Skip to main content
Log in

Adsorption of ammonium from simulated wastewater by montmorillonite nanoclay and natural vermiculite: experimental study and simulation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this research, montmorillonite nanoclay (MNC) and vermiculite were used to adsorb ammonium (NH4 +) from simulated wastewater. The effect of organic acids, cations, and anions on adsorption of NH4 + was also studied using batch experiments. The presence of organic acids significantly decreased the NH4 + adsorption using both adsorbents and the reduction followed the order of citric acid > malic acid > oxalic acid. The presence of cations in wastewater could decrease the adsorption of NH4 + and the ion exchange selectivity on the MNC and vermiculite followed the orders Mg > Ca ≥ K > Na and Mg > > Ca > Na > K, respectively. Adsorption of NH4 + by adsorbents in the presence of sulfate (SO4) was higher than those in the presence of phosphate (PO4) and chloride (Cl) anions. Results indicated that MNC and vermiculite had good potential for NH4 + removal depending on adsorbent dosage, pH, contact time, and initial NH4 + concentration. The effect of pH on removal of NH4 + indicated that MNC would be more appropriate as the adsorbent than vermiculite at low pH values. Kinetic analysis demonstrated that the rate-controlling step adsorption for NH4 + by MNC and vermiculite was heterogeneous chemisorption and followed the pseudo-second-order model. The desorption experiments indicated that the adsorption of NH4 + by adsorbents was not fully reversible, and the total recovery of adsorbed NH4 + for MNC and vermiculite varied in the range of 72 to 94.6% and 11.5 to 45.7%, respectively. Cation exchange model (CEM) in PHREEQC program was used to simulate NH4 + adsorption. Agreement between measured and simulated data suggested that CEM was favored in simulating adsorption of NH4 + by clay minerals. The results indicated that MNC and vermiculite have good performance as economic and nature-friendly adsorbents that can ameliorate the water and environment quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abollino, O., Giacomino, A., Malandrino, M., & Mentasti, E. (2008). Interaction of metal ions with montmorillonite and vermiculite. Applied Clay Science, 38, 227–236.

    Article  CAS  Google Scholar 

  • Alshameri, A., Yan, C., Al-Ani, Y., Dawood, A. S., Ibrahim, A., Zhou, C., et al. (2014). An investigation into the adsorption removal of ammonium by salt activated Chinese (Hulaodu) natural zeolite: kinetics, isotherms, and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers, 45, 554–564.

    Article  CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry). (2004). Toxicological profile for ammonia. Atlanta: U.S. Department of Health and Human Services 269 pp.

    Google Scholar 

  • Badawy, N. A., El-Bayaa, A. A., & Abd AlKhalik, E. (2010). Vermiculite as an exchanger for copper (II) and Cr (III) ions, kinetic studies. Ionics, 16, 733–739.

    Article  CAS  Google Scholar 

  • Bhatnagar, A., Kumar, E., & Sillanpää, M. (2010). Nitrate removal from water by nano-alumina: characterization and sorption studies. Chemical Engineering Journal, 163, 317–323.

    Article  CAS  Google Scholar 

  • Bohn, H., McNeal, B., & O'Connor, G. (1985). Soil chemistry (2nd ed.). New York: Wiley.

    Google Scholar 

  • Boopathy, R., Karthikeyan, S., Mandal, A. B., & Sekaran, G. (2013). Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies. Environmental Science and Pollution Research, 20, 533–542.

    Article  CAS  Google Scholar 

  • Cooney, E. L., Booker, N. A., Shallcross, D. C., & Stevens, G. W. (1999). Ammonia removal from wastewaters using natural Australian zeolite. I. Characterization of the zeolite. Separation Science and Technology, 34, 2307–2327.

    Article  CAS  Google Scholar 

  • EFSA (European Food Safety Authority). (2012). Health risk of ammonium released from water filters. EFSA Journal, 10, 2918.

    Article  Google Scholar 

  • Englert, H., & Rubio, J. (2005). Characterization and environmental application of a Chilean natural zeolite. International Journal of Mineral Processing, 75, 21–29.

    Article  CAS  Google Scholar 

  • Fonseca, D., Maria, G., Michelle de Oliveira, M., & Arakaki, L. N. H. (2006). Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral. Journal of Hazardous Materials, 137, 288–292.

    Article  Google Scholar 

  • Gaines, G. L., & Thomas, H. C. (1953). Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. Journal of Chemical Physics, 21, 714–718.

    Article  CAS  Google Scholar 

  • Ghorbani, M. (2013). The economic geology of Iran: Mineral deposits and natural resources. Heidelberg: Springer Science, Business Media Dordrecht.

    Book  Google Scholar 

  • Goldberg, S. (1995). Adsorption models incorporated into chemical equilibrium models. SSSA special publication, 42, 75–95.

    CAS  Google Scholar 

  • Hadadi, N., Kananpanah, S., & Abolghasemi, H. (2009). Equilibrium and thermodynamic studies of cesium adsorption on natural vermiculite and optimization of operation conditions. Iranian journal of chemistry and chemical engineering, 28, 29–36.

    CAS  Google Scholar 

  • Hashem, F. S., Amin, M. S., & El-Gamal, S. M. A. (2015). Chemical activation of vermiculite to produce highly efficient material for Pb2+ and Cd2+ removal. Applied Clay Science, 115, 189–200.

    Article  CAS  Google Scholar 

  • Huang, H., Xiao, X., Yan, B., & Yang, L. (2010). Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. Journal of Hazardous Materials, 175, 247–252.

    Article  CAS  Google Scholar 

  • Ismadji, S. (2015). Natural clay minerals as environmental cleaning agents. In S. Ismadji,F. E. Soetaredjo, A. Ayucitra (Eds.), Clay materials for environmental remediation (pp. 5–37). Springer Briefs in Green Chemistry for Sustainability. doi:10.1007/978-3-319-16712-1_2.

  • Jorgensen, T. C., & Weatherley, L. R. (2003). Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Research, 37, 1723–1728.

    Article  CAS  Google Scholar 

  • Karadag, D., Koc, Y., Turan, M., & Armagan, B. (2006). Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. Journal of Hazardous Materials, 136, 604–609.

    Article  CAS  Google Scholar 

  • Kithome, M., Paul, J. W., Lavkulich, L. M., & Bomke, A. A. (1998). Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite. Soil Science Society of America Journal, 62, 622–629.

    Article  CAS  Google Scholar 

  • Malandrino, M., Abollino, O., Giacomino, A., Aceto, M., & Mentasti, E. (2006). Adsorption of heavy metals on vermiculite: influence of pH and organic ligands. Journal of Colloid and Interface Science, 299, 537–546.

    Article  CAS  Google Scholar 

  • Marine, N. R. G. (1999). Canadian water quality guidelines for the protection of aquatic life (pp. 1–5). Winnipeg: Canadian Council of Ministers of the Environment.

    Google Scholar 

  • Mazloomi, F., & Jalali, M. (2016). Ammonium removal from aqueous solutions by natural Iranian zeolite in the presence of organic acids, cations and anions. Journal of Environmental Chemical Engineering, 4, 240–249.

    Article  CAS  Google Scholar 

  • Mulvaney, R. L. (1996). Nitrogen-inorganic forms. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis. Part 3. Chemical methods (pp. 1123–1184). Madison WI: Soil Science Society of America Inc.

    Google Scholar 

  • Murray, H. H. (1991). Overview—clay mineral applications. Applied Clay Science, 5, 379–395.

    Article  CAS  Google Scholar 

  • Nieder, R., Benbi, D. K., & Scherer, H. W. (2011). Fixation and defixation of ammonium in soils: a review. Biology and Fertility of Soils, 47, 1–14.

    Article  CAS  Google Scholar 

  • Oba, M., (2015). Adsorption selectivity of cations in constrained environments. Master’s Theses. University of Connecticut.

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2)-a computer program for specia-tion, batch-reaction, one-dimensional transport, and in-verse geochemical calculations (p. 326). Washington, DC: United States Geological Survey, Water Resources Investigations Report 99–4259.

    Google Scholar 

  • Ranjbar, F., & Jalali, M. (2013). Measuring and modeling ammonium adsorption by calcareous soils. Environmental Monitoring and Assessment, 185, 3191–3199.

    Article  CAS  Google Scholar 

  • Ranjbar, F., & Jalali, M. (2015). The effect of chemical and organic amendments on sodium exchange equilibria in a calcareous sodic soil. Environmental Monitoring and Assessment, 187, 1–21.

    Article  CAS  Google Scholar 

  • Rich, C. I., & Black, W. R. (1964). Potassium exchange as affected by cation size, pH, and mineral structure. Soil Science, 97, 384–390.

  • Shkatulov, A., Ryu, J., Kato, Y., & Aristov, Y. (2012). Composite material “Mg (OH) 2/vermiculite”: a promising new candidate for storage of middle temperature heat. Energy, 44, 1028–1034.

    Article  CAS  Google Scholar 

  • Shoumkova, A. (2011). Zeolites for water and wastewater treatment: an overview. Research Bulletin of the Australian Institute of High Energetic Materials, Special Issue on Global Fresh Water Shortage, 2, 10–70.

    Google Scholar 

  • Sprynskyy, M., Lebedynets, M., Terzyk, A. P., Kowalczyk, P., Namieśnik, J., & Buszewski, B. (2005). Ammonium sorption from aqueous solutions by the natural zeolite Transcarpathian clinoptilolite studied under dynamic conditions. Journal of Colloid and Interface Science, 284, 408–415.

    Article  CAS  Google Scholar 

  • Stawiński, W., Węgrzyn, A., Freitas, O., Chmielarz, L., Mordarski, G., & Figueiredo, S. (2017). Simultaneous removal of dyes and metal cations using an acid, acid-base and base modified vermiculite as a sustainable and recyclable adsorbent. Science of the Total Environment, 576, 398–408.

    Article  Google Scholar 

  • Stylianou, M. A., Inglezakis, V. J., Moustakas, K. G., Malamis, S. P., & Loizidou, M. D. (2007). Removal of Cu (II) in fixed bed and batch reactors using natural zeolite and exfoliated vermiculite as adsorbents. Desalination, 215, 133–142.

    Article  CAS  Google Scholar 

  • Tertre, E., Prêt, D., & Ferrage, E. (2011). Influence of the ionic strength and solid/solution ratio on ca (II)-for-Na+ exchange on montmorillonite. Part 1: chemical measurements, thermodynamic modeling and potential implications for trace elements geochemistry. Journal of Colloid and Interface Science, 353, 248–256.

    Article  CAS  Google Scholar 

  • Tournassat, C., Ferrage, E., Poinsignon, C., & Charlet, L. (2004). The titration of clay minerals: II. Structure-based model and implications for clay reactivity. Journal of Colloid and Interface Science, 273, 234–246.

    Article  CAS  Google Scholar 

  • Tournassat, C., Gailhanou, H., Crouzet, C., Braibant, G., Gautier, A., Lassin, et al. (2007). Two cation exchange models for direct and inverse modelling of solution major cation composition in equilibrium with illite surfaces. Geochimica et Cosmochimica Acta, 71, 1098–1114.

    Article  CAS  Google Scholar 

  • Wang, Y. F., Lin, F., & Pang, W. Q. (2007). Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite. Journal of Hazardous Materials, 142, 160–164.

    Article  CAS  Google Scholar 

  • Wang, M., Liao, L., Zhang, X., Li, Z., Xia, Z., & Cao, W. (2011). Adsorption of low-concentration ammonium onto vermiculite from Hebei Province, China. Clays and Clay Minerals, 59, 459–465.

    Article  CAS  Google Scholar 

  • Wang, B., Lehmann, J., Hanley, K., Hestrin, R., & Enders, A. (2015). Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere, 138, 120–126.

    Article  CAS  Google Scholar 

  • Weatherley, L. R., & Miladinovic, N. D. (2004). Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite. Water Research, 38, 4305–4312.

    Article  CAS  Google Scholar 

  • WHO (World Health Organisation). (2011). Guidelines for drinking water quality (Fourth ed.). Geneva: World Health Organization 541 pp.

    Google Scholar 

  • Widiastuti, N., Wu, H., Ang, H. M., & Zhang, D. (2011). Removal of ammonium from greywater using natural zeolite. Desalination, 277(1), 15–23.

    Article  CAS  Google Scholar 

  • Yin, X., Wang, X., Wu, H., Ohnuki, T., & Takeshita, K. (2017). Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations. Journal of Hazardous Materials, 326, 47–53.

    Article  CAS  Google Scholar 

  • Yusof, A. M., Keat, L. K., Ibrahim, Z., Majid, Z. A., & Nizam, N. A. (2010). Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite. Journal of Hazardous Materials, 174, 380–385.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Bi, E. (2012). Effect of dissolved organic matter on ammonium sorption kinetics and equilibrium to Chinese clinoptilolite. Environmental Technology, 33, 2395–2403.

    Article  Google Scholar 

  • Zhang, M., Zhang, H., Xu, D., Han, L., Niu, D., Tian, B., et al. (2011). Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method. Desalination, 271, 111–121.

    Article  CAS  Google Scholar 

  • Zheng, X., Dou, J., Yuan, J., Qin, W., Hong, X., & Ding, A. (2017). Removal of Cs+ from water and soil by ammonium-pillared montmorillonite/Fe3O4 composite. Journal of Environmental Sciences, 56, 12–24.

  • Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., & He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, 239–258.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Mazloomi.

Electronic supplementary material

ESM 1

(DOCX 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazloomi, F., Jalali, M. Adsorption of ammonium from simulated wastewater by montmorillonite nanoclay and natural vermiculite: experimental study and simulation. Environ Monit Assess 189, 415 (2017). https://doi.org/10.1007/s10661-017-6080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6080-6

Keywords

Navigation