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Abstract The shape of the length frequency distribu-
tion (LFD) is an important input for stock assessments
and one of the most important features in studies of fish
population dynamics, providing estimates of growth
parameters. In practice, oversampling may occur when
sampling commercially important species. At times of
more and more limited resources, the length sample size
can be optimized at some stages of national or regional
sampling programmes, without reducing the quality of
stock assessments. The main objective of this study is to
demonstrate a general distribution-free methodological
approach for an optimization of sample size developed
as an alternative to both analytical and bootstrap ap-
proaches. A novel framework to identify the reduced
but still informative sample and to quantify the (dis)
similarity between reduced and original samples is pro-
posed. The identification procedure is based on the
concept of reference subsample, which represents a
theoretical minimal representative subsample that de-
spite smaller sample size still preserves a reasonably
precise LFD for certain species. The difference between
the original sample and the reference subsample called
admissible dissimilarity value (ADV) serves as the up-
per threshold and can be used to quantify the reliability
of derived subsamples. Monte Carlo simulations were

conducted to validate the approach under various LFD
shapes. We illustrate in case studies how ADV can
support to evaluate adequate sampling effort. The case
studies focus on length samples from the German com-
mercial vessels fishing for North Sea cod (Gadus
morhua).

Keywords Length frequency distribution Reference
subsample Admissible dissimilarity measure . Robust
distributional modes and antimodes . Sampling effort
Sampling design

Introduction

Measurements of body length and weight give direct
evidence for growth in fish. The relationship between
fish length and weight can be used to convert length to
weight and vice versa and is frequently used in stock
assessments. Length can be easily and inexpensively
measured in the field or laboratory, on live or preserved
fish (Busacker et al. 1990), and is therefore a standard
parameter in commercial catch sampling. Length sam-
pling is performed in order to evaluate the length distri-
bution of species in catches or landings. Length frequen-
cy distributions (LFDs) are an important input for stock
assessments ranging from length-based data-limited
methods up to full analytical cohort-based assessments,
when transformed into age distributions via age-length
keys. The LFD can be represented by a single value like
mean length (Pennington et al. 2002). Still, the overall
shape of LFDs is more important than descriptive
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statistics like the mean or variance (Gerritsen and
McGrath 2007), since it represents the key length pat-
terns for the identification of cohorts and the estimation
of growth parameters displayed by species and stocks.

The determination of the appropriate sample size for
describing LFD is a frequently discussed problem in
fisheries science. The relationships between sample
size, intended length intervals, key life-history parame-
ters and number of modes identified in LFDs were
investigated by (Erzini 1990). Many studies fitting mix-
ture models to LFDs were conducted (Laslett et al.
2004; Shafii et al. 2010). Singh et al. (2016) have
proposed the bootstrap procedure distinguishing the
peaks of simulated subsamples and also incorporated
an intra-haul correlation in simulation. Gerritsen and
McGrath (2007) suggested some rules of thumb for
the adequate number of measured individuals required
to estimate representative LFDs, based on employing
the mean-weighted coefficient of variation under the
multinomial distribution assumption. Schultz et al.
(2016) and Chih (2010) employed resampling proce-
dures, which indicate the degree of deviation between
the original and resampled data based on the mean
absolute difference and the total sum of absolute differ-
ences in relative frequencies, respectively. The boot-
strap simulation procedure for determining an adequate
sample size was applied in Gomez-Buckley et al.
(1999), which investigated maximum differences be-
tween the cumulative distribution function (CDF) of
original data and the CDF of random samples of
different sizes. Miranda (2007) applied different sample
size estimators—histograms, mean length and PSD
(proportional stock density)—to describe and quantify
distributional length patterns by bootstrapping from
original dataset. Commonly, the applied methods in-
clude bootstrapping and parametric mixture modelling.
However, relying on bootstrap intervals creates a danger
of ignoring deviant but still plausible LFDs, as well as
accepting practically unsuitable LFDs (e.g. LFD of re-
duced sample not containing any measurement in some
minority length classes from original sample). More-
over, the general technical limitations of bootstrapping
methods are their computational expense, as well as
complicated way of dependence modelling. On the oth-
er hand, the pure statistical/probabilistic approaches al-
ternative to bootstrapping do not guarantee that an ob-
tained reduced sample (i) displays the distributional
properties of the original sample well and (ii) includes
(if necessary) rare informative observations, i.e. does

not artificially simplify the distributional patterns. In
particular, the quality of the final mixture model or
distribution is highly dependent on the initial parameters
and model type selection.

The main objective of this paper is to demonstrate a
general distribution-free methodological approach,
which was developed as an alternative to both analytical
and bootstrap frameworks mentioned above. We pro-
pose a novel framework to identify the reduced but still
informative sample and to quantify the (dis) similarity
between reduced and original samples. The difference
from existing approaches is the principle of how the
representative reduced samples (or subsamples) are de-
fined, constructed and interpreted. At the core of the
approach is the concept of the reference, or benchmark,
subsample. Reference subsample in our contexts is the
minimal representative subsample that despite smaller
sample size still preserves a reasonably precise LFD for
certain species. An iterative deterministic subsampling
procedure, based on certain conditions, returns a refer-
ence subsample, quantifies the difference between the
original sample and the reference subsample and pro-
vides a threshold value.We have called this threshold an
admissible dissimilarity value (ADV). Our approach
allows the estimation of the extent of differences be-
tween LFDs—or rather empirical CDFs—of the original
(target) sample and derived subsamples, by setting the
ADV. Of course, the original distribution can also be
derived from theoretical models. Preliminary findings
were presented at the third Workshop on Optimization
of Biological Sampling (WKBIOPTIM3) (see Bitetto
et al. (2019)).

The approach might be implemented to support
existing length-based approaches in fisheries science
and to determine future sampling tasks shared in re-
gional sampling programmes. It may be applied and
adapted to many other cases, also outside fisheries
science.

Our case study focuses on length samples from the
German commercial fleet fishing for North Sea cod
(Gadus morhua) in the third quarter 2018. We will first
describe the case study and dataset used, and then intro-
duce the essential definitions, the formal problem state-
ment and the iterative algorithm description (Materials
and methods). The implementation of the algorithm
calculated acceptable dissimilarity values, and practical
application to reduce sampling effort as well as simula-
tion study is presented and further discussed in Results
and discussion.



Materials and methods

Data and area description

In our study, we focus on German 3rd quarter length
frequency data for North Sea cod (Gadus morhua) from
2018, in ICES subarea 27.4 (ICES—International Coun-
cil for the Exploration of the Sea). We selected one métier
only for our analysis (OTB_DEF_ > = 120_0_0—otter
trawls targeting demersal species with a minimum mesh
size 120 mm). This métier operated in the 3rd quarter
2018 in ICES-Divisions 27.3.a, 27.4.a and 27.4.b,
targeting cod, saithe and haddock (Fig. 1). Métier is
defined as a group of fishing operations targeting a similar
assemblage of species, using similar gear, during the same
period of the year and/or the same area and which are
characterised by a similar exploitation pattern (European
decision 2008/949/CE2). Figure 2 demonstrates, conse-
quently, the spatial distribution of cod samples. As basis
for the analysis, we extracted the sampled data from the
German national database in standard regional database
(RDB) format (https://www.ices.dk/marine-data/data-

portals/Pages/RDB-FishFrame.aspx) and raised them to
thewhole catch. Thismeans that measured number of fish
at length was expanded to the total number of fish caught
in haul, i.e. multiplied by ratios between whole catch
weight and the weight of the measured sample. Next to
other parameters, the RDB contains biological
information sampled by a country during observer trips
or at port. In the case of Germany, all data come from
observer trips and include wanted (landings) and unwant-
ed (discards and below minimum size landings) catches.

A total of 15 observer trips with cod length samples
were conducted over the considered period and ICES
subareas 27.4 and 27.3.a—Skagerrak (Fig. 2) resulting
in approx. 4000 length measurements. However, we
would like to avoid combining both ICES areas, since
they belong to different strata, and will consider LFD
raised to the whole catch in haul and then aggregated by
all sampled trips, only from ICES area 27.4 (Fig. 3).
Three trips belonging to the same métier OTB_DEF_ >
= 120_0_0 were sampled over considered period
(Table 1). About 650 individuals were measured over
24 hauls (fishing operations).

Fig. 1 Spatial distribution of
German commercial vessels
catching cod in the North Sea
(sum in metric tonnes per ICES
statistical rectangle) for metier
OTB_DEF_ > = 120_0_0
combined in the 3rd quarter 2018
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Fig. 2 Spatial distribution of
unraised length samplings (in
absolute numbers of individuals
per ICES statistical rectangle) of
the German commercial cod
fisheries for metier OTB_DEF_ >
= 120_0_0 combined in the 3rd
quarter 2018

Fig. 3 LFD (raised to whole catch) of North Sea cod, obtained by the German commercial observers in the 3rd quarter 2018, in the ICES
area 27.4: original sample
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Similarity interpretation

As a starting point, we propose general guidelines as
well as a set of terminology to be used when analysing
the extent of similarity between LFDs. Generally, LFD
is difficult to quantify. Based on the entire original
length samples, the aim is to decide on which data
subsets from the original sample may be considered as
a representative subsample. The arguments and defini-
tions we present below help to find a formal way to
verify the dissimilarities between LFDs of original sam-
ple and subsample.

The LFD always displays a range of modal length
classes or modes (bumps, spikes) and antimodal length
classes or antimodes (gaps, dips). Formally, a length
class is determined as a mode (antimode) if adjacent
length classes exhibit lower (upper) frequency values
(i.e. local maxima/minima). For simplicity, it is assumed
that if two adjacent length classes could belong to modal
(antimodal) classes, i.e. their frequencies are equal and
frequencies of preceding and following length classes
are higher (lower), we will define the first of them as a
modal class. Typically, there is one major mode and few
minor (or secondary) modes. It is obvious that in data
without sample bias, well-observable modes usually
represent the different (strong) year classes of the sam-
pled population, separated by antimodes, which are the
boundaries between these age clusters. In other words,
the number of modes determines the number of distinct
age clusters in length frequencies, and the differences in
surrounding modes and antimodes (i.e. amplitudes)
indicate rates of detachment of age clusters. Of
course, there are also examples where these modes
(year classes) and antimodes are very hard (if possi-
ble at all) to detect. This is often the case in long-
lived (life span of more than 50 years (Cadrin et al.
2010)) and slow-growing fish like redfish of the
genus Sebastes where the length frequency distribu-
tions may be rather “uniform”.

The above-mentioned standard RDB format utilizes
data with length rounded to 1 cm (or rounded to 1/2 cm
for species like sprat (Sprattus sprattus) and herring
(Clupea harengus) with relatively low maximum
length). The standard bandwidth Δ = 1 cm obviously
delivers the maximal number of modes and antimodes
present in the dataset and can cause some “spurious”
modes and antimodes. To discover which modes/
antimodes are robust and to avoid a “spiky” form of
the LFD, the original distribution can be smoothed
correspondingly by the choice of a bandwidth Δ > 1.

Indeed, the shape of length frequency data is
completely determined by bandwidth and origin (Scott
1992). To be coherent, we decided always to fix the bin
origin at zero. Of course, it can also be chosen as the
smallest value in length data or also rounded, respec-
tively. Examples of the 2018 histogram for cod length
frequency data with bandwidth of 1 cm suggest more
structure in data with many spikes and gaps (Fig. 4). At
a bandwidth of 3 cm, the histogram looks smoother, and
with a bandwidth equal to 5 cm, it demonstrates just a
few modes. The last example (bandwidth of 10 cm) is
almost unimodal (excluding a small bump on the right
side). It is obvious that bandwidth acts as a smoothing
parameter for general patterns in the data. However,
during this process, the important detailed features in
the data should not get lost. This can be modelled
through mixture density (see, e.g. McLachlan and Peel
(2000)), but in our case, we stay within a nonparametric
framework, instead of relying on model selection, and
apply a “biologically reasonable” choice of degree of
smoothing Δ. In Anderson and Newmann (1996), the 1-
cm interval was proposed for species reaching maximal
30-cm body length and 2-cm interval for species
reaching from 31 to 60 cm. For species with maximal
body size 121–150 cm, a 5-cm interval is suggested, and
the database provides a maximal cod length equal to
128 cm for the period 2015–2018. Appropriate
smoothing helps to make the measuring of dissimi-
larity between the original sample and the subsample
not too sensitive towards changes in subsample shape
corresponding to small bumps and gaps in the sam-
ple, which could be just incidental for a certain sam-
pling event. The “smoothed” version of the LFDs
with a bandwidth of 5 cm is therefore used further
in our approach.

Note, that it is not always necessary to be focused on
information delivered by all length classes l = {lj}, j = 1,
2, …L. One can choose the most important length

Table 1 Trips contributing into cod sampling in 3rd quarter 2018
in ICES area 27.4: measured individuals’ unraised and raised to
whole catch (in brackets).

Trip code n measured
individuals

n sampled
fishing operations

Trip 1 169 (267) 7

Trip 2 218 (1204) 12

Trip 3 264 (453) 5
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classes lI = {lj ∈ I}, I ⊆ {1, 2,…, L}. Inside these thresh-
olds, the most significant information for a certain ap-
plication about the LFD shape is provided, while less
informative ones are ignored (e.g. very small or very
large fish).

The following definition concerns the meaning of
significantly distinct as well as robust modes and
antimodes in our context.

Definition 1. LetM
!¼ M 1ð ;M 2;…ÞT bemodes and A

!
¼ A1ð ;A2;…ÞT be antimodes of some LFD with

bandwidth 1 cm, and M
!smoothed ¼ MΔ

1 ;M
Δ
2 ;…

� �T
be

modes and A
!smoothed ¼ AΔ

1 ;A
Δ
2 ;…

� �T
be antimodes of

the same LFD with selected bandwidth Δ > 1 cm, where
Δ = Δ (max species length).

We define a modeMi∈M
!

as a robust mode on the set
of important length classes lI, if

1. MΔ
k ≤Mi < MΔ

k þ Δ
2. Mi ¼ max M1;M2;…ð Þ∈ MΔ

k ;M
Δ
k þΔ½�

M1;M 2;…ð Þ
3. f(Mi) > 0.01 · max(f(M1), f(M2),…),where M

!∈lI .

In the same way, an antimode Aj∈ A
!

is a robust
antimode on the set of important length classes lI, if

1. AΔ
r ≤Aj < AΔ

r þ Δ
2. Aj ¼ min

A1ð
;A2;…Þ∈ AΔ

r ;A
Δ
r þ Δ

� �
A1ð ;A2;…Þ,where

A
!∈lI .

According to this, the robust modes and antimodes
continue to be present despite length class smoothing
and are therefore not suspect to sampling artefacts,
“contaminating” the distributional shape. For example,
the mode M1 = 46 cm in Fig. 4 fulfils this criterion, for
all bandwidth values Δ except the last one Δ=10 cm.
Note that M1 does not deliver the maximal count value
for the bandwidth 1 cm (see Fig. 4a) but demonstrates its
robustness when the bandwidth increases. In case of the
existence of two or more original modes/antimodes
within a Δ-smoothed length class, the dominating one
(i.e. maximal/minimal) will be selected as a robust
mode/antimode. Moreover, modes having too low fre-
quencies (less than 1% of maximal frequency) are not
considered as being robust. However, expert judgment
may still be needed to determine the final set of modes
and antimodes dependent on the biology of the species
and the questions in place.

The next definition provides the formal requirements
of statistical-biological similarity between original and
subsampled LFDs.

Fig. 4 LFD (raised to whole catch) of North Sea cod, obtained by
the German commercial observers in the 3rd quarter of 2018, in
ICES area 27.4: original sample with different bandwidth and bin

origin at 0 (a) bandwidth = 1 cm; (b) bandwidth = 3 cm; (c)
bandwidth = 5 cm; and (d) bandwidth = 10 cm
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Definition 2. Let M
!¼ M 1ð ;M 2;…ÞT and m!¼ m1ð ;

m2;…ÞT be robust modes and A
!¼ A1ð ;A2;…ÞT and

a!¼ a; a2;…ð ÞT be robust antimodes of LFD of the
original Sorig = S0 and reduced Sn samples, respectively,
defined on the set of important length classes lI = {lj ∈ I},
I ⊆ {1, 2,…, L}. We define S0 and Sn as similar, if:

(1) They have the same number of robust modes and
antimodes revealed under chosen bandwidth Δ, i.e.
dim(m!) = dim(M

!
) and dim( a!) = dim(A

!
).

(2) For each corresponding pair mi, Mi and aj, Aj:

|mi −Mi|≤ ε and |aj − Aj|≤ ε, where ε = ε (max species
length).

(3) Amplitudes ratio
g mið Þ−g a jð Þj j
f Mið Þ− f A jð Þj j ≥ θ, where f(∙), g(∙)

are the values of the original and reduced sampled
LFDs at a point, respectively; j ∈ {i; i + 1}, i ∈ℕ,
0<θ ≤1.

This definition states that the subsampled dataset has
to preserve the structure and specific patterns of the
original dataset within lI, revealing the same number of
robust modes and antimodes (further also called robust
critical points) as well as keeping distinguished differ-
ences between adjacent critical values. Locations of
critical points for larger specimens do not have to be
exact and might vary in some small interval defined by
parameter ε. Our assumption is that if conditions (1)–(3)
are satisfied, two datasets are indistinguishable in both
integrated statistical-topological and biological sense.

Formal problem statement, dissimilarity measure
and admissible dissimilarity value (ADV)

Formally, the problem can be defined as follows: deter-
mine possible sampling effort reducing scenarios based
on subsamples S = {Sn}, for which a set of conditions/
constraints (1)–(3) given in Definition 2, Similarity in-
terpretation, is satisfied. How can a dissimilarity be-
tween the original sample and subsample be measured
in one number? This should be based on a certain
statistical distance.

We propose a new dissimilarity measure, based on
the well-known Minkowski metric distance, which in-
cludes penalty terms controlling performance of the
conditions. The Minkowski metric distance of order p
is given by:

Lp F;Gð Þ ¼ ∑
I

j¼1
F l j
� �

−G l j
� ��� ��p !1

p

∙functions (CDFs) of the original and any subsampled
datasets, respectively. F(lj) and G(lj) are their values in
length class lj ∈ lI. It is a very general metric, and using p
greater than 2 is unusual in practice, since larger values
of p give greater weights to values in which the CDFs F
andG differ most. In our approach, we employ the well-
known Manhattan or 1-Wasserstein distance
(Minkowski distance under p = 1) or L1-distance:

L1 F;Gð Þ ¼ ∑
I

j¼1
F l j
� �

−G l j
� ��� �� .

Note that by definition of CDF,

F l j
� � ¼ ∑

k ≤ j

f lkð Þ
f

;G l j
� � ¼ ∑

k ≤ j

g lkð Þ
g

∙∙;

where f(lj), g(lj) are the LFD counts at the length class lj
of the original sample and subsample, f ¼ ∑

k∈I
f lkð Þ; g

¼ ∑
k∈I

g lkð Þ. The choice of L1-distance as dissimilarity

measure originated from the easy way of visualization
(just an area between two empirical CDFs) and lower
sensitivity to outliers and abnormal values (e.g. compar-
ing to L2-distance).

Let V
!¼ sort M

!
; A
!� �

and v!¼ sort m!; a!� �
be the

sorted increasing sequences of the robust critical points
of the original sample and subsample, respectively, and
1 Ψf g : Ψ→ 0; 1f g be the indicator function, i.e. 1 Ψf g
¼ 1 if Ψ is true and 1 Ψf g ¼ 0 otherwise. A dissimilarity
between the original sample and subsample is measured
by the following distance:

D S0; Snð Þ ¼ L1 F;Gð Þ þ c1 � 1 dim v!
� �

≠ dim V
!� �n o

þ c2 � ∑
dim V

!� �
i¼1

max 0; vi − Vij j− εð Þ � 1 dim v!
� �

¼ dim V
!� �n o

þ c3 � ∑
dim V

!� �
i¼2

max 0; θ −
g við Þ − g vi−1ð Þ

���� ���
f Við Þ − f Vi−1ð Þ

���� ���
0
B@

1
CA

� 1 dim v!
� �

¼ dim V
!� �n o

where g við Þ ¼ g � G við Þ−G vi−1ð Þð Þ, f Við Þ ¼ f � Fð
Við Þ−F Vi−1ð ÞÞ, c1, c2 and c3 are some constants. The
first term is the L1-distance between two CDFs as men-
tioned above, and the three next terms represent penal-
ties, which we impose for violation of constraints
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(1)–(3), correspondingly. So, if a number of robust
critical points in the subsample is different from this
number in the original sample (violation of the condition

(1)), then 1 dim v!� �
≠ dim V

!� �n o
¼ 1 and the dis-

tance magnitude equals to D = L1(F, G) + c1, so a
constant penalty is applied to infeasible LFD of sub-
sample. In the same way, even by the equal number
of critical points, the penalty term restrains their
shifts: if the shift |vi − Vi| between some vi and Vi

exceeds ε (violation of the condition (2)), then
max(0, |vi − Vi| − ε ) = |vi − Vi| − ε and the distance
magnitude increase D = L1(F,G) + c2 · (|vi − Vi| − ε ).
The constants c1, c2 and c3 are introduced to define a
hierarchy on constraints violation, although they can
be put equal to 1. Intuitively, the slightest violation
corresponds to the condition (3) and the highest to the
condition (1), so that c3 = 1 and c1 = 10, for instance.
For condition (2), we take c2 = 2.

Obviously, for Sn ≡ S0 ,we obtain the lower bound
D = 0. The upper bound can be provided by a mini-
mally permitted reference subsample representing
“the worst case” or rather “minimum sampling ef-
fort” case. This is a reference subsample Sref, which
still reveals the patterns of the original distributional
shape for given parameter values (Δ, θ, lI, ε) (i.e.
meets conditions (1)–(3)), but cannot be reduced
anymore because further subsampling will change
the LFD shape. We will call the corresponding dis-
tance D(S0, Sref), where Gref is the empirical CDF of
Sref, the admissible dissimilarity value (ADV). It
represents a threshold (upper limit) to decide on
acceptable and unacceptable dissimilarities between
LFDs when reducing sampling effort. Thus, all sub-
samples S = {Sn} with D(S0, Sn) ∈ [0; ADV] can be
considered as representative ones in relation to the
original target sample, thus, suitable to access the
original length distribution information. It is easy to
see that ADV = D(S0, Sref) = L1(F, G

ref), since all
penalty terms equal to 0.

We should it make clear that the reference subsample
is a purely theoretical, unrealistic subsample, which is
formally constructed on the base of the conditions
(1)–(3) from Definition 2. We use it only to conclude
about the reliability of the derived “real-world” subsam-
ples with respect to the original sample.

Next, we describe the iterative subsampling proce-
dure that we apply to obtain reference subsample and
compute ADV.

Reference subsample and iterative subsampling
algorithm

In general, conditions (1)–(3) in Definition 2, Similarity
interpretation, represent one iteration of the iterative al-
gorithm. Briefly, during the procedure, we remove one
length measurement from each length class from S0, to
keep the LFD shape similar to the original one, and check
if those conditions are fulfilled. This subsampling process
is repeated as long as these conditions are satisfied,
otherwise it stops. The resulting subsample represents
the reference subsample (as mentioned above, “minimum
sampling effort” scenario) delivering a minimally suffi-
cient original distributional information.

Note that the set of parameters (Δ, θ, lI, ε) that we
apply for construction of the reference subsample can be
extended. We introduce the following additional
(optional) parameter γ, γ < θ, which indicates a mini-
mally required number per length class in a reference
subsample. This can be a fixed number of individuals in
each length class (e.g. scalar value γ = 10 fishes required
for ageing purposes) or relative number (percentage of
the original number in each length class, so vector value
{γj}, j = 1, 2, …L, where L is a number of 1-cm length
classes). We can say that parameter γ reflects the re-
quirements of official national sampling programmes in
a certain sense. Without defining of γ, some of length
classes can be subsampled to zero. Generally, this is not
a nuisance—some length classes might be absent in the
subsample as well as in the original sample. The role of
parameter γ is rather managerial than statistical: since
the original sample was taken based on certain sampling
regulations (like minimal fish number per length class),
and a constructed subsample is its “substitution”, it
should adopt all characteristics of the original sample.
Of course, the parameter γ can be also set to zero.

Formally, the iterative algorithm scheme can be de-
scribed as follows:

1) Use the standard RDB data with length rounded to
1 cm as basic input data.

2) Select bandwidthΔ and important length classes lI if
desired; identify corresponding robust critical
points in the original sample under Δ on the set lI.

3) Set remaining parameters {θ, γ, ε} .
4) Remove one length measurement from each length

class in lI, and see whether conditions (1)–(3) are
satisfied. If yes, repeat the step. If no, go back to the
previous subsample and stop. If a number of length



measurements in some length class reaches value γ,
subsampling of this length class stops either, but
subsampling of other length classes proceeds fur-
ther until the conditions are met.

According to the above described procedure, under γ
= 0 at each iteration step, subsample size equals n − i · I,
where n is original sample size, i is the iteration, and I is
a number of important length classes. Mathematically
speaking, the concept of reference subsample can be
defined as a limit of a sequence of these subsamples—
a bound that cannot be crossed. Each preserves a general
modal/antimodal structure revealed in original sample.
Note that subsamples are constructed deterministically,
i.e. without random sampling, since random selection
does not guarantee a desired result. Indeed, a random
elimination can deliver a subsample, which has a poten-
tial of being further reduced, but cannot, because it
already violates conditions (1)–(3). An extreme example
would be a subsample, where only a few length classes
are substantially reduced, but the rest remains un-
touched. Then, adopting such a subsample as a reference
would be confusing. The subsampling bootstrap, gener-
ating multiple subsamples, might be implemented here
but is too computationally prohibitive to be practical and
can induce some distributional uncertainty. Still,
employing a specific type of a random sampling in the
algorithm is a challenging task that we are currently
working on. The present study involves only a deter-
ministic type of subsampling procedure.

The corresponding generic iterative algorithm was
implemented in the R-5.3.1 software tool.

Results and discussion

Reference subsample construction and corresponding
ADVs

To illustrate the application of the above-described iter-
ative algorithm in a case study, the required set of input
parameters {Δ, θ, lI, γ, ε} need to be chosen:

& Δ = 5, for all examples below. The parameter Δ is
needed to decide if a certain critical point is robust or
no but doesn’t really related to any termination rule
in the further subsampling process. Therefore, the
histograms we present below refer only to 1 cm bin
width, not 5 cm.

& γ=0.2 nl j , where nl j is a number of individuals in the

length class lj of original sample (in other words, any
length class can be further subsampled, until this
contains more than 20% of length measurements
from original sample). Note that the length classes
with low number of length measurements (nl j < 5)

will be then deleted by reference subsample con-
struction. Thus, if desired a constraint γ ¼
0:2 nl j ; for nl j 5;
�

nl j ; for nl j < 5; can be set.

We use this constraint for all variants below.
& For important length classes lI and parameters ε and

θ, we consider in our example three variants:
& Variant (a):
– lI: all length classes presented in the original sample
– ε = 0
– θ = 0.9 (the amplitude differences in reference sub-

sample should be kept at least at the level of 90% of
original ones)

& Variant (b)

– Length classes, which don’t contain large (> 90 cm)
specimens, lI = ]0; 90]

– ε = 1
– θ = 0.9

& Variant (c):

– only moderate length classes, lI = [40; 80]
– ε = 3
– θ =0.7

The original dataset includes the length measure-
ments for year 2018 (Fig. 5). The robust modes/
antimodes determined for all length classes under
smoothing parameter Δ = 5 are equal to 46, 68, 75, 97
and 58, 72, 85, respectively (Figs. 5 and 6).

All length classes are considered as important and
involved in the ADV computation. Both original and
subsampled datasets are almost indistinguishable visually,
because the reference subsample includes only 67 individ-
uals less than the original sample. The procedure stopped
because a number of robust critical points were changed
during subsampling. The length class 102 cm became new
robust antimode. The corresponding empirical CDFs (F
and Gref) as well as ADVare displayed in Fig. 7.

For variant (b), we cut off our original sample at
length class 90 cm (Figs. 8, 9 and 10). Obviously, it
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covers a smaller number of critical points than in variant
(a) and consequently has a smaller number of restric-
tions. Now it is allowed to remove 576 measured indi-
viduals from important length classes of the original
sample without changing distributional patterns. Note
that in this case, the reason of iterations stop was differ-
ent from variant (a). One of the critical points, namely
antimodal length class 58 cm, shifted to a new antimode
at class 55 cm. This happened because the number of
measurements at length class 58 cm in the subsample
reached a minimally permitted number of individuals
fixed by parameter γ and cannot be reduced further. So,
at some iteration step, the count numbers at length

classes 55 cm and 58 cm became equal, and the value
55 cm as first in order for the Δ-interval [55; 59] is
nominated as a new antimode instead of 58 cm. As we
put ε = 1 < 58 − 55 = 3 for the variant (b), this has de-
fined the stopping rule here.

Finally, in variant (c), we considered only the length
classes from 40 to 80 cm (Figs. 11, 12 and 13). The
difference here is that the critical points are not kept
constant during the subsampling and can “shift” inside
the interval defined by parameter ε = 3, that is, 3 cm to
both sides. Therefore, even when the antimodal length
class 58 cm will be changed to 55 cm during the sub-
sampling, this does not stop the procedure. The stopping

Fig. 5 Original sample vs reference subsample with bandwidth = 1 cm, variant (a)
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Fig. 6 Original sample vs reference subsample with bandwidth = 5 cm, variant (a)



in this case was caused by the amplitude ratio condition:
the amplitude ratio between the second robust mode and
the first robust antimode reached a value less than
defined by θ = 0.7. The number of removed individuals
from important length classes is equal to 720.

Reducing sampling effort: various scenarios
of sampling units exclusion

Obtained in the previous subsection, the ADVs allow us
to identify representative subsamples, which we con-
struct by sequential hierarchical elimination of sampling
units at different levels—trips, hauls and measured
individuals—from the real cod length sample S0 given
in Table 1. However, for the most at-sea sampling

situations, effort reducing in practice can be achieved
rather by omitting either hauls or individuals, not the
entire trips. Still, the example illustrates various possible
alternatives of sampling effort reductions.

Three trips occur in the third quarter of year 2018
participating in North Sea cod sampling in area 27.4
(Table 1). Table 2 shows the elimination results for the
case of reference subsamples defined by variant (c) in
Reference subsample construction and corresponding
ADVs. As accompanying magnitudes, the mean length
and its standard error were computed from a simple
random effects model (Helle and Pennington 2004)
and is given by:

si;h;t ¼ μþ εt þ εh þ εr;

Fig. 7 Original sample vs
reference subsample: empirical
CDFs and ADV corresponding to
the variant (a)

Fig. 8 Original sample vs reference subsample with bandwidth = 1 cm, variant (b)
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where si, h, t is the length of fish i in trip t and haul h, μ is
the population mean length of all fishes in the catch, and
εt, εh and εr are random components describing trip,
haul and within-haul variations, respectively. Conse-
quently, Var si;h;t

� 	 ¼ σ2
t þ σ2

h þ σ2
r , if the indepen-

dence of εt, εh and εr is assumed and their variances
equal σ2

t , σ
2
h and σ2

r , respectively.

Removing either Trip 1 or Trip 3 (subsamples S1 or
S3; Table 2) does not affect the distributional shape, and
we still stay below the ADV with distances D equal to
0.47 and 0.66, respectively. So, conditions (1)–(3) are
satisfied, and penalty terms in distance expression
vanished. However, eliminating Trip 2 (subsample S2)
changes the distribution drastically and is therefore un-
acceptable. Deleting both Trip 1 and Trip 3 (subsample

Fig. 9 Original sample vs reference subsample with bandwidth = 5 cm, variant (b)

Fig. 10 Original sample vs reference subsample: empirical CDFs and ADV corresponding to the variant (b)
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S4) removes the last robust modal length class 75 cm,
rejecting the existence of a pronounced larger length
group that appears in the original sample (violation of
the condition (1)). This makes the original and subsam-
pled distributions dissimilar and diminish the informa-
tion delivered by the considered subsample. The lowest
bias compared to S0 was produced by eliminating Trip 3
(subsample S3), but the subsample S1 gives us the lowest
variance.

Next, we will continue the sampling intensity reduc-
tion and try to analyse the effect of the elimination of
fishing operations (hauls) within trips. We consider now
the length datasets provided by Trip 2 and Trip 3

(subsample S1) as well as by Trip 2 and Trip 1 (subsam-
ple S3) and assume that observer deployment is not
needed for fishing operations where total catch weight
is lower than 3 tonnes. Of course, this selection criterion
cannot guarantee sufficient quality of samples, because
the information on within-haul distribution is unknown.
We apply it to illustrate a possibility of managing
(reducing) observer’s workload stress. Seven fishing
operations conducted during both Trip 2 and Trip 3
and containing cod match this assumption, and their
removal changes LFD (Table 2, subsample S1.1), as
D(S0, S1.1) > > ADV = 3.02. Namely, one of antimodes
shifts from the value 58 cm to the value 63 cm (violation

Fig. 11 Original sample vs reference subsample with bandwidth = 1 cm, variant (c)

Fig. 12 Original sample vs reference subsample with bandwidth = 5 cm, variant (c)
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Fig. 13 Original sample vs
reference subsample: empirical
CDFs and ADV corresponding to
the variant (c)
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of the condition (2)), and some of the amplitudes ratios
go below the θ = 0.7 (violation of the condition (3)).

Lowering a boundary for the total catch weight per
fishing operation (now 1.5 tonnes instead of 3 tonnes,
see subsample S1.2, 2 fishing operations are removed)
reveals that even a low standard error estimate for mean
length does not guarantee that the LFD shape is pre-
served: the largest robust mode (75 cm) disappears, so
the severely penalized violation of condition (1) kicks
the distance value D out of the interval [0; ADV]. The
probable reason is that 2 removed hauls with lower catch
weight do not include larger length classes. The sub-
samples S3.1 and S3.2, where 6 and 2 hauls were re-
moved, respectively, show this unsuitable result as well.

Reducing sampling effort to the daytime (from 03:00
to 21:00) from subsamples S1 and S3 results in the
elimination of 2 sampled fishing operations from S1
(one from Trip 2 and one from Trip 3), as well as from
S3 (also one within each trip). Obtained subsamples S1.3
and S3.3 (Table 2) display LFD patterns similar with S0.
But the mean length estimation appears to be more
reasonable for subsample S1.3, and it is used for further
consideration.

Finally, the dataset S1.3 can be used for further reduc-
ing the number of individuals required to be measured
by observers. A resampling analysis to investigate the
effect of such reductions was proposed in (Wang et al.
2019). Following a similar resampling procedure, we
draw randomly from each haul 50%, 80% and 90% of
measured individuals (subsamples S1.3.1, S1.3.2 and S1.3.3
of Table 2, respectively). Since we have to rely on
simulation results here, we report the resulted median
values of distance D for the entire k = 3000 replications
(mean values can be more affected by extreme values of
D, obtained in some replications). Subsample S1.3.3
demonstrates the best result. Bold frames in the Table 2

select subsamples obtained by sequential elimination of
sampling units.

Just for the sake of comparison, we perform a two-
sample Kolmogorov-Smirnov test of the obtained refer-
ence subsamples for variants (a)–(c), Reference subsam-
ple construction and corresponding ADVs, versus the
sample containing length measurements present in the
original sample but absent in the reference subsample,
i.e. compliment of the reference subsample. This is
similar with a test comparing distributions of the origi-
nal sample and reference subsample. Really, the refer-
ence subsample is a part of the original sample, and if
there is difference between them, this can be caused
only by the compliment of the reference subsample with
respect to the entire original sample. The test resulted in
small p values indicating rejection of the null hypothesis
that subsample distributions are identical with the orig-
inal sample for variants (b) and (c). The p value for
variant (a) equals to 0.007; thus, the null hypothesis
can be accepted only at the level 0.001. This result
was expected, since the Kolmogorov-Smirnov test tends
to emphasize the region near the middle peaks of
distribution—the length classes where most of the
length measurements were removed. This demonstrates
a difference to our approach, where the dissimilarity
between the original sample and reference subsample
are based on biological and statistical-topological com-
ponents covered by parameters {Δ, θ, lI, γ, ε}. We have
to note, however, that in general, the Kolmogorov-
Smirnov test is not very reliable on binned data, if the
bins are not small enough. However, most of the length
measurements of fish are conducted by 1-cm length
class intervals, so the unbinned (continuous) data are
not available. Besides this, many standard statistical
tests assume a random sample of individual fishes and,
hence, cannot be really applied for comparison of LFDs.



Table 2 Sampling units elimination results, for reference subsample variant (c)

Sn Eliminated sampling units Distance D Sample size, all length
classes/length classes
lI = [40; 80]

Mean length/standard
error of mean length in
length classes lI = [40; 80]

S0 None 0 1924 / 1600 55.99 / 1.77

Trips elimination

S1 Trip 1 0.4744 1657/1428 54.14/1.08

S2 Trip 2 12.8497 720/525 57.65/1.92

S3 Trip 3 0.6616 1471/1247 56.31/2.87

S4 Trip 1 + Trip 3 11.3917 1204/1075 53.63/1.54

Hauls elimination

S1.1 • Trip 1
• Hauls less than 3 tonnes

total catch weight from
remained trips

4.9655 695/612 54.00/1.38

S1.2 • Trip 1
• Hauls less than 1.5 tonnes

total catch weight from
remained trips

10.7946 1268/1071 54.77/1.09

S1.3 • Trip 1
• Night time hauls

(21:00 ÷ 03:00) from
remained trips

0.3176 1573/1352 54.85/1.36

S3.1 • Trip 3
• Hauls less than 3 tonnes

total catch weight
from remained trips

10.92 822/681 56.55/2.82

S3.2 • Trip 3
• Hauls less than 1.5 tonnes

total catch weight from
remained trips

10.8254 1082/890 56.73/2.47

S3.3 • Trip 3
• Night time hauls

(21:00 ÷ 03:00) from
remained trips

0.4819 1390/1196 56.93/3.16

Individuals
elimination

S1.3.1 • Trip 1
• Night time hauls

(21:00 ÷ 03:00)
from remained trips

• 50% of individuals
from remained hauls

5.0786 (median) 788/677.75 (mean) 54.90/1.48 (mean)

S1.3.2 • Trip 1
• Night time hauls

(21:00 ÷ 03:00) from
remained trips

• 20% of individuals from
remained hauls

4.2839 (median) 1259/1082.15 (mean) 54.86/1.39 (mean)

S1.3.3 • Trip 1
• Night time hauls

(21:00 ÷ 03:00) from
remained trips

• 10% of individuals from
remained hauls

0.3680 (median) 1417/1218.25 (mean) 54.85/1.36 (mean)
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Fig. 14 Reference subsample size and ADV for various combinations of parameters ε and θ. Each point represents the average of 1000
simulation runs of data yi∼1

4 N 40; 5ð Þþ1
2 N 70; 5ð Þþ1

4 N 100; 5ð Þ, i = 1,…,2000
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Simulation study

In this section, we evaluate the behaviour of the ADV
running Monte Carlo simulations. The two parameters ε
and θ explicitly involved in the formula for distance D
vary across simulations; other parameters are fixed as
follows: γ = 5, Δ = 5, and lI include all length classes.
Simulated data for original sample of size 2000 present a
superposition of three normal distributions, with means
40, 70 and 100: yi~π1 N(40, sd) + π2 N(70, sd) +
π3 N(100, sd), i = 1, …, 2000, π1 ¼ π3 ¼ 1

4, π2 ¼ 1
2.

We conduct simulations under standard deviation values
sd equal to 5, 7 and 10. Thus, for each combination of ε,
θ and sd, a set of 1000 replicates are generated (Figs. 14,
15, 16 and 17 illustrate the simulation results).

Taken as a whole, however, our Monte Carlo simu-
lation results confirm the bootstrap results. Under a
smaller sd value (sd = 5), all three modes in the original
sample are clearly visible and isolated, so that the entire
data can be divided into three well-observed unimodal
segments. Therefore, the construction of the reference
subsample is rather defined by parameter θ than by
parameter ε (Fig. 8): the lines show almost linear pattern
dependent on θ but are located close to each other for
various ε values. For sd = 7, the difference between the
lines for different ε values is clearly more apparent (see
Fig. 9). The lines start to flatten out from values θ < 0.8,
so reference subsample size remains for this values
almost unaffected.

For the case of the large sd value sd = 10, the data (or
substantial part of the data) show no apparent pattern, so
the modes here are rather weak. Figure 16 illustrates one
realization of Monte Carlo simulation for this case,
under θ = 0.95 and ε = 0: the histogram demonstrates a
mode in the middle part, but the rest is relative
platykurtic. As one can see, the right and left parts of
the reference subsample are mostly flat due to the pa-
rameter γ. Eight hundred fifteen length measurements
were already reduced here, but further relaxation in
parameter θ does not bring any substantial decrease in
subsample size, since γ affects the amplitude values and
blocks the subsampling process.

Figure 17 validates this result: we obtain a significant
sample size reduction under larger θ values, and then
lines are stabilized.

To demonstrate the reliability of ADV, let us consid-
er two simulated datasets (see Fig. 18). The dataset 1
(upper panel left) represents the original sample, for
which the reference subsample (RS) was constructed.
The ADV plots under ε = 0 and ε = 3, 0.3 ≤ θ < 1, are
presented in the lower panel left. The distance values
between dataset 1 and dataset 2 (lower panel right)
clearly indicate that the dataset 2 (upper panel right)
cannot be accepted as a similar one to the dataset 1:

D(dataset 1, dataset 2) > > ADV, ∀θ, ε.
Unfortunately, it is difficult to compare our approach

to other methods, as our approach is based on Defini-
tions 1 and 2, so does not result in the exact same as, e.g.
bootstrap. Still, we have conducted a comparison to the



mentioned earlier bootstrap subsampling. However, be-
cause of the high computational costs of the bootstrap
subsampling, we present a comparison only based on
the simulated dataset S0 employed in Fig. 15:
yi∼ 1

4 N 40; 7ð Þ þ 1
2 N 70; 7ð Þ þ 1

4 N 100; 7ð Þ, i = 1, …,
2000. As before, we generate 1000 Monte Carlo repli-
cates. For each replicate, we take 500 bootstrap

subsamples Sboot. Each subsample size is equal to
the corresponding mean reference subsample size
(see Fig. 15 left). Then, the distance values between
subsample and original dataset are determined, and
the averaged value over 500 subsamples is calculat-
ed. Finally, a grand mean distance value is computed
by combining all the individual averages from each

Fig. 15 Reference subsample size and ADV for various combinations of parameters ε and θ. Each point represents the average of 1000
simulation runs of data yi∼1

4 N 40; 7ð Þþ1
2 N 70; 7ð Þþ1

4 N 100; 7ð Þ, i = 1,…,2000

Fig. 16 Original sample y and reference subsample under θ = 0.95 and ε = 0: y∼1
4 N 40; 10ð Þþ1

2 N 70; 10ð Þþ1
4 N 100; 10ð Þ, i = 1,…,2000
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replicate. As expected, a direct application of the
bootstrap subsampling results in mean distance
values, which significantly exceed the corresponding
ADVs (in average, D(S0, Sboot) ≈ 14). The empirical
CDF of reference subsample, in its turn, not always
falls completely within the 95% bootstrap confidence

interval constructed for the mean empirical CDF of
the original dataset. Figure 19 shows the proportion
of reference samples CDFs, entirely enclosed in a
95% bootstrap CI of the original dataset. For 0.8<θ
< 0.9, the proportion decreases steeply but with slope
depending on the ε values.

Fig. 17 Reference sample size and ADV for various combinations of parameters ε and θ. Each point represents the average of 1000
simulation runs of data yi∼1

4 N 40; 10ð Þþ1
2 N 70; 10ð Þþ1

4 N 100; 10ð Þ, i = 1,…,2000

Fig. 18 ADV as a dissimilarity indicator of two datasets. Dataset 1: yi∼1
4 N 40; 5ð Þþ1

2 N 70; 5ð Þþ1
4 N 100; 5ð Þ, i = 1, …,2000. Dataset 2:

z j∼1
2 N 50; 5ð Þþ1

2 N 60; 5ð Þ, j = 1,…,1000
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Fig. 19 Proportion of reference subsamples CDFs fully enclosed in 95% bootstrap interval of the simulated dataset:
yi∼1

4 N 40; 7ð Þþ1
2 N 70; 7ð Þþ1

4 N 100; 7ð Þ, i = 1,…,2000
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Discussion

In times of limited resources, a well-designed and quan-
titatively appropriate sampling scheme for the commer-
cial fishery as an important input to stock assessments is
a necessity. Due to limitations in time and staff and
partly a lack of willingness by the vessel’s owners to
take scientific observers on board, a random sampling of
the German commercial fishery is in certain métiers not
possible. This leads to a rather opportunistic sampling
strategy, taking sampling opportunities when they oc-
cur, irrespective if they are planned or not (Ulleweit
et al. 2010). Regardless of this drawback, our motivation
for developing the presented approach was to optimize
the sampling possibilities that we have. Our approach
establishes quantitative objectives of length sampling
not directly in the form of sample size determination
but rather in the form of selection of “information-suf-
ficient”, adequate length distribution.

We defined a “good” representative subsample in
both biological and statistical-topological contexts: for
instance, despite some moderate difference in central
tendency or spread, the distributions of original and
subsampled datasets can be quite similar in shapes and
therefore reflect biologically the same patterns. There-
fore, even if such difference was revealed as statistically
significant (e.g. by some statistical test), it might be still
too early to draw conclusions. Vice versa, a central
tendency in a subsample might remain almost the same,

and only large or small lengths may be affected (e.g. due
to changes in a sampling scheme) but in a significant
way. Many statistical tests will not distinguish between
null and alternative hypotheses (Matloff 1991), espe-
cially under small or moderate sample sizes. Thus, it has
to be measured how different the original and subsam-
pled datasets are, but without relying on the p values
reported by corresponding statistical tests, bootstrap
confidence intervals or selected models—that is, with-
out offering pure statistical approaches to be a major
“decision maker”. Our suggestion is that a representa-
tive subsample has to match the shape of the original
distribution in the main; i.e. capture the important robust
distributional patterns of the original sample (or
modelled shape), and at the same time ignore fractions
which can be just artefacts of insufficient sampling for
certain length classes. As example with Kolmogorov-
Smirnov test application has shown, the detected differ-
ence between original sample and subsample can be
real, but just not important, or vice versa. Our approach
is aimed to avoid such misinterpretation and helps to
conclude with a formal statement regarding the amount
of the lost important information in the subsample, with
respect to the original sample.

Moreover, the representativeness concept can vary
from species to species or can depend on the official
national sampling plan. This means that both statistical
distributional features and biology experts’ judgements
are responsible for reasoning if a subsample is
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representative and contribute to the decision process.
Our framework captures both contributing sides by the
choice of the input parameter set {Δ, θ, lI, ε}.

The presented effort reducing method results in a
suitable combination of trips, hauls and haul fractions,
representing a multilevel subsampling scenario, based
on the variant (c). This variant illustrates a situation,
when (1) the middle part of LFD is of key interest
(parameter lI), (2) the magnitudes of the robust critical
points of the LFD, probably due to high number of
sampling artefacts or measurement inaccuracy (Fig.
2a), get some flexibility to move within the interval
defined by parameter ε, and (3) the amplitudes between
robust critical points can be smoothed (parameter θ).
Variant (b) includes information also about juveniles in
the LDF, and variant (a) might be applied to species
with long lifespans, or with large variation in size, so
that the tails of distribution are also highly informative
and the analysis based on all length classes is preferred.
The described flexibility of our approach enables us to
apply this method to various fish stocks and fisheries
with different selectivity patterns resulting in diverse
LDFs in the catches.

The next notes concern potential improvements of
the proposed algorithm. First, the setting of the same

parameters θ and ε for all robust critical points V
!

may
be too rigorous. As an alternative, we can consider

further the vector magnitudes θ
!¼ θ1;…; θð dim V

!� �

−1ÞT and ε!¼ ε1;…; ε
dim V

!� �
0
@

1
A

T

, where each

vector component represents the constraints correspond-
ing to the certain critical points. Based on our case study,
we could claim that for the major robust mode V1 =
46 cm as well as for the most obvious robust antimode
V2 = 58 cm, the components of the shift-parameter ε are
set to ε1 = ε2 = 3 cm, but other components give more
relaxed constraints, e.g. εi > 2 = 5 cm. The same concerns
amplitude-parameter θ: θ1 = 0.7, but θi > 1 = 0.5.

We also have to clarify the role of the constants c1, c2
and c3 (see Formal problem statement, dissimilarity
measure and admissible dissimilarity value (ADV)).
As mentioned above, they are chosen to reflect the
relative importance of the constraints (1)-(3) from Def-
inition 2. For instance, our concern was to find only
exact matches between LFDs of the original and sub-
sampled datasets with respect to the number of robust
critical points, so the large value of c1 would be

appropriate. The constants can be also empirically de-
termined or adapted to the particular LFD content. For
example, in the case of slow-growing species, the length
classes can overlap considerably, and some of robust
modes can appear close to each other. Therefore, if we

set here c2 ¼ min
i¼1;…;dim M

!� � Miþ1−Mij j
0
@

1
A

−1

, a

certain softening of the constraint (2) violation for this
kind of species will be achieved. Testing the penalty
functions and corresponding constants of other types
could contribute to future developments of the presented
approach.

Second, we have to note that Definition 2 should be
strengthened, by adding a new condition or improving
condition (3). The situation, when the trend of ampli-
tudes between consecutive modes and antimodes can
flatten out, is possible. The relative large values (≥ 0.5)
of the parameter θ, which are also more appropriate in
practice, successfully prevent such flattening, but for
small θs, this may take place (this situation is
explained schematically in Fig. 20). The implication is
that both LFD shapes on the left panel can be evaluated
as similar, which is clearly faulty: the upper plot is a
common one in fisheries sampling multimodal LFD
with amplitudes decreasing after the primary mode; the
lower one is an “almost sinusoidal” shape with equal
amplitudes. The amplitude trends in the right panel
verify this. A possible way of modifying the expression
for distance D could be by entering a penalizing term
that, e.g. prevents changes in amplitudes ranks.

Third, combining distance D, which is a kind of a
shape distribution discriminator, with other metrics like,
e.g. coefficient of variation (CV), can improve a perfor-
mance of the method. Table 2 illustrates an example
how mean length and standard error are changed during
subsampling. Incorporating an estimation tool for dif-
ferent statistical metrics into the iterative procedure will
help to control how the metrics are affected.

Forth, a potential extension of the approach is imple-
mentation of a random subsampling procedure, instead
of the deterministic one. Currently the use of random
subsampling imposes practical complications, like high
computational costs and ignoring the important features
of the original LFD.

Finally, we have not differentiated between target and
incidental catch, as well as between at-sea and onshore
sampling, at the current stage of the research.



Nevertheless, defining a reference subsample by a set of
considered parameters, we can easily extend it or make it
more specific. Moreover, the approach is flexible enough
to allow the inclusion of parameters or requirements
defining the sampling costs and/or environment factors.
So, one might be interested in the comparison of costs-
precision compromises obtained by elimination of sam-
pled trips or ports (cost savings in on-board maintenance
of the observer and salary), hauls (costs and time savings)
and measured individuals (rather time savings). In addi-
tion, the possibility of multiple species scenario imple-
mentation, where practically relevant LFDs for several
species are recovered simultaneously, would be a possi-
ble topic for future investigations as well. We have fo-
cused on length frequency distribution in our approach,
but it could also be relevant for distributional analysis of
other biological parameters, for example, age. The poten-
tial studies are related to the structure of the proposed
dissimilarity measure D and corresponding parameters
we have already highlighted above. The developed
frameworkmay be adapted tomany possible applications
that will be the object of a distinct paper.

Next, we would like to discuss relative advantages
and disadvantages of the proposed approach. Previous
studies on fish LFDs were based mainly on the imple-
mentation of bootstrapping techniques, which definitely
can provide a simple solution in problems where ana-
lytical solutions do not exist (Efron and Tibshirani
1993). Nevertheless, the application of the bootstrap in
fisheries science tasks, apart from computational costs,
may be not straightforward. For fisheries data that are

clearly not independent and have structure dependence,
bootstrap procedures can sometimes become inflexible
and hard to modify. An example for some powerful
modification might be a multilevel bootstrapping (e.g.
Ren et al. 2010; Sturludottir and Stefansson 2019),
when resampling is done first on the highest level (e.g.
trips) and then sequentially on the lower levels (hauls
within each trip, individuals within each haul). Still, as
we have already mentioned above, keeping significant
distributional patterns in simulated subsamples is not
guaranteed here and may lead to the loss of essential
patterns. Consequently, the advantages offered by our
approach can be described as follows.

1. The approach is based on multiple criteria, which
include identification and keeping the significant
informative critical points of LFD depending on
the species, as well as focusing (if desired) on the
“bulk” of the LFD.

2. The approach overcomes the problem of data de-
pendence, because the dependence structure of the
original sample is implicitly preserved in the refer-
ence subsample. However, if the goal is also the
estimation and comparison of parameters such as
mean length and CV, we have to include the esti-
mators for parameters of interest used for dependent
data in the algorithm, as we have already mentioned
above (e.g. the ratio estimator presented by
(Pennington and Volstad 1994)). Still, for stock
assessment, the precision of length frequency distri-
bution is a primary target.

Distribu onal shape Amplitudes trend

Fig. 20 Form of distributional shape and corresponding amplitudes trend
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3. In general, the accuracy of bootstrapping may be
poor for small samples. Besides, if the original
sample includes important rare extreme values,
bootstrapping can undervalue them and thereby ex-
clude some suitable subsamples (scenarios) as well
as underestimate the variability in the original sam-
ple. Bootstrap as a “shape descriptor” can be also
insensitive to some important LFD features, e.g.
amplitudes. In our algorithm, we can control re-
quirements to the reference subsamples. The simu-
lated comparison to bootstrap subsampling con-
firms this. However, we have to note that the boot-
strap and presented here approaches do not the exact
same things; therefore, the direct comparison is
inappropriate. Both approaches rather complement
each other.

4. The explicitly formulated definitions of the robust
critical points and the statistical topologically and
biologically similar samples help to split the original
LFD on well-defined length clusters, i.e. “sieves
out” the most frequent length classes (modes) as
well the boundaries between them (antimodes) and
filters out the noise (or measurement artefacts). This
makes the approach more pronounced and
transparent.

5. The algorithm is computationally cheap and does
not require large storage capacity.

A key drawback of the proposed approach is that it
requires some expertise about species LFD structure
before the algorithm parameters are chosen, and this
can include some kind of subjectivity. However, the
parameters {Δ, θ, lI, ε} define a compromise in length
data collection, and this is often practical and/or situa-
tional. Therefore, focusing on practical reasons and
aspects will minimize the subjectivity. Practical goals,
for example, can be guided by regional sampling strat-
egy principles, where the requirements for LFD preci-
sion are defined at the regional métier level. The nation-
al sampling RDB data should be aggregated and raised
to métier level, to determine reference subsamples for
species and the corresponding ADVs. So, to achieve a
certain level of precision established by these reference
subsamples, some redesigns of national sampling strat-
egies might be recommended.

Then, a temporal aspect should be incorporated: e.g.
if the elimination of trips made by certain vessel or
métier does not affect LFDs presented in our case study
for each year, this vessel/métier might be recommended

for exclusion from the cod sampling programme. On the
other hand, if significant temporal changes in LFD are
evident, some additional sampling effort should be al-
located to the vessel/métier. Thus, the approach could
contribute indirectly to the sampling strategy estimation
and can be implemented to find optimal solutions for
distributing future sampling tasks in regional sampling
programmes. The lack of time component is a clear
limitation of the current study. However, this paper is
aimed to present the core ideas of the approach. The
deeper analysis accounting for a number of years is a
conceptual framework of the ongoing research but lies
outside the scope of this study.

Our approach relies on identifying (robust) modes/
antimodes of LFD. Length data in the original sample,
however, not always shows strong cohorts signals, so
that LFD shape is nearly uniform or platykurtic and
modes/antimodes are not distinct. The subsampling pro-
cedure still works and a reference subsample can be
obtained, but it might generating misleading conclu-
sions (e.g. identifying one of several small relative equal
distributional peaks as a robust mode). In particular, Fig.
17 reflects the simulation results for data partially com-
ing from such a situation. In such cases, the use of
methods not relying on modal structure is preferable.
Therefore, technically, we would consider the proposed
method at its current state as a supporting tool, as a
compliment, that can be incorporated as a part into
general length-based method processes.

Conclusion

In this study, we present a novel approach for an opti-
misation of sampling effort as an alternative to bootstrap
and modelling techniques. The length sampling of the
German commercial vessels on North Sea cod serves as
an example for testing the method and for highlighting
the advantages using this approach. Our conclusion is
that the approach could be integrated into length-based
methods in fisheries science, in order to support the
optimization of the sampling process at some stages of
national or regional sampling programmes, without re-
ducing the quality of stock assessments. Overall, man-
agers can use it as a complementary tool in the planning
and determination future sampling plans and in the
evaluation and optimization of existing sampling de-
signs, as well as by fisheries scientists in stock assess-
ments. We suggest that future developments should be
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focused on developing a more versatile, generalized
version of the dissimilarity measure D and subsampling
algorithm, combined with an application to various
sampling designs.
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