
EDITORIAL

Guest editorial for special section on success and failure
in software engineering

Mika V. Mäntylä1 & Magne Jørgensen2 & Paul Ralph3 &

Hakan Erdogmus4

Published online: 26 April 2017
# Springer Science+Business Media New York 2017

Abstract Many papers investigate success and failure of software projects from diverse
perspectives, leading to a myriad of antecedents, causes, correlates, factors and predictors of
success and failure. This body of research has not yet produced a solid, empirically grounded
body of evidence enabling actionable practices for increasing success and avoiding failure in
software projects. The need for more evidence motivates this special issue, which includes four
articles that contribute to our understanding of how software project success and failure relate
to topics such as: requirements engineering, user satisfaction, start-up pivots and retrospective
discussions. We moreover present a brief systematic review to both situate the accepted articles
in existing literature and to explore enduring methodological and conceptual challenges in this
area, including developing sound instruments for measuring success, representative sampling
without population lists and creating both empirically sound and practically actionable taxon-
omies of success antecedents.

Keywords Success . Failure . Success factors . Failure factors . Software engineering . Project
management . Systematic review

Empir Software Eng (2017) 22:2281–2297
DOI 10.1007/s10664-017-9505-5

* Hakan Erdogmus
hakan.erdogmus@sv.cmu.edu

Mika V. Mäntylä
mika.mantyla@oulu.fi

Magne Jørgensen
magnej@simula.no

Paul Ralph
p.ralph@auckland.ac.nz

1 M3S / ITEE / University of Oulu, Oulu, Finland
2 Simula Research Laboratory, Fornebu, Norway
3 University of Auckland, Auckland, New Zealand
4 Carnegie Mellon University, Pittsburgh, PA 15213, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9505-5&domain=pdf


1 Introduction

In software projects, successes (Ralph and Paul 2014) and failures (Lehtinen et al.
2014) come not only in degrees but also in diverse shapes and forms. If we agree that
software project success and failure is, if not a false dichotomy, at least a multidi-
mensional spectrum, we can explore different types of successes and failures. Despite
ongoing concerns over the failure rate of software projects, we still have not answered
basic questions including BHow do we measure success?^ and BHow do we reduce
failures?^ These questions motivate the organization of this special issue on success
and failure in software engineering.

The topics of the special issue are predominately concerned with the performance of
software engineering projects and processes (e.g., dev-ops, maintenance). While of course
important, the performance of software products (e.g., market share), tools (e.g.,whether a
certain UX modelling tool improves design quality) and related concerns (e.g., software
engineering education, ethics) are beyond the present scope.

That said, at least three critical elements for understanding success and failure are evident:

1. Operationalization, i.e. definitions and measures of success and failure may vary among
projects. Success measures may include measures of cost control, quality of deliverables,
schedule control, productivity, profitability, client benefits, and user satisfaction. The
relative emphasis on different measures and the threshold for deeming a project successful
or failed may also vary among projects.

2. Actionable Antecedents, i.e. practices contributing to success or failure undertook by
participants during a project that affect the project’s outcome. Examples include processes,
training, stakeholder involvement, tool support, and communication strategies.

3. Non-Actionable Antecedents, i.e. context factors, which are beyond the control of
project actors, may enable or constrain outcomes and help predict success or
failure. Examples include project environment, budget, client involvement, and
development team skill level. Sometimes context factors and practices are linked.
For example, the practice of training developers might mitigate the context factor
of inexperienced developers.

With these elements in mind, the purposes of this introduction are to (1) provide an
overview of existing literature on software project success and failure and (2) to introduce
the articles in the special issue. We proceed in this order, and conclude with some thoughts on
future research.

2 Review of Literature

We did not receive any submissions to the special issue that provided a systematic
literature review (SLR) regarding software project success and failure. Partly for this
reason, we include a limited, brief SLR of our own. We searched for relevant research
and analyzed the results using text mining and bibliometrics. We then subjected a
subset of the most influential (i.e., highly-cited) papers to manual qualitative analysis.
Below, we provide the results of the quantitative and then the qualitative analysis,
followed by a short discussion.

2282 Empir Software Eng (2017) 22:2281–2297



2.1 Literature Search

We used Scopus to search for literature on success and failure in software engineering. Scopus
is marketed as Bthe largest abstract and citation database of peer-reviewed literature: scientific
journals, books and conference proceedings.^1

When iteratively refining the literature searches, we discovered that achieving high preci-
sion and recall was surprisingly difficult. Here, we use the terms precision and recall as they
are defined in information retrieval; i.e.,precision gives the proportion of relevant search
results, while recall gives the coverage of all relevant search results. Many articles that had
very little to do with either success or failure in software engineering in general used the words
Bsuccess^ and Bfailure^ simply to motivate their work. As a counter-measure, we required that
the word Bsuccess^ or Bfailure^ appear in the paper title. We realize that this, among other
search decisions, sacrifice recall for precision.

We also discovered that many papers having nothing to do with industrial software
engineering (e.g., a paper describing the development of research software) use Bsoftware
engineering^ as a keyword. We therefore targeted the search term Bsoftware engineering^ only
in paper abstracts and titles. Additionally, we included common synonyms to capture software
engineering work conducted within related projects. This resulted in the following search
string:

TITLE-ABS (Bsoftware engineering^ OR Bsoftware development^ OR Bsoftware
project^ OR Bit project^ OR Bit development^ OR Bit engineering^) AND TITLE (Bsuccess^
OR Bfailure^)

For papers about failure, we received many irrelevant hits that focused on failure engineer-
ing and reliability modelling, which consider software engineering failures only as part of
software that is malfunctioning. As these are inconsistent with our focus on projects and
processes, we removed them using additional exclusion rules. We similarly used exclusion
rules to remove papers concerning failures in physical and biological systems. For failure
papers only, we therefore excluded the papers matching the following search string:

TITLE-ABS-KEY (Bheart failure^ OR Bfailure mode^ OR Bstability failure^ OR Bfailure
mode^ OR Bceramic^ OR Bsteel^ OR Bmtbe^ OR Bcoal^ OR Bfault diagnosis^ OR BSystem
failure engineering^ OR BFailure simulation^ OR Bslope failure^ OR Bfault tolerance^ OR
Bphysiology^ OR Breliability modeling^ OR Bsoftware reliability^)

This process resulted in 159 papers on software project failures and 434 papers on software
project successes.

2.2 Manual Filtering

Next, we manually filtered all papers based on their titles and abstracts. We removed papers
where: (i) the papers used the term Bfailure^ to denote software faults (bugs); (ii) the papers
introduced a method or tool they claimed would reduce the risk of project failure or increasing
the probability of success, without really testing that this was the case; (iii) the papers
described the failure or success of introducing, using or improving a method, tool or process,
but did not relate this to project success or failure; (iv) the paper was about other types of
projects than software projects, or just one phase of a software project; or (v) the paper was
about project success and failure, but provided no research results.

1 https://www.elsevier.com/solutions/scopus

Empir Software Eng (2017) 22:2281–2297 2283

https://www.elsevier.com/solutions/scopus


Manual filtering resulted in 90 papers on failure and 260 papers on success, with some
overlap. Removing duplicates and nearly identical works (identified with Jaccard similarity)
left a total of 332 papers. This 44% reduction in papers demonstrates that textual search
without manual filtering would probably have been misleading.

2.3 Analyzing Literature With Text Mining

To get a high-level overview of the literature, we generated word clouds using the R-
package Bwordcloud^ (Fellows 2012). We then used a topic modelling technique
called Latent Dirichlet Allocation (LDA) to cluster our papers. Clustering offers a
more detailed view of the papers than word clouds. For the clustering, we performed
standard text-mining pre-processing that improves results by removing unnecessary
information. Specifically, we removed standard copyright information occasionally
present in the abstract, removed punctuation and numbers, converted all the letters
to lower case, removed common stop words for English, stemmed the document,
created a document-term-matrix, and removed terms with scores below the median
term frequency minus inverse document frequency (tf–idf) from our vocabulary.

For topic modelling, several measures of clustering quality have been proposed. Following
the approach recommended by Griffiths and Steyvers (2004) for scientific corpuses, we
selected log-likelihood as our measure of clustering quality. We used a fixed number of
clusters (k = 10) to offer an easily understandable overview of the area and allow a sample
of papers for the qualitative analysis to remain small, rather than generating large number of
fine-grained clusters. We used the genetic algorithm Differential Evolution to tune LDA hyper-
parameters alpha and beta as suggested by Agrawal et al. (2016).

2.4 Analyzing Literature With Qualitative Coding

From each of the ten clusters, we selected the top-cited paper, normalized for time. We used
normalization for time so that both older and newer papers had equal chances of being selected
for further analysis. This generated a sample of influential papers for more in-depth qualitative
analysis to investigate what the papers are really saying about their topics. We manually
analyzed these ten papers using an a priori defined coding scheme.

We created the coding using a three-step process: (1) collective brainstorming of points of
inquiry; (2) synthesizing these ideas into a set of questions; and (3) review of the questions and
suggested improvements. This process produced the coding scheme shown in the Appendix.
Although we expected the coding scheme to evolve throughout the analysis, no major changes
were made. However, we updated the wording and some of the examples in the Appendix for
clarity.

The ten-paper subset was analyzed against the coding scheme by one of the authors (Ralph)
using an Excel spreadsheet. Two other authors reviewed this analysis. No particularly contro-
versial analytical leaps were evident, except that it was difficult to specify a single core
message or thesis for some papers.

2.5 Results: Bibliometrics

We performed a bibliometric analysis on our pool of 322 articles. Figure 1 shows the number
of papers published in each year. We can see that, prior to 2005, fewer than eight papers were

2284 Empir Software Eng (2017) 22:2281–2297



published per year, while between 2005 and 2015, an average of 24 papers were published per
year. This trend is similar to that observed in a bibliometric study (Garousi and Mäntylä 2016)
of the entire software engineering literature, which analyzed over 70,000 papers also using
data from Scopus. In that study, prior to 2005, less than 2,000 papers had been published
annually and after 2005, the annual number of paper was over 3,000. Overall, the general
growth trends are similar in both works.

Table 1 lists the most popular publication outlets in our sample. It shows research coming
from three research communities: software engineering, information systems, and project
management, as well as venues we categorized as General Computer Science (CS). Although
project management research has only one venue, International Journal of Project Manage-
ment, it was the second most popular with ten papers. Moreover, the sources classed as
General CS have large volumes of papers annually; for example, Lecture Notes in Computer
Science published over 20,000 papers in 2015.

2
0 0 0 0 0 1 0 1 0 1 0

2
0 0

2 2
0

2 1
4

7

1
4 5 5

14
17

2021

35

27

2020

34

2829

0

5

10

15

20

25

30

35

40

Fig. 1 Number of papers published per year

Table 1 Top-10 venues for success and failure in software engineering

Rank Venue Community Count

1 Information and Software Technology Software Engineering 11
2 International Journal of Project Management Project Management 10
3 Journal of Systems and Software Software Engineering 9
4 Americas Conference on Information Systems, AMCIS Information Systems 8
4 International Conference on Information Systems, ICIS Information Systems 8
6 Annual Hawaii International Conference on System Sciences, HICSS Information Systems 7
7 IEEE Software Software Engineering 6
7 Lecture Notes in Computer Science General CS 6
9 ACM International Conference Proceeding Series General CS 5
9 Advances in Intelligent Systems and Computing General CS 5
9 Information Systems Management Information Systems 5
9 International Conference on Software Engineering, ICSE Software Engineering 5
9 Lecture Notes in Business Information Processing General CS 5

Empir Software Eng (2017) 22:2281–2297 2285



2.6 Results: Research Topics

The top-level analysis of the research topics covered in the identified papers are givenby the
world cloud in Fig. 2. We can see that a greater number of papers focused on success than on
failure. The word cloud also reveals that the articles mostly considered success and failure as a
software project management topic. Smaller terms reveal further information regarding the
context, such as open source, agile, offshore, outsourcing, business, organizational, require-
ments, and teams.

We clustered the papers into ten topics to have a more detailed view of various success and
failure factors. Ten topics offer a high-level view of the area and facilitate sampling for qualitative
analysis. According to LDA, a topic cluster is represented by the most probable words for the
topic. Table 2 shows the ten most probable words for the ten topics (clusters) we generated.

Computer-based clustering of natural language documents is hardly ever perfect, but it can
still guide human interpretation in large text corpuses. Roughly speaking, we can see two
dimensions in the topic words. We can see context variables under which the studies have been
performed: enterprise resource planning (erp; topic 1), agile (topic 3), global software devel-
opment (gsd; topic 4), egovernance (topic 6), student (topic 7), open source software (oss, topic
8), outsource and offshore (topic 9), and health and healthcare (topic 10). We can also see more
detailed research topics, which may be important factors in SE successes and failures: collab-
oration, bid (topic 1); leadership, srs (software requirements specification, topic 2); deliveries,
iterations (topic 3); decisions, risk, stress, motivation (topic 4); scope, coordination, maturity,
strategy (topic 5); user, feature, task (topic 6); early prediction and estimation (topic 7);
interaction (topic 8); goverance, contract (topic 9); and knowledge, skill, learning (topic 10).

Comparison between Table 2 and Fig. 2 shows similarities: for example, agile, outsourcing,
organizational, oss, and csfs (critical success factors) can be seen in both. Table 2, which was
created with LDA topic modelling, provides more information than Fig. 2. An additional
benefit of LDA topic modelling is that each paper can be assigned to one cluster/topic. We take

project
success

software

projects

factors

development

management

failure

study

research

critical

model

r
e
s
u
lt
s

information

r
is
k

team

p
r
o
c
e
s
s

data

system

analysis

failures

based

quality

a
g
il
e

successful
systems

using

time

managers

can

case

literature

requirements

technology

important

findings

knowledge

oss

engineering

different

approach

impact

offshore

outsourcing

also

implementation

empirical

however

use

performance

survey

source

used

method

studies

cost

open

b
u
s
in
e
s
s

two

found

organizations

teams

csfs

many

identified

may

relationship

one

well

will

perspective

practices

id
e
n
ti
fy

key

c
o
n
te
x
t

new

support

organizational

w
it
h
in

communication

Fig. 2 Word cloud based on the
titles and abstracts of success and
failure papers

2286 Empir Software Eng (2017) 22:2281–2297



T
ab

le
2

T
he

te
n
m
os
t
pr
ob
ab
le
w
or
ds

(s
te
m
s)
fo
r
ea
ch

to
pi
c

Te
rm

R
an
k

T
1:

E
R
P
+

C
ol
la
bo
ra
tio
n

T
2:

Su
cc
es
s/
Fa
ilu

re
at
tr
ib
ut
es

T
3:

A
gi
le
+

C
ri
te
ri
a

T
4:

R
is
k
+

G
SD

T
5:

O
rg
an
iz
at
io
n

T
6:

U
se
r

T
7:

Pr
ed
ic
tio

n
T
8:

O
pe
n-

so
ur
ce

T
9:

O
ut
so
ur
ci
ng

T
10
:
C
om

pe
te
nc
es
+

H
ea
lth
ca
re

1
E
rp

A
ttr
ib
ut

A
gi
l

R
is
k

O
rg
an
is

U
se
r

Pr
ed
ic
t

O
ss

O
ut
so
ur
ce

K
no
w
le
dg

2
D
es
cr
ib

Pr
of
es
si
on

C
ri
te
ri
a

St
ra
te
gi

Sc
op
e

Si
m
ila
r

E
st
im

So
ur
c

O
ff
sh
or
e

Sk
ill

3
T
re
nd

L
ea
de
rs
hi
p

D
ec
is

G
sd

C
oo
rd
in

Fe
at
ur

E
ar
li

O
pe
n

C
sf
s

L
ea
rn

4
V
ar
ia
bl

Sr
s

D
el
iv

Pr
ob
ab
l

Pu
bl
ic

Ta
sk

St
ag
e

N
et
w
or
k

V
en
do
r

H
ea
lth

5
C
ol
la
bo
r

Po
or

C
or
re
l

O
pt
im

St
ar
t

Te
m
po
r

C
la
ss
if
i

So
ci
al

G
ov
er
n

Is
it

6
E
nt
er
pr
is

Pe
rs
on

It
er

St
re
ss

M
at
ur

Is
d

M
et
ri
c

In
te
re
st

A
pp
ro
pr
i

D
om

ai
n

7
C
ap
ab
l

U
til

D
el
iv
er
i

M
iti
g

E
xt
er
n

V
ie
w
po
in
t

St
an
da
rd

In
te
ra
ct

C
on
tr
ac
t

U
nc
er
ta
in
ti

8
B
id

O
ve
rr
un

C
or
e

M
ot
iv

C
on
gr
ue
nc

B
el
ie
v

St
ud
en
t

D
ow

nl
oa
d

In
fr
as
tr
uc
tu
r

H
ea
lth

ca
r

9
Te
am

w
or
k

Si
tu
at

E
xp
la
in

Pr
op
os
it

St
ra
te
g

C
au
sa
l

M
in
e

Pa
tte
rn

O
os
d

In
no
v

10
D
ur
at

E
le
m
en
t

G
iv
en

Sd
o

D
ep
lo
y

E
go
ve
rn

A
cc
ur

Su
st
ai
n

Fi
t

Il
lu
st
r

Empir Software Eng (2017) 22:2281–2297 2287



advantage of this benefit in the following section to investigate the papers by examining a
prominent representative from each cluster.

Table 3 lists the most-cited paper for each topic.

2.7 Results: Qualitative Analysis

As described above, we analyzed the top cited paper of each text clustering topic using the
coding scheme in the Appendix to achieve a diverse sample while highlighting the most
influential work in the area. The sample of ten papers comprise four questionnaire-based
studies, two case studies, a social network analysis, a systematic literature review (SLR), an
experience report, and a workshop report. Eight papers are empirical (we consider SLRs em-
pirical). Six papers investigate software development in general, while four papers focus on a
specific context or domain, namely, offshoring, open source, health IT and ERP implementa-
tion. Our analysis of the sampled papers revealed three main research challenges, as well as a
couple of common shortcomings and some positive insights.

2.7.1 Challenge 1: Creating and Validating Instrument for Measuring Success

Software project success (or failure) is multidimensional in the sense that projects can succeed
or fail in different ways, from different perspectives. Trying to measure success using one- or
two-dimensional spectra therefore oversimplify and overrationalize reality.

Table 3 Top cited paper (citations per year) for each topic

Topic Paper Citations Citation
per year

T1: ERP +
Collaboration

Managing ERP implementation failure: A project management
perspective (Chen et al. 2009)

75 10.71

T2: Success/
Failure attributes

Software developer perceptions about software project
failure: A case study (Linberg 1999)

146 8.59

T3: Agile + Criteria Project management: Cost, time and quality, two best
guesses and a phenomenon, its time to accept other
success criteria (Atkinson 1999)

515 30.29

T4: Risk + GSD Benefits Realisation Management and its influence on
project success and on the execution of business
strategies (Serra and Kunc 2015)

20 20

T5: Organization Defining ‘success’ for software projects: An exploratory
revelation (Agarwal and Rathod 2006)

108 10.80

T6: User A systematic review on the relationship between user
involvement and system success (Bano and Zowghi 2015)

16 16.00

T7: Prediction Early warning signs of IT project failure: The dominant
dozen (Kappelman, McKeeman, and Zhang 2006)

129 12.90

T8: Open-source Location, location, location: How network embeddedness
affects project success in open source systems
(Grewal, Lilien, and Mallapragada 2006)

216 21.60

T9: Outsourcing Empirical investigation of success factors for offshore
software development outsourcing vendors
(Khan, Niazi, and Ahmad 2012)

21 5.25

T10: Competences +
Healthcare

Health IT Success and Failure: Recommendations
from Literature and an AMIAWorkshop
(Kaplan and Harris-Salamone 2009)

157 22.43

2288 Empir Software Eng (2017) 22:2281–2297



Furthermore, success is a construct —a hypothesized variable that cannot be measured
directly. Success is real in the same way trust and preference are real, but not in the same way
length and mass are real. We must therefore operationalize it using indicators which vary in
their construct validity—Bthe degree to which inferences can legitimately be made from the
operationalizations in [a] study to the theoretical constructs on which those operationalizations
were based^ (Trochim 2001).

In one of the analyzed papers, Kaplan et al. emphasize that Bthere is little agreement about
what success or failure is^ (2009, p. 294); in another, Agarwal and Rathod claim that Bin
practice, it may be very difficult to claim that the project was really successful or not^ (2006, p.
358). None of the analyzed papers use or present a validated instrument for measuring success
or failure. Ironically, Kappelman et al. (2006) point out that lack of documented success
criteria is one of the dominant warning signs preceding project failure.

Of the papers that measure success, four use participant’s subjective judgements. Both the
type of participant (e.g. developer, manager, user) and the dimensions on which judgements
were sought vary. Serra and Kunc (2015) have the most detailed evaluation of success. They
used a questionnaire with Likert scales covering budget, schedule, scope, business goals,
undesired outcomes and return on investment. While the subjective judgments of informants
may be valuable for assessing success, they are intrinsically from the point of view of the
informant. For example, the developers’ judgments of user satisfaction are unlikely to be
reliable. Meanwhile, Grewal et al. (2006) operationalize success using page-view and down-
load frequency; that is, they use popularity as a surrogate for success. While this is reasonable
given their open source focus, popularity is still only a small part of success.

In summary, the meaning of success is contested and not agreed upon. No well-validated
measures of success are available (as far as we know); consequently, researchers either use
fairly simple, non-validated measures or rely on the subjective judgment of participants.
Research rigor will continue to be hampered until better instruments are created. The lack of
agreement around and complexity of what we should mean with software project success
entail serious challenges for creating such measures.

2.7.2 Challenge 2: Representative Sampling Without Population Lists

Without effective sampling, even the most extensive study on software projects can give
misleading results. An infamous example of this is the Standish Group’s 1994 survey (The
Standish Group International Inc 1994) claiming a software crisis, due their finding that only
16.9% of all software projects were successful, measured as within budget, on schedule, and
with specified functionality. This survey may be the most frequently cited survey on software
project success. The sampling process is not well described, but (page 13) of their report states:
BWe then called and mailed a number of confidential surveys to a random sample of top IT
executives, asking them to share failure stories. During September and October of that year,
we collected the majority of the 365 surveys we needed to publish the CHAOS research.^
While we can learn a lot from failure stories, they should clearly not be presented as
representing the software industry.

In our evaluation, we found eight papers with a sampling strategy. Of these eight papers,
seven employ convenience or purposive sampling. While convenience and purpose sampling
are appropriate or even preferable for some studies, lack of representative sampling in a body
of literature is of concern. A body of (social and applied) research typically combines
purposive sampling for theory-building case studies, convenience sampling for exploratory

Empir Software Eng (2017) 22:2281–2297 2289



studies, and random sampling for confirmatory studies. We come to a deep and generalizable
understanding of a phenomenon by synthesizing results from these different strategies.

Software engineering, however, often lacks comprehensive population lists for the phe-
nomena of interest. For example, we cannot randomly sample Australian mobile video game
development projects because there is no comprehensive list of such projects to sample from.
This leads to two methodological challenges.

First, many studies sample from surrogate populations that may differ from target popula-
tions in unknown ways. Grewal et al. (2006) employed a multi-stage sampling strategy: they
purposively chose sourceforge, then randomly selected a subset of sourceforge projects that
met specific conditions, and then used all the developers involved in that foundry. In the
context of their study, this is a perfectly reasonable approach. There is no comprehensive list of
open source projects, so they sample from a surrogate population. However, we do not
understand the differences between the surrogate population and the population to which we
want to generalize; e.g. a random sample of sourceforge projects with more than 100 devel-
opers may or may not be representative of large open source projects. We therefore have no
theoretical basis to claim that such a Brandom^ sample is any more representative than a
convenience sample.

Second, a diverse sample may now be representative. Serra &Kunc (2015) report using
stratified random sampling, but may have actually used stratified convenience sampling as the
LinkedIn website does not appear to support random selection. Random means that every
element in the population has an equal probability of selection, not that elements are selected
haphazardly. This is important because it is the randomness, not the stratification, that
underlies the argument to representativeness. Again, a stratified convenience sample is
appropriate for this particular study; the problem is the lack of representative sampling in
the literature overall.

In summary, because we lack population lists for many software engineering phenomena,
researchers are forced to use non-random sampling or surrogate populations that differ from
the target population in unknown ways. This presents major challenges for statistically
generalizing results.

2.7.3 Challenge 3: Identifying Empirically Validated and Actionable Antecendents

Unsurprisingly, software project success typically has no single dominant cause, and while a
particular failure could have a single dominant cause, different projects fail for different
reasons. Some studies therefore investigate the relationship between success and one or a
few antecedents, while others attempt to classify antecedents into a meaningful list or
taxonomy. In our sample, three papers focus on a single antecedent: user involvement (Bano
and Zowghi 2015), benefits realization management (Serra and Kunc 2015) and network
embeddedness (Grewal et al. 2006). Meanwhile, four of the papers present an extensive list or
taxonomy of antecedents, causes, correlates, factors or predictors of success.

Three research challenges with these taxonomies are evident:

1. There is little agreement as to the composition of, structure of or relative importance of
items within taxonomies of success antecedents. Their veracity and reliability are therefore
in doubt.

2. Many taxonomies include non-actionable Bsuccess factors.^ For example, suppose that
network embeddedness is a primary driver of success in open source software projects.

2290 Empir Software Eng (2017) 22:2281–2297



Researchers can use this knowledge to improve predictive models, but it is simply not
actionable for practitioners.

3. Above, we differentiate between actionable antecedents (practices) and non-actionable
antecedents (contextual factors). Existing taxonomies tend not to distinguish between
kinds of antecedents; for instance, actionable practices vs. contextual factors; predictors
vs. predictions; correlates vs. causes.

2.7.4 Other Findings

Other common shortcomings detected include lack of explicit research questions and of
descriptions of research methods. Six of the ten papers do not explicitly state a research
question. In two cases, one can easily infer the research question from the paper, but in the
other four, it is less clear. Three of the papers analyze data, but do not give details of their
method of analysis at all. This low bar for methodological rigor may be hurting the field’s
perceived legitimacy.

Notwithstanding these challenges and shortcomings, there is some good news. The Iron
Triangle (i.e., the idea that quality is constrained by time, budget and scope) is often
inappropriately used as a model of success in software engineering. That is, many studies
measure success in terms of meeting schedules, budgets and requirements. Of the three papers
that mention the Iron Triangle, Atkinson (1999) and Kaplan et al. (2009) reject it as
oversimplified and inappropriate.

Furthermore, the papers bring up many interesting ideas. For example, Linberg (1999)
describes how developers had to break rules and bypass management to succeed, with other
developers secretly helping them behind management’s back. This kind of constructive,
deviant behavior exemplifies the importance of rejecting bureaucracy—a key tenant of
contemporary management research, not to mention the underlying principle of Agile and
Lean development.

3 Introducing the Special Issue Papers

For this special issue, we have selected four papers focusing on failure factors and one
focusing on success factors. Two papers in our selection are longitudinal case studies, based
on data collected over an extended period of time from the same organization in a limited
context. Such studies have the capacity to reveal deep insights not easily attainable in larger,
more diverse samples. The remaining two are surveys conducted with considerably more
diverse samples across multiple organizations, and aiming at capturing commonalities with a
better chance for generalizability within their targeted scopes.

These studies are neither immune to the inevitable construct validity and sampling bias issues
that were pervasive in our own literature review, nor do they agree on the same set of antecedents,
with each being sourced in a different context and focusing on different measures, factors, triggers,
and effects. They nonetheless offer many worthwhile, relevant takeaways, which we hope you,
the readers, can use in your own contexts. The selections also raise numerous interesting questions
to inspire further research on software engineering success and failure.

The first paper BNaming the Pain in Requirements Engineering: Contemporary Problems,
Causes, and Effects in Practice^ (DOI 10.1007/s10664-016-9451-7) is the culmination of a still

Empir Software Eng (2017) 22:2281–2297 2291

http://dx.doi.org/10.1007/s10664-016-9451-7


ongoing, multi-year, multi-country initiative by the requirements engineering research com-
munity. It is based on survey data collected using a common instrument by Mendez Fernandez
and his many collaborators from Europe, North America, and South America. This paper fits
best under Topic 2 from our text clustering (Table 2),which included BSRS^ (software
requirements specification). The data collected from over 200 companies investigates
requirements-related failure factors using multiple measures separated into different categories:
customer measures (dissatisfaction, low acceptance), product measures (missing functionality,
poor quality, low business value), project/organizational measures (schedule and budget
overrun, high lifecycle costs), validation and verification measures (test inefficiency, validation
difficulty), and design and implementation measures (irrelevant requirements, low traceability,
requirements volatility). No explicit practices are identified, but many are implied by failure
factors related to organizational attributes, methods and tools used, and quality and nature of
software development inputs. Size of organization (small, medium or large) and software
process used (dichotomized as plan-driven or agile) are two antecedents that were considered.
Failure measures that were found to be dominant include incomplete/hidden requirements,
insufficient communication between project team and customer, and moving targets (project
volatility). While incomplete/hidden requirements applied to all types of organizations, com-
munication issues were not found to be widespread in small, plan-driven organizations and
moving targets were prevalent mainly in plan-driven and large organizations. Furthermore, the
authors identified lack of experience and skills, time pressure, lack of business vision, poor
elicitation techniques, overly abstract specifications, and missing completeness checks as the
main causes of dominant failure modes.

The second paper BUser Satisfaction and System Success: An Empirical Explora-
tion of User Involvement in Software Development^ (DOI 10.1007/s10664-016-9465-
1) by Bano, Zowghi, and Da Rimini is a longitudinal case study investigating, this
time, success rather than failure, again in a requirements-related context. This paper
fits well under Topic 6, BUser^, in our text clustering (Table 2). The study has a
much more focused measure than the paper by Mendez-Fernandez et al. The adopted
measure of success is user satisfaction, with the main hypothesized practice affecting
this measure being user involvement. The data were collected from two projects in a
single organization over a period of three years and analyzed using a qualitative
approach combining interviews, workshops and artefact analysis. Context factors that
were considered include schedule, budget, and management style. The study has three
main conclusions. First, user satisfaction, and hence the notion of success, is not static
and varies through the different stages of a project. Second, success, as defined, is
achievable even when schedule and budget goals are not met. Third, user involve-
ment, leading to acceptable level of user satisfaction, is associated with effective
management strategies and high levels of user representation. The second insight is
notable because being on-budget and on-schedule have traditionally been considered
among primary success criteria for software projects. The authors thus downgrade
their influence from a primary to contextual role and posit that the right notion of
success be independent of budget and schedule concerns.

The third paper BFailures to be Celebrated: An Analysis of Major Pivots of Software
Startups^ (DOI 10.1007/s10664-016-9458-0) by Bajwa, Wang, Nguyen Duc, and
Abrahamsson change the context to that of software startups. In a rare treatment, it adopts
pivots, or strategic changes in business model or product characteristics, as preventive actions
that pre-empt potential failures. Thus, there is no explicit failure measure, but pivots are

2292 Empir Software Eng (2017) 22:2281–2297

http://dx.doi.org/10.1007/s10664-016-9465-1
http://dx.doi.org/10.1007/s10664-016-9465-1
http://dx.doi.org/10.1007/s10664-016-9458-0


thought of as failure signals, the absence of which would presumably have resulted in a
downstream failure. Then possible triggers for pivots are interpreted as proxies for failure
factors. The data is collected from nearly 50 organizations using the case survey method to
identify major types of pivots and their triggering factors. The authors found that changing or
wrongly understood customer needs along with changes in targeted market segments were the
most common market-related pivots, and changing the product functionality to focus on a
specific feature and changing the solution to use a different technology or platform were the
most common product-related pivots. Most pervasive triggers associated with these pivots
were, unsurprisingly, negative customer reaction and flawed business model. The unique
aspect of this work is its treatment of failures in a positive light as opportunities for validated
learning for future success, consistent with the startup culture. While our text clustering
identified several contexts and domains (e.g., ERP, agile, healthcare, outsourcing), none of
these is a match for this paper, highlighting the novelty of its context.

The last paper, by Lehtinen, Itkonen, and Lassenius and titled BRecurring Opinions or
Productive Improvements—What Agile Teams Actually Discuss in Retrospectives^ (DOI
10.1007/s10664-016-9464-2), is another longitudinal case study. It fits well under Topic 3
from our text clustering— BAgile + Decisions^ (Table 2). The paper’s main focus is process
improvement. The study is sourced on data collected from retrospective meetings over a
period of close to three years in the same organization that used an agile software develop-
ment process. The authors do not explicitly identify measures of success or failure, or
associate such measures with specific antecedents (practices or context factors). Rather, they
explore themes that recur in retrospective meetings based on subjective impressions of the
team members. Positive impressions are implicitly interpreted as proxies for success out-
comes and underlying factors, and negative impression as proxies for potential failure
outcomes and underlying factors. The emphasis of the paper is on failure-related factors,
with subsequent corrective actions associated with negative impressions taken as evidence
for those factors’ potential impact. The authors highlight a small subset of these
factors—estimation accuracy, bug fixing processes, resource availability, schedule con-
straints, and clarity of specifications/instructions—as most important, but caution that per-
sonal biases and interests of team members as well as the controllability and complexity of
the issues and solutions likely influenced the results. They identify recurrence of themes over
time as an indication of high complexity and lack of controllability for those themes.
Estimation accuracy was identified as one of those themes. When recurrence happens despite
repeated corrective action, this is interpreted as a potential waste of resources. The most
prominent example of such waste was the effort spent on discussing and addressing bug
fixing processes despite any notable improvements.

The selections illustrate the diversity of perspectives with respect to software engineering
success and failure. The second paper by Bano, Zowghi, and Da Rimini and the third paper by
Bajwa, Wang, Nguyen Duc, and Abrahamsson both depart from pre-determined, external
notions and antecedents of success or failure that relate to user, customer, or market needs, yet
they take distinctly different approaches in methods and treatment. The first paper by Mendez
Fernandez focuses both on internal and external notions and antecedents of success or failure
and the last paper by Lehtinen, Itkonen, and Lassenius focuses mostly on internal ones. Both
works are exploratory, in that the notions and ancedents emerge from the date rather than being
pre-supposed. Like the second and third papers, the similarities stop there since their methods,
treatments, and conclusions are, again, distinct, reflecting the idiosyncrasies of the particular
contexts in which they were conducted.

Empir Software Eng (2017) 22:2281–2297 2293

http://dx.doi.org/10.1007/s10664-016-9464-2


4 Conclusion

This special issue on software engineering success and failure presents four sound empirical
studies. These studies provide novel and worthwhile contributions on requirements engineer-
ing, user satisfaction, startup pivots, retrospective discussions and their relationships to the
success or failure of software projects.

To help situate these studies, we conducted a brief systematic literature review. The main
takeaways from our analysis are:

& research on software project success and failure is diverse with many practices and context
factors potentially influencing outcomes;

& this research is published in at least three academic communities of practice: software
engineering, information systems, and project management;

& most of the research in this area has been published in the past decade; and
& enduring methodological challenges in this area include developing sound instruments for

measuring success, representative sampling without population lists, and creating both
empirically sound and practically actionable taxonomies of success antecedents.

Clearly, how to understand, measure, and improve the chances of success remain funda-
mental questions for software engineering research, with many continuing challenges for
future research. We hope you find the discussions thereof in this special issue stimulating
and useful. Enjoy!

Appendix: Coding Scheme

The qualitative analysis of the literature review was based on the following questions:

1. How does the paper operationalize success (e.g., as stakeholder satisfaction) or measure
success (e.g., using subjective assessment of participants)?
2. Howdoes the paper operationalize software engineering / does the paper use a surrogate or subtype
of SE (e.g., investigating ERP implementation projects rather than software projecs in general)?
3. What is the paper saying about success or failure?
4. Does the paper propose/test/discuss antecedents (i.e., causes, factors, correlates) of success

or failure? What are the antecedents?
5. What are the paper’s core concepts or topics (e.g., risk, open source, agile)?
6. What are the paper’s research questions, purposes, theses or key positions?
7. Does the paper apply any core foundation, theory, taxonomy or viewpoint (e.g., the

Project Triangle)?
8. Is the paper empirical? If so:

a. what is its sampling strategy / who or what is being studied?
b. what data collection methods are used (e.g., questionnaire, experiment, case study, SLR)
c. what analytical methods are used (e.g., correlation-based stats, inductive coding,

discourse analysis, deconstruction)?
9. Where was the paper published (i.e., is there anything unusual about the publication

outlets)?

2294 Empir Software Eng (2017) 22:2281–2297



References

Agarwal N, Rathod U (2006) Defining ‘success’ for software projects: an exploratory revelation. Int J Proj
Manag 24(4):358–370

Agrawal, Amritanshu, Wei Fu, and Tim Menzies. (2016). BWhat Is Wrong with Topic Modeling? (and How to
Fix It Using Search-Based Se).^ arXiv Preprint arXiv:1608.08176. https://arxiv.org/abs/1608.08176

Atkinson R (1999) Project management: cost, time and quality, two best guesses and a phenomenon—it’s time to
accept other success criteria. Int J Proj Manag 17(6):337–342

Bano M, Zowghi D (2015) A systematic review on the relationship between user involvement and system
success. Inf Softw Technol 58:148–169

Chen CC, Law CCH, Yang SC (2009) Managing ERP implementation failure: a project management perspec-
tive. IEEE Trans Eng Manag 56(1):157–170

Fellows I (2012) Wordcloud: word clouds. R Package Version 2:109
Garousi V, Mäntylä MV (2016) Citations, research topics and active countries in software engineering: a

bibliometrics study. Comput Sci Rev 19:56–77
Grewal R, Lilien GL, Mallapragada G (2006) Location, location, location: How network embeddedness affects

project success in open source systems. Manag Sci 52(7):1043–1056
Griffiths TL, Steyvers M (2004) Finding scientific topics. Proceedings of the National Academy of Sciences

101(suppl. 1):5228-5235
Kaplan B, Harris-Salamone KD (2009) Health IT success and failure: recommendations from literature and an

AMIAworkshop. J Am Med Inform Assoc 16(3):291–299
Kappelman LA, McKeeman R, Zhang L (2006) Early warning signs of IT project failure: the dominant dozen.

Inf Syst Manag 23(4):31–36
Khan SU, Niazi M, Ahmad R (2012) Empirical investigation of success factors for offshore software develop-

ment outsourcing vendors. IET Softw 6(1):1–15
Lehtinen TOA, Mäntylä MV, Vanhanen J, Itkonen J, Lassenius C (2014) Perceived causes of software project

failures–an analysis of their relationships. Inf Softw Technol 56(6):623–43
Linberg KR (1999) Software developer perceptions about software project failure: a case study. J Syst Softw

49(2):177–192
Martins Serra CE, Martin K (2015) Benefits realisation management and its influence on project success and on

the execution of business strategies. Int J Proj Manag 33(1):53–66
Ralph, Paul, and Paul Kelly (2014) BThe Dimensions of Software Engineering Success.^ In Proceedings of the

36th International Conference on Software Engineering, 24–35. ACM. http://dl.acm.org/citation.
cfm?id=2568261

The Standish Group International Inc (1994) BThe Chaos Report (1994).^ The Standish Group International Inc
Trochim WMK (2001) Research methods knowledge base. Atomic Dog Publishing, Ohio, http://www.

anatomyfacts.com/research/researchmethodsknowledgebase.pdf. Accessed 6 Feb 2017

Mika V. Mäntylä is professor of Software Engineering at the University of Oulu, Finland. He received a D. Sc.
degree in 2009 in software engineering from the Helsinki University of Technology, Finland. His research

Empir Software Eng (2017) 22:2281–2297 2295

https://arxiv.org/abs/1608.08176
http://dl.acm.org/citation.cfm?id=2568261
http://dl.acm.org/citation.cfm?id=2568261
http://www.anatomyfacts.com/research/researchmethodsknowledgebase.pdf
http://www.anatomyfacts.com/research/researchmethodsknowledgebase.pdf


interests include empirical software engineering, software testing, mining software repositories, and behavioral
software engineering. He has previously worked as a post-doc at the Lund University, Sweden and as an assistant
professor at the Aalto University, Finland. His previous studies have appeared in journals such as IEEE
Transaction on Software Engineering, Empirical Software Engineering, and Information and Software Technol-
ogy. For more information, visit: http://mikamantyla.eu/.

Magne Jørgensen received the Diplom Ingeneur degree in Wirtschaftswissenschaften from the University of
Karlsruhe, Germany, in 1988 and the Dr. Scient. degree in informatics from the University of Oslo, Norway, in
1994. He is a professor of software engineering at the University of Oslo and a chief research scientist at the
Simula Research Laboratory. He has several years industry experience, and combines academic research with
advisory work for software companies. His research interests include project management, human judgment and
software economics.

Paul Ralph is an award-winning scientist, author and consultant, a senior lecturer in computer science at The
University of Auckland and a visiting assistant professor of management at the University of British Columbia. His
research centers on the empirical study of software and game development, including projects, processes, practices,
tools and developer cognition, socialization, productivity, creativity, wellbeing and effectiveness. Dr. Ralph is the
founding director of the Auckland Game Lab, co-founder of the AIS Special Interest Group for Game Design and
Research (SIGGAME) and a member of the IEEE Technical Council on Software Engineering and ACM Special
Interest Group on Software Engineering. He holds a PhD in Management from the University of British Columbia.

2296 Empir Software Eng (2017) 22:2281–2297

http://dx.doi.org/http://mikamantyla.eu/


Hakan Erdogmus is an Associate Teaching Professor of Electrical and Computer Engineering at Carnegie
Mellon University’s Silicon Valley campus. Prior to joining CMU, he was an independent consultant providing
training in software process and project finance and a senior research officer at the Canadian National Research
Council. His research focuses on software process, modern development techniques, software quality, software
engineering economics, and empirical software engineering. He holds a Ph.D. in Telecommunications from
INRS-Université du Québec and an M.Sc. in Computer Science from McGill University, Montreal. Dr.
Erdogmus is a former Editor in Chief of IEEE Software, a Senior Member of IEEE, a Golden Core member
of IEEE Computer Society, and a member of ACM. He served in IEEE Computer Society’s Board of Governors
from 2012 to 2014.

Empir Software Eng (2017) 22:2281–2297 2297


	Guest editorial for special section on success and failure in software engineering
	Abstract
	Introduction
	Review of Literature
	Literature Search
	Manual Filtering
	Analyzing Literature With Text Mining
	Analyzing Literature With Qualitative Coding
	Results: Bibliometrics
	Results: Research Topics
	Results: Qualitative Analysis
	Challenge 1: Creating and Validating Instrument for Measuring Success
	Challenge 2: Representative Sampling Without Population Lists
	Challenge 3: Identifying Empirically Validated and Actionable Antecendents
	Other Findings


	Introducing the Special Issue Papers
	Conclusion
	Appendix: Coding Scheme
	References


