson R (2014) Challenges when adopting continuous integration:
a case study. In: Product-focused software process improvement. Springer International Publishing,
Lecture Notes in Computer Science, vol 8892, pp 17-32

Desikan S (2006) Software testing: principles and practice. Pearson Education India

Dikert K, Paasivaara M, Lassenius C (2016) Challenges and success factors for large-scale agile transforma-
tions: a systematic literature review. J Syst Softw 119:87-108. https://doi.org/10.1016/j.js5.2016.06.013

Dyba T, Sjgberg DI, Cruzes DS (2012) What works for whom, where, when, and why?: On the role of
context in empirical software engineering. In: Proceedings of the ACM-IEEE international symposium
on empirical software engineering and measurement. New York, pp 19-28. https://doi.org/10.1145
/2372251.2372256

Dyck A, Penners R, Lichter H (2015) Towards definitions for release engineering and DevOps. In: Proceed-
ings of the third international workshop on release engineering. RELENG ’15. IEEE Press, Piscataway,
pp 3-3

Fauzi SSM, Bannerman PL, Staples M (2010) Software configuration management in global software
development: a systematic map. In: Asia Pacific software engineering conference, pp 404413,
https://doi.org/10.1109/APSEC.2010.53

Feitelson D, Frachtenberg E, Beck K (2013) Development and deployment at Facebook. IEEE Internet
Comput 17(4):8-17

Fitz T (2009) Continuous deployment. http://timothyfitz.com/2009/02/08/continuous-deployment/

Fowler M (2006) Continuous integration. http://martinfowler.com/articles/continuousIntegration.html

Freeman J, Engel JS (2007) Models of innovation: startups and mature corporations. Calif Manag Rev
50(1):94-119

Giardino C, Paternoster N, Unterkalmsteiner M, Gorschek T, Abrahamsson P (2016) Software devel-
opment in startup companies: the greenfield startup model. IEEE Trans Softw Eng 42(6):585-604.
https://doi.org/10.1109/TSE.2015.2509970

Humble J, Farley D (2010) Continuous delivery: reliable software releases through build, test, and
deployment automation, 1st edn. Addison-Wesley Professional, Upper Saddle River

Kruchten P (2013) Contextualizing agile software development. J Softw: Evol Process 25(4):351-361.
https://doi.org/10.1002/smr.572

Laukkanen E, Paasivaara M, Arvonen T (2015) Stakeholder perceptions of the adoption of continuous
integration—a case study. In: Agile conference. Washington, DC, vol 2015, pp 11-20

Laukkanen E, Lehtinen TO, Itkonen J, Paasivaara M, Lassenius C (2016) Bottom-up adoption of continuous
delivery in a stage-gate managed software organization. In: Proceedings of the 10th ACM/IEEE inter-
national symposium on empirical software engineering and measurement. ESEM °16, pp 45:1-45:10.
ACM, New York, https://doi.org/10.1145/2961111.2962608

Laukkanen E, Itkonen J, Lassenius C (2017) Problems, causes and solutions when adopting continuous
delivery—a systematic literature review. Inf Softw Technol 82:55-79. https://doi.org/10.1016/j.infsof.
2016.10.001

Lehtinen TOA, Virtanen R, Viljanen JO, Mintyld MV, Lassenius C (2014) A tool supporting root cause
analysis for synchronous retrospectives in distributed software teams. Inf Softw Technol 56(4):408—437.
https://doi.org/10.1016/j.infsof.2014.01.004

Mikinen S, Leppidnen M, Kilamo T, Mattila AL, Laukkanen E, Pagels M, Ménnisto T (2016) Improving the
delivery cycle: a multiple-case study of the toolchains in finnish software intensive enterprises. Inf Softw
Technol 80:175-194

Michlmayr M (2007) Quality improvement in volunteer free and open source software projects. PhD thesis

Neely S, Stolt S (2013) Continuous delivery? Easy! Just Change everything (well, maybe it is not that easy).
In: Proceedings of the Agile Conference. AGILE 13, pp 121-128. IEEE Computer Society, Washington,
DC, p 2013, https://doi.org/10.1109/AGILE.2013.17

Olsson H, Sandberg A, Bosch J, Alahyari H (2014) Scale and responsiveness in large-scale software
development. IEEE Softw 31(5):87-93. https://doi.org/10.1109/MS.2013.139

Paternoster N, Giardino C, Unterkalmsteiner M, Gorschek T, Abrahamsson P (2014) Software devel-
opment in startup companies: a systematic mapping study. Inf Softw Technol 56(10):1200-1218.
https://doi.org/10.1016/j.infsof.2014.04.014

@ Springer

https://doi.org/10.1016/j.infsof.2012.04.006
https://doi.org/10.1016/j.jss.2016.06.013
https://doi.org/10.1145/2372251.2372256
https://doi.org/10.1145/2372251.2372256
https://doi.org/10.1109/APSEC.2010.53
http://timothyfitz.com/2009/02/08/continuous-deployment/
http://martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.1109/TSE.2015.2509970
https://doi.org/10.1002/smr.572
https://doi.org/10.1145/2961111.2962608
https://doi.org/10.1016/j.infsof.2016.10.001
https://doi.org/10.1016/j.infsof.2016.10.001
https://doi.org/10.1016/j.infsof.2014.01.004
https://doi.org/10.1109/AGILE.2013.17
https://doi.org/10.1109/MS.2013.139
https://doi.org/10.1016/j.infsof.2014.04.014

3576 Empir Software Eng (2018) 23:3535-3577

Patton MQ (2002) Qualitative research & evaluation methods, 3rd edn. SAGE Publications, published.
Hardcover

Rahman MT, Rigby PC (2015) Release stabilization on Linux and Chrome. IEEE Softw 32(2):81-88

Rahman AAU, Helms E, Williams L, Parnin C (2015) Synthesizing continuous deployment practices used
in software development. In: Agile conference (AGILE), vol 2015, pp 1-10. https://doi.org/10.1109
/Agile.2015.12

Rahman MT, Querel LP, Rigby PC, Adams B (2016) Feature toggles: practitioner practices and a case
study. In: Proceedings of the 13th international conference on mining software repositories. ACM Press,
pp 201-211, https://doi.org/10.1145/2901739.2901745

Ralph P, Narros JE (2013) Complexity. In: PACIS, p 154

Roche J (2013) Adopting DevOps practices in quality assurance. Commun ACM 56(11):38-43.
https://doi.org/10.1145/2524713.2524721

Runeson P, Host M (2009) Guidelines for conducting and reporting case study research in software
engineering. Empi. Softw Eng 14(2):131-164. https://doi.org/10.1007/s10664-008-9102-8

Savor T, Douglas M, Gentili M, Williams L, Beck K, Stumm M (2016) Continuous deployment at Facebook
and OANDA. In: Proceedings of the 38th international conference on software engineering companion.
ACM Press, pp 21-30, https://doi.org/10.1145/2889160.2889223

Schermann G, Cito J, Leitner P, Gall HC (2016) Towards quality gates in continuous delivery and
deployment. In: 2016 IEEE 24th international conference on program comprehension (ICPC), pp 1-4,
https://doi.org/10.1109/ICPC.2016.7503737

Sekitoleko N, Evbota F, Knauss E, Sandberg A, Chaudron M, Olsson HH (2014) Technical dependency
challenges in large-scale agile software development. In: Cantone G, Marchesi M (eds) Agile processes
in software engineering and extreme programming, no. 179 in Lecture Notes in Business Information
Processing. Springer International Publishing, pp 46—61. https://doi.org/10.1007/978-3-319-06862-6_4

van der Hoek A, Hall RS, Heimbigner D, Wolf AL (1997) Software release management. In: Proceedings of
the 6th European software engineering conference held jointly with the 5th ACM SIGSOFT international
symposium on foundations of software engineering. ESEC "97/FSE-5, pp 159-175. Springer Inc., New
York, https://doi.org/10.1145/267895.267909

van Waardenburg G, van Vliet H (2013) When agile meets the enterprise. Inf Softw Technol 55(12):2154—
2171. https://doi.org/10.1016/j.infsof.2013.07.012

Wagstrom P, Datta S (2014) Does latitude hurt while longitude kills? Geographical and temporal sep-
aration in a large scale software development project. In: Proceedings of the 36th international
conference on software engineering. ICSE 2014. ACM, New York, pp 199-210. https://doi.org/10.
1145/2568225.2568279

Wright HK (2012) Release engineering processes, their faults and failures. PhD thesis, The University of
Texas at Austin

Yin RK (1994) Case study research: design and methods, 2nd edn. Sage, Newbury Park

Yoffie DB, Cusumano MA (1999) Judo strategy: the competitive dynamics of Internet time. Harv Bus Rev
77:70-82

Eero Laukkanen is a Software Designer at Solita, a digital business
consulting and services company. He works in a team with software
designers, user experience designers and data scientists to create new
digital services that augment human capabilities with artificial intel-
ligence. He is interested in modern release engineering and digital
service design. He has a D.Sc. degree from Aalto University.

@ Springer

https://doi.org/10.1109/Agile.2015.12
https://doi.org/10.1109/Agile.2015.12
https://doi.org/10.1145/2901739.2901745
https://doi.org/10.1145/2524713.2524721
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1109/ICPC.2016.7503737
https://doi.org/10.1007/978-3-319-06862-6_4
https://doi.org/10.1145/267895.267909
https://doi.org/10.1016/j.infsof.2013.07.012
https://doi.org/10.1145/2568225.2568279
https://doi.org/10.1145/2568225.2568279

Empir Software Eng (2018) 23:3535-3577 3577

Maria Paasivaara is an Associate Professor at the IT University
of Copenhagen and an Adjunct Professor at Aalto University. Her
research interests include software engineering processes and prac-
tices, continuous software engineering, agile software development,
large-scale agile, DevOps, software project management, global soft-
ware engineering and software engineering educational research. She
performs empirical research in close collaboration with industrial
and academic partners and aims at solving real-world problems that
are important to the software industry. She has a D.Sc. degree from
Helsinki University of Technology.

Juha Itkonen worked as a post doctoral researcher at Aalto Uni-
versity. His research focuses on empirical work in industrial context
on the topics of exploratory software testing, continuous software
engineering practices, quality assurance in large-scale agile context,
and human issues in software engineering. He has a D.Sc. degree in
software engineering from Aalto University.

Casper Lassenius is an Associate Professor at Aalto University.
His research is in the field of empirical software engineering, with
recent interests including agile software development in the small and
large, continuous software engineering, DevOps, quality assurance,
and global software engineering. He has a D.Sc. degree from Helsinki
University of Technology.

@ Springer

	Comparison of release engineering practices in a large mature company and a startup
	Abstract
	Introduction
	Background
	Release Engineering
	Organizational Context
	Empirical Studies on Release Engineering

	Method
	Case Organizations
	Case BigCorp
	Case SmallOrg

	Research Goal and Questions
	Case Selection Rationale
	Data Collection
	Data Analysis
	Mitigating Threats to Validity

	Results
	Overview of the Development Processes
	Case BigCorp
	Case SmallOrg

	Product Context
	Organizational Context
	Customers
	BigCorp
	SmallOrg

	Organizational Structure
	BigCorp
	SmallOrg

	Product Development Process
	BigCorp
	SmallOrg

	Resources
	BigCorp
	SmallOrg

	Release Engineering Practices
	Code Review
	BigCorp
	SmallOrg

	Continuous Integration Discipline
	BigCorp
	SmallOrg

	Internal Verification Scope
	BigCorp
	SmallOrg

	Domain Expert Testing
	BigCorp
	SmallOrg

	Testing with Customers
	BigCorp
	SmallOrg

	Outcomes of the Release Engineering Practices
	Feedback from the Customers
	BigCorp
	SmallOrg

	The Number of Defect Reports
	Quality Issues with New Customers
	BigCorp
	SmallOrg

	Synthesis

	Discussion
	What Release Engineering Practices Had the Case Organizations Implemented?
	What Outcomes Did the Implemented Release Engineering Practices Have for the Case Organizations?
	What Were the Reasons for Differences in Release Engineering Practices in the Case Organizations?
	Implications for Practitioners
	Threats to Validity

	Conclusions
	Acknowledgments
	Open Access
	References

