Skip to main content

Advertisement

Log in

Estimation of green house gas emissions from Koteshwar hydropower reservoir, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The emissions of greenhouse gas (GHG) from soils are of significant importance for global warming. The biological and physico-chemical characteristics of soil affect the GHG emissions from soils of different land use types. Methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) production rates from six forest and agricultural soil types in the Koteshwar hydropower reservoir catchments located in the Uttarakhand, India, were estimated and their relations with physico-chemical characteristics of soils were examined. The samples of different land use types were flooded and incubated under anaerobic condition at 30 °C for 60 days. The cumulative GHG production rates in reservoir catchment are found as 1.52 ± 0.26, 0.13 ± 0.02, and 0.0004 ± 0.0001 μg g soil−1 day−1 for CO2, CH4, and N2O, respectively, which is lower than global reservoirs located in the same eco-region. The significant positive correlation between CO2 productions and labile organic carbon (LOC), CH4 and C/N ratio, while N2O and N/P ratio, while pH of soils is negatively correlated, conforms their key role in GHG emissions. Carbon available as LOC in the reservoir catchment is found as 3–14% of the total ‟C” available in soils and 0–23% is retained in the soil after the completion of incubation. The key objective of this study to signify the C, N, and P ratios, LOC, and pH with GHG production rate by creating an incubation experiment (as in the case of benthic soil/sediment) in the lab for 60 days. In summary, the results suggest that carbon, as LOC were more sensitive indicators for CO2 emissions and significant C, N, and P ratios, affects the GHG emissions. This study is useful for the hydropower industry to know the GHG production rates after the construction of reservoir so that its effect could be minimized by taking care of catchment area treatment plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GHG:

Greenhouse gases

CO2 :

Carbon dioxide

N2O:

Nitrous oxide

CH4 :

Methane

GWP:

Global warming potentials

AGB:

Above ground biomass

LOC:

Labile organic carbon

SOC:

Soil organic carbon

TOC:

Total organic carbon

DOC:

Dissolve organic carbon

OC:

Organic carbon

LULC:

Land use and land cover

GC:

Gas chromatography

References

  • Abril, G., Guerin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., Tremblay, A., Varfalvy, L., dos Santos, M. A., & Matvienko, B. (2005). Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochemical Cycles, 19, GB4007. doi:10.1029/2005GB002457.

    Article  Google Scholar 

  • Alberto, M. C. R., Wassman, R., Buresh, R. J., Quilty, J. R., Correa, T. Q., Sandro, J. M., & Centeno, C. A. R. (2014). Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer. Field Crop Research, 160, 12–21.

    Article  Google Scholar 

  • Bhatia, A., Jain, N., & Pathak, H. (2013). Methane and nitrous oxide emissions from Indian rice paddies, agricultural soils and crop residue burning. Greenhouse Gases Science and Technology 1–16, doi: 10.1002/ghg.

  • Cairo, J.J., & Paris, J.M. (1988). Microbiologia de la digestion anaerobia. In: Polanco, F. F, García, P.A., Hernándo, S. (Eds.), Metanogenesis. 4th Seminario in Depuración Anaerobia de Aguas Residuales. Universidad de Valladolid. ISBN: 8477620547, pp. 41–51.

  • Cambardella, C. A., Richard, T. L., & Russell, A. (2003). Compost mineralization in soil as a function of composting process conditions. European Journal of Soil Biology, 39, 117–127.

  • Chen, I. C., Hegde, U., Chang, C. H., & Yang, S. S. (2008). Methane and carbon dioxide emissions from closed landfill in Taiwan. Chemosphere, 70, 1484–1491.

    Article  CAS  Google Scholar 

  • Clein, J. S., McGuire, A. D., & Zhang, X. (2002). Historical and projected carbon balance of mature black spruce ecosystems across North America: the role of carbon-nitrogen interactions. Plant and Soil, 242, 15–32.

    Article  CAS  Google Scholar 

  • Cleveland, C. C., & Liptzin, D. (2007). C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235–252.

    Article  Google Scholar 

  • Gatland, J. R., Santos, I. R., Maher, D. T., Duncan, T. M., & Erler, D. V. (2014). Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: implications for wetland global warming potential. Journal of Geophysical Research: Biogeosciences, 119, 1698–1716.

    CAS  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis, part 1. Physical and mineralogical methods. Agronomy monograph no. 9 (2ed ed., pp. 383–411). Madison: American Society of Agronomy/soil Science Society of America.

    Google Scholar 

  • Guerin, F., Abril, G., de Junet, A., & Bonnet, M. P. (2008). Anaerobic decomposition of tropical soils and plant material: implication for the CO2 and CH4 budget of the Petit Saut Reservoir. Applied Geochemistry, 23, 2272–2283.

    Article  CAS  Google Scholar 

  • Ibrahim, M., Cao, C. G., Zhan, M., Li, C. F., & Iqbal, J. (2015). Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes. International journal of Environmental Science and Technology, 12, 263–274.

    Article  CAS  Google Scholar 

  • Inubushi, K., Furukawa, K., Hadi, A., Purnomo, E., & Tsuruta, H. (2003). Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere, 52, 603–608.

    Article  CAS  Google Scholar 

  • IPCC. (2007). Climate change 2007: mitigation of climate change. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change (pp. 210–215). Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. (2014). Climate change 2014: Impacts, adaptation, and vulnerability working group II contribution to the fifth assessment report. Cambridge and New York: Cambridge University Press.

    Google Scholar 

  • Jiang, T., Schuchardt, F., Li, G. X., Guo, R., & Zhao, Y. Q. (2011). Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. Journal of Environmental Sciences, 23(10), 1754–1760.

    Article  CAS  Google Scholar 

  • Joshi, M. (1994). Patterns of forest floor respiration in broad-leaf and conifer forest ecosystems in parts of Central Himalaya. Proceedings of Indian National Science Academy B, 60(1), 67–74.

    Google Scholar 

  • Kaushal, S.S., Mayer, P.M., Vidon, P.G., Smith, R. M., Pennino, M. J., Newcomer, T. A., Duan, S., Welty, C., & Belt, K. T. (2014). Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications. U.S. Environmental Protection Agency Papers. pp. 238.

  • Kelly, C. A., Rudd, J. W. M., Bodaly, R. A., Roulet, N. P., St. Louis, V. L., Heyes, A., Moore, T. R., Shiff, S., Aravena, R., Scott, K. J., Dyck, B., Harris, R., Warner, B., & Edwards, G. (1997). Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environmental Science and Technology, 31, 1334–1344.

    Article  CAS  Google Scholar 

  • Kumar, A., & Sharma, M. P. (2014). Review of methodology for estimation of labile organic carbon in reservoirs and lakes for green house gas emission. Journal of Materials and Environmental Science, 5(3), 653–660.

    Google Scholar 

  • Kumar, A., & Sharma, M. P. (2015a). Carbon stock estimation in the catchment of Kotli Bhel 1A Hydroelectric Reservoir, Uttarakhand, India. Ecotoxicology and Environmental Safety, 134, 365–369.

    Article  Google Scholar 

  • Kumar, A., & Sharma, M. P. (2015b). Estimation of soil organic carbon in the forest catchment of two hydroelectric reservoirs in Uttarakhand, India. Human and Ecological Risk Assessment: An International Journal, 22(4), 991–1001.

    Article  Google Scholar 

  • Kumar, A., & Sharma, M. P. (2015c). Assessment of carbon stocks in forest and its implications on global climate changes. Journal of Materials and Environmental Science, 6(12), 3548–3564.

    Google Scholar 

  • Li, Y., Wu, J., Liu, S., Shen, J., Huang, D., Su, Y., Wei, W., & Syers, J. (2012). Is the C:N:P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China? Global Biogeochemical Cycles, 26(GB4002), 1–14. doi:10.1029/2012GB004399.

    Google Scholar 

  • Lucas, S. T., & Weil, R. R. (2012). Can a labile carbon test be used to predict crop responses to improve soil organic matter management? Agronomy Journal, 104, 1160–1170. doi:10.2134/agronj2011.0415.

    Article  CAS  Google Scholar 

  • Malyan, S. K., Bhatia, A., Kumar, A., Gupta, D. K., Singh, R., Kumar, S. S., Tomer, R., Om, K., & Jain, N. (2016). Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Science of the Total Environment, 572, 874–896.

    Article  CAS  Google Scholar 

  • McNicol, G., & Silver, W. L. (2014). Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry. Journal of Geophysical Research, 119(4), 557–566.

    CAS  Google Scholar 

  • Merino, A., Perez-Batallon, P., & Macias, F. (2004). Responses of soil organic matter and greenhouse gas fluxes to soil management and land-use changes in a humid temperate region of southern Europe. Soil Biology and Biochemistry, 36, 917–925.

    Article  CAS  Google Scholar 

  • Penning, H., & Conrad, R. (2007). Quantification of carbon flow from stable isotope fractionation in rice field soils with different organic matter content. Organic Geochemistry, 38, 2058–2069.

    Article  CAS  Google Scholar 

  • Pilegaard, K., Skiba, U., Ambus, P., Beier, C., Bruggemann, N., Butterbach-Bahl, K., Dick, J., Dorsey, J., Duyzer, J., Gallagher, M., Gasche, R., Horvath, L., Kitzler, B., Leip, A., Pihlatie, M. K., Rosenkranz, P., Seufert, G., Vesala, T., Westrate, H., & Zechmeister-Boltenstern, S. (2006). Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O). Biogeosciences, 3(4), 651–661.

    Article  CAS  Google Scholar 

  • Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44B, 81–99.

    Article  CAS  Google Scholar 

  • Rolston, D.E. (1986). Gas flux, in methods of soil analysis, part 1, physical and mineralogical methods, 2nd edition, monograph Agronomy no. 9, edited by Klute, A., American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, USA, pp. 1103–1119.

  • Rudd, J. W. M., Harris, R., Kelly, C. A., & Hecky, R. E. (1993). Are hydroelectric reservoirs significant sources of greenhouse gases? Ambio, 22(4), 246–248.

    Google Scholar 

  • Rustad, L. E., Campbell, J. L., Marion, G. M., Norby, R. J., Mitchell, M. J., Hartley, A. E., Cornelissen, J. H. C., Gurevitch, J., & GCTE-NEWS. (2001). A meta analysis of the response of soil respiration, net nitrogen mineralization, and avobeground plant growth to experimental ecosystem warming. Oecologia, 126, 543–562.

  • Singh, B. K., Dawson, L. A., Macdonald, C. A., & Buckland, S. M. (2008). Impact of biotic and abiotic interaction on soil microbial communities and functions: a field study. Applied Soil Ecology, 41, 239–248.

    Article  Google Scholar 

  • Sitaula, B. K., & Bakken, L. R. (1993). N2O release from spruce forest soil, relation with nitrification, CH4 uptake, temperature, moisture and fertilization. Soil Biology and Biochemistry, 25, 1415–1421.

    Article  CAS  Google Scholar 

  • Snyder, C. S., Bruulsema, T. W., Jensen, T. L., & Fixen, P. E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment, 133, 247–266.

    Article  CAS  Google Scholar 

  • St. Louis, V., Kelly, C., Duchemin, E., Rudd, J. W. M., & Rosenberg, D. M. (2000). Reservoir surface as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience, 20, 766–775.

    Article  Google Scholar 

  • Thauer, R. K. (1998). Biochemistry of Methanogenesis: a Tribute to Marjory Stephenson 1998. Marjory Stephenson Prize Lecture. Microbiology, 144, 2377–2406.

    Article  CAS  Google Scholar 

  • Upadhyay, V. P. (1984). Leaf litter decomposition. In J. S. Singh & S. P. Singh (Eds.), An integrated ecological study of eastern Kumaun Himalaya with emphasis on natural resources (pp. 227–268). New Delhi: Project report, Department of Science and Technology.

    Google Scholar 

  • Walkley, A., & Black, I. A. (1934). A examination of Degtjareff method for determining soil organic matter and a proposed modification of the cromic acid titration method. Soil Science, 37, 29–37.

  • Weil, R. W., Islam, K. R., Stine, M. A., Gruver, J. B., & Samson-Liebig, S. E. (2003). Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. American Journal of Alternative Agriculture, 18, 3–17.

    Article  Google Scholar 

  • Xu, X., Yuan, B., & Wei, J. (2008). Vertical distribution and interaction of ethylene and methane in temperate volcanic forest soils. Geoderma, 145, 231–237.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Ministry of Human Resource Development (MHRD), Government of India, in the form of a scholarship to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Sharma, M.P. Estimation of green house gas emissions from Koteshwar hydropower reservoir, India. Environ Monit Assess 189, 240 (2017). https://doi.org/10.1007/s10661-017-5958-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5958-7

Keywords

Navigation