Skip to main content
Log in

Insight into dissolved organic matter fractions in Lake Wivenhoe during and after a major flood

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Dissolved organic matter is an important component of biogeochemical processes in aquatic environments. Dissolved organic matter may consist of a myriad of different fractions and resultant processing pathways. In early January 2011, heavy rainfall occurred across South East Queensland, Australia causing significant catchment inflow into Lake Wivenhoe, which is the largest water supply reservoir for the city of Brisbane, Australia. The horizontal and vertical distributions of dissolved organic matter fractions in the lake during the flood period were investigated and then compared with stratified conditions with no catchment inflows. The results clearly demonstrate a large variation in dissolved organic matter fractions associated with inflow conditions compared with stratified conditions. During inflows, dissolved organic matter concentrations in the reservoir were fivefold lower than during stratified conditions. Within the dissolved organic matter fractions during inflow, the hydrophobic and humic acid fractions were almost half those recorded during the stratified period whilst low molecular weight neutrals were higher during the flood period compared to during the stratified period. Information on dissolved organic matter and the spatial and vertical variations in its constituents’ concentrations across the lake can be very useful for catchment and lake management and for selecting appropriate water treatment processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn, Y. S., Nakamura, F., & Mizugaki, S. (2008). Hydrology, suspended sediment dynamics and nutrient loading in Lake Takkobu, a degrading lake ecosystem in Kushiro Mire, northern Japan. Environmental Monitoring and Assessment, 145(1–3), 267–281. doi:10.1007/s10661-007-0036-1.

    Article  CAS  Google Scholar 

  • Berggren, M., Laudon, H., Haei, M., Ström, L., & Jansson, M. (2010). Efficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sources. ISME Journal, 4(3), 408–416.

    Article  CAS  Google Scholar 

  • Bertilsson, S., & Tranvik, L. J. (1998). Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnology and Oceanography, 43(5), 885–895.

    Article  CAS  Google Scholar 

  • BOM. (2011). Bureau of meteorology, climate map- rainfall. http://www.bom.gov.au/climate/data/stations/.

    Google Scholar 

  • Braun, K., Fabris, R., Morran, J., Ho, L., & Drikas, M. (2014). Drought to flood: A comparative assessment of four parallel surface water treatments during the 2010–2012 inflows to the Murray–Darling Basin, South Australia. Science of the Total Environment, 488–489, 36–45. http://dx.doi.org/10.1016/j.scitotenv.2014.04.045.

    Article  Google Scholar 

  • Chin, Y. P., Aiken, G. R., & Danielsen, K. M. (1997). Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environmental Science & Technology, 31(6), 1630–1635. doi:10.1021/es960404k.

    Article  CAS  Google Scholar 

  • Cuss, C. W., & Guéguen, C. (2015). Characterizing the labile fraction of dissolved organic matter in leaf leachates: methods, indicators, structure, and complexity. In Labile organic matter—chemical compositions, function, and significance in soil and the environment (SSSA Special Publication, Vol. 62, pp. 237–274). Madison: Soil Science Society of America.

    Google Scholar 

  • Davis, J. A. (1984). Complexation of trace metals by adsorbed natural organic matter. Geochimica et Cosmochimica Acta, 48(4), 679–691.

    Article  CAS  Google Scholar 

  • Grinham, A., Gibbes, B., Gale, D., Watkinson, A., & Bartkow, M. (2012). Extreme rainfall and drinking water quality: a regional perspective. Proc Water Pollution, 164, 183–194.

    CAS  Google Scholar 

  • Guo, X. J., He, L. S., Li, Q., Yuan, D. H., & Deng, Y. (2014). Investigating the spatial variability of dissolved organic matter quantity and composition in Lake Wuliangsuhai. Ecological Engineering, 62(0), 93–101. http://dx.doi.org/10.1016/j.ecoleng.2013.10.032.

    Article  Google Scholar 

  • Hiriart-Baer, V. P., Diep, N., & Smith, R. E. H. (2008). Dissolved organic matter in the Great Lakes: role and nature of allochthonous material. Journal of Great Lakes Research, 34(3), 383–394.

    Article  CAS  Google Scholar 

  • Hua, B., Dolan, F., McGhee, C., Clevenger, T. E., & Deng, B. (2007). Water-source characterization and classification with fluorescence EEM spectroscopy: PARAFAC analysis. International Journal of Environmental Analytical Chemistry, 87(2), 135–147.

    Article  CAS  Google Scholar 

  • Huber, S. A., Balz, A., Abert, M., & Pronk, W. (2011). Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). Water Research, 45(2), 879–885.

    Article  CAS  Google Scholar 

  • Hunt, J. F., & He, Z. (2015). Characteristics of plant-derived water-extractable organic matter and its effects on phosphorus sorption behavior. In Labile organic matter—chemical compositions, function, and significance in soil and the environment (SSSA Special Publication, Vol. 62, pp. 99–118). Madison: Soil Science Society of America.

    Google Scholar 

  • Jansson, M., Bergström, A.-K., Blomqvist, P., & Drakare, S. (2000). Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology, 81(11), 3250–3255.

    Article  Google Scholar 

  • Jones, S. E., Newton, R. J., & McMahon, K. D. (2009). Evidence for structuring of bacterial community composition by organic carbon source in temperate lakes. Environmental Microbiology, 11(9), 2463–2472.

    Article  CAS  Google Scholar 

  • Judd, K. E., Crump, B. C., & Kling, G. W. (2006). Variation in dissolved organic matter controls bacterial production and community composition. Ecology, 87(8), 2068–2079. doi:10.1890/0012-9658(2006)87[2068:VIDOMC]2.0.CO;2.

    Article  Google Scholar 

  • Kalbitz, K., & Wennrich, R. (1998). Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Science of the Total Environment, 209(1), 27–39. http://dx.doi.org/10.1016/S0048-9697(97)00302-1.

    Article  CAS  Google Scholar 

  • Kim, H. C., & Yu, M. J. (2005). Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control. Water Research, 39(19), 4779–4789. http://dx.doi.org/10.1016/j.watres.2005.09.021.

    Article  CAS  Google Scholar 

  • Kim, B., Choi, K., Kim, C., Lee, U. H., Kim, Y-H. (2000). Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir, Lake Soyang, Korea. Water Research, 34(14), 3495–3504.

  • McKnight, D. M., Smith, R. L., Harnish, R. A., Miller, C. L., & Bencala, K. E. (1993). Seasonal relationships between planktonic microorganisms and dissolved organic material in an alpine stream. Biogeochemistry, 21(1), 39–59.

    Article  CAS  Google Scholar 

  • Miller, M. P., McKnight, D. M., Chapra, S. C., & Williams, M. W. (2009). A model of degradation and production of three pools of dissolved organic matter in an alpine lake. Limnology and Oceanography, 54(6), 2213–2227.

    Article  Google Scholar 

  • Mladenov, N., McKnight, D. M., Wolski, P., & Ramberg, L. (2005). Effects of annual flooding on dissolved organic carbon dynamics within a pristine wetland, the Okavango Delta, Botswana. Wetlands, 25(3), 622–638.

    Article  Google Scholar 

  • Mostofa, K. M., Wu, F., Liu, C. Q., Vione, D., Yoshioka, T., Sakugawa, H., et al. (2011). Photochemical, microbial and metal complexation behavior of fluorescent dissolved organic matter in the aquatic environments. Geochemical Journal, 45, 235–254.

    Article  CAS  Google Scholar 

  • Murshed, M. F., Aslam, Z., Lewis, R., Chow, C., Wang, D., Drikas, M., et al. (2014). Changes in the quality of river water before, during and after a major flood event associated with a La Niña cycle and treatment for drinking purposes. Journal of Environmental Sciences, 26(10), 1985–1993. http://dx.doi.org/10.1016/j.jes.2014.08.001.

    Article  Google Scholar 

  • Ohno, T., He, Z., Sleighter, R. L., Honeycutt, C. W., & Hatcher, P. G. (2010). Ultrahigh resolution mass spectrometry and indicator species analysis to identify marker components of soil- and plant biomass-derived organic matter fractions. Environmental Science & Technology, 44(22), 8594–8600. doi:10.1021/es101089t.

    Article  CAS  Google Scholar 

  • Qualls, R. G., & Richardson, C. J. (2003). Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry, 62(2), 197–229.

    Article  CAS  Google Scholar 

  • Schindler, D., Bayley, S., Curtis, P., Parker, B., Stainton, M., & Kelly, C. (1992). Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precambrian shield lakes. Hydrobiologia, 229(1), 1–21.

    Article  CAS  Google Scholar 

  • Stone, L., & Berman, T. (1993). Positive feedback in aquatic ecosystems: the case of the microbial loop. Bulletin of Mathematical Biology, 55(5), 919–936.

    Article  Google Scholar 

  • Thurman, E. M., Wershaw, R. L., Malcolm, R. L., & Pinckney, D. J. (1982). Molecular size of aquatic humic substances. Organic Geochemistry, 4(1), 27–35. http://dx.doi.org/10.1016/0146-6380(82)90005-5.

    Article  CAS  Google Scholar 

  • Tranvik, L., & Kokalj, S. (1998). Decreased biodegradability of algal DOC due to interactive effects of UV radiation and humic matter. Aquatic Microbial Ecology, 14(3), 301–307.

    Article  Google Scholar 

  • Wei, Q., Wang, D., Wei, Q., Qiao, C., Shi, B., & Tang, H. (2008). Size and resin fractionations of dissolved organic matter and trihalomethane precursors from four typical source waters in China. Environmental Monitoring and Assessment, 141(1–3), 347–357. doi:10.1007/s10661-007-9901-1.

    Article  CAS  Google Scholar 

  • Whitehead, K., & Vernet, M. (2000). Influence of mycosporine-like amino acids (MAAs) on UV absorption by particulate and dissolved organic matter in La Jolla Bay. Limnology and Oceanography, 45(8), 1788–1796.

    Article  CAS  Google Scholar 

  • Yuan, D. H., Guo, N., Guo, X. J., Zhu, N. M., Chen, L., He, L. S. (2014). The spectral characteristics of dissolved organic matter from sediments in Lake Baiyangdian, North China. Journal of Great Lakes Research, 40(3), 684–691.

  • Zafiriou, O. C., Joussot-Dubien, J., Zepp, R. G., & Zika, R. G. (1984). Photochemistry of natural waters. Environmental Science & Technology, 18(12), 358A–371A.

    Article  CAS  Google Scholar 

  • Zhang, M., & He, Z. (2015). Characteristics of dissolved organic carbon revealed by ultraviolet–visible absorbance and fluorescence spectroscopy: the current status and future exploration. In Labile organic matter—chemical compositions, function, and significance in soil and the environment (SSSA Special Publication, Vol. 62). Madison: Soil Science Society of America.

    Google Scholar 

  • Zhang, Y., Yin, Y., Feng, L., Zhu, G., Shi, Z., Liu, X., et al. (2011). Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis. Water Research, 45(16), 5110–5122.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Seqwater for logistical and financial support and, in particular, Deb Gale and Cameron Veal for their assistance in sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupak Aryal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryal, R., Grinham, A. & Beecham, S. Insight into dissolved organic matter fractions in Lake Wivenhoe during and after a major flood. Environ Monit Assess 188, 134 (2016). https://doi.org/10.1007/s10661-016-5116-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5116-7

Keywords

Navigation