Skip to main content

Advertisement

Log in

Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality.

Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. London: Academic Press.

    Google Scholar 

  • Bishnoi, K., Sain, U., Kumar, R., Singh, R., & Bishnoi, N. R. (2009). Distribution and biodegradation of polycyclic aromatic hydrocarbons in contaminated sites of Hisar (India). Indian Journal of Experimental Biology, 47, 210–217.

    CAS  Google Scholar 

  • Bordenave, S., Goñi-Urriza, M. S., Caumette, P., & Duran, R. (2007). Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Applied and Environmental Microbiology, 73, 6089–6097.

    Article  CAS  Google Scholar 

  • Colin, V. L., Villegas, L. B., & Abate, C. M. (2012). Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. International Biodeterioration and Biodegradation, 69, 28–37.

    Article  CAS  Google Scholar 

  • Cycoń, M., & Piotrowska-Seget, Z. (2015). Biochemical and microbial soil functioning after application of the insecticide imidacloprid. Journal of Environmental Sciences, 27, 147–158.

    Article  Google Scholar 

  • Fließbach, A., Martens, R., & Reber, H. H. (1994). Soil microbial biomass and microbial activity in soil treated with heavy metal contaminated biosolids. Soil Biology and Biochemistry, 26, 1201–1205.

    Article  Google Scholar 

  • Gil-Sotres, F., Trasar-Cepeda, C., Leirós, M. C., & Seoane, S. (2005). Different approaches to evaluating soil quality using biochemical properties. Soil Biology and Biochemistry, 37, 877–887.

    Article  CAS  Google Scholar 

  • Gremion, F., Chatzinotas, A., & Harms, H. (2003). Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal contaminated bulk and rhizosphere soil. Environmental Microbiology, 5, 896–907.

    Article  CAS  Google Scholar 

  • Hendrickx, B., Dejonghe, W., Boënne, W., Brennerova, M., Cernik, M., Lederer, T., et al. (2005). Dynamics of an oligotrophic bacterial aquifer community during contact with a groundwater plume contaminated with benzene, toluene, ethylbenzene and xylenes: an in situ mesocosm study. Applied and Environmental Microbiology, 71, 3815–3825.

    Article  CAS  Google Scholar 

  • Igbinosa, E. O. (2015). Effect of cassava mill effluent on biological activity of soil microbial community. Environmental Monitoring and Assessment, 187, 418. doi:10.1007/s10661-015-4651-y.

    Article  Google Scholar 

  • Janssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology, 72, 1719–1728.

    Article  CAS  Google Scholar 

  • Jones, S. E., & Lennon, J. T. (2010). Dormancy contributes to the maintenance of microbial diversity. Proceedings of the National Academy of Sciences of the United States of America, 107, 5881–5886.

    Article  CAS  Google Scholar 

  • Keshri, J., Mankazana, B. B., & Momba, M. N. (2014). Profile of bacterial communities in South African mine-water samples using Illumina next-generation sequencing platform. Applied Microbiology and Biotechnology, 99, 3233–3242.

    Article  Google Scholar 

  • Khan, S., Cao, Q., Hesham, A. E. L., Xia, Y., & He, J. Z. (2007). Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. Journal of Environmental Sciences, 19, 834–840.

    Article  CAS  Google Scholar 

  • Labunska, I., Stephenson, A., Brigden, K., Santillo, D., Stringer, R., Johnston, P.A., & Ashton, J. M. (1999). Organic and heavy metal contaminants in samples taken at three industrial estates in Gujarat, India. Green Peace Research Laboratories, Netherlands. Technical Note 05/99. (http://www.greenpeace.org/international/Global/international/planet2/report/1999/11/toxichotspots-a-greenpeace.pdf/).

  • Liao, M., Xie, X., Ma, A., & Peng, Y. (2010). Different influences of cadmium on soil microbial activity and structure with Chinese cabbage cultivated and non-cultivated. Journal of Soils and Sediments, 10, 818–826.

    Article  CAS  Google Scholar 

  • Nakatsu, C. H., Carmosini, N., Baldwin, B., Kourtev, P., Konopka, A., Nakatsu, C. H., et al. (2005). Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr). Applied and Environmental Microbiology, 71, 7679–7689.

    Article  CAS  Google Scholar 

  • Popp, N., Schlömann, M., & Mau, M. (2006). Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils. Microbiology, 152, 3291–3304.

    Article  CAS  Google Scholar 

  • Qu, J., Ren, G., Chen, B., Fan, J., & Yong, E. (2011). Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland. Environmental Monitoring and Assessment, 182, 597–606.

    Article  CAS  Google Scholar 

  • Schlesinger, W. H., & Andrews, J. A. (2000). Soil respiration and global carbon cycle. Biogeochemistry, 48, 7–20.

    Article  CAS  Google Scholar 

  • Sheik, C. S., Mitchell, T. W., Rizvi, F. Z., Rehman, Y., Faisal, M., et al. (2012). Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PloS One, 7, e40059.

    Article  CAS  Google Scholar 

  • Shen, J. P., Zhang, L. M., Zhu, Y. G., Zhang, J. B., & He, J. Z. (2008). Abundance and composition of ammonia-oxidizing bacteria and ammonia oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology, 10, 1601–1611.

    Article  CAS  Google Scholar 

  • Subrahmanyam, G., Archana, G., & Chamyal, L. S. (2011). Microbial activity and diversity in the late Pleistocene palaeosols of alluvial Mahi River basin, Gujarat, western India. Current Science India, 101, 202–209.

    CAS  Google Scholar 

  • Subrahmanyam, G., Hu, H. W., Zheng, Y. M., Archana, G., He, J. Z., & Liu, Y. R. (2014a). Response of ammonia oxidizing microbes to the stresses of arsenic and copper in two acidic alfisols. Applied Soil Ecology, 77, 59–67.

    Article  Google Scholar 

  • Subrahmanyam, G., Khonde, N., Maurya, D. M., Chamyal, L. S., & Archana, G. (2014b). Microbial activity and culturable bacterial diversity in the sediments of Great Rann of Kutch, a unique ecosystem, Western India. Pedosphere, 24, 45–55.

    Article  Google Scholar 

  • Subrahmanyam, G., Shen, J. P., Liu, Y. R., Archana, G., & He, J. Z. (2014c). Response of ammonia-oxidizing archaea and bacteria to long-term industrial effluent-polluted soils, Gujarat, Western India. Environmental Monitoring and Assessment, 186, 4037–4050.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A. (1994). Soil enzymes. In R.W. Weaver et al. (Eds.), Methods of soil analysis: microbiological and biochemical properties. Part 2. SSSA Book Ser. 5. Soil Sci Soc Am. Madison, pp. 775–834.

  • Thavamani, P., Malik, S., Beer, M., Megharaj, M., & Naidu, R. (2012). Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. Journal of Environmental Management, 99, 10–17.

    Article  CAS  Google Scholar 

  • Tian, Y., Liu, H. J., Zheng, T. L., Kwon, K. K., Kim, S. J., & Yan, C. L. (2008). PAHs contamination and bacterial communities in mangrove surface sediments of the Jiulong River Estuary, China. Marine Pollution Bulletin, 57, 707–715.

    Article  CAS  Google Scholar 

  • U.S. EPA (1996) Method 3540C, Soxhlet extraction. <http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3540c.pdf (14.03.14).

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring microbial biomass C. Soil Biology and Biochemistry, 19, 703–707.

    Article  CAS  Google Scholar 

  • Vivas, A., Moreno, B., del Val, C., Macci, C., Masciandaro, G., & Benitez, E. (2008). Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. Journal of Environmental Monitoring, 10, 1287–1296.

    Article  CAS  Google Scholar 

  • Wang, Y. P., Shi, J. Y., Lin, Q., Chen, X. C., & Chen, Y. X. (2007). Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. Journal of Environmental Sciences, 19, 848–853.

    Article  CAS  Google Scholar 

  • Winding, A., Hund-Rinke, K., & Rutgers, M. (2005). The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety, 62, 230–248.

    Article  CAS  Google Scholar 

  • Yu, Z., & Morrison, M. (2004). Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 70, 4800–4806.

    Article  CAS  Google Scholar 

  • Zhang, F. P., Li, C. F., Tong, L. G., Yue, L. X., Li, P., Ciren, Y. J., & Cao, C. G. (2010a). Response of microbial characteristics to heavy metal pollution of mining soils in central Tibet, China. Applied Soil Ecology, 45, 144–151.

    Article  Google Scholar 

  • Zhang, W., Wang, H., Zhang, R., Yu, X. Z., Qian, P. Y., & Wong, M. H. (2010b). Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicology, 19, 96–104.

    Article  CAS  Google Scholar 

  • Zhang, Q., Zhu, L., Wang, J., Xie, H., Wang, J., Wang, F., & Sun, F. (2014). Effects of fomesafen on soil enzyme activity, microbial population, and bacterial community composition. Environmental Monitoring and Assessment, 186, 2801–2812.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Chinese Academy of Sciences (CAS), Beijing, China, and Academy of Sciences for the Developing World (TWAS), Trieste, Italy, under the scheme “TWAS-CAS fellowship programme for postgraduate research” to GS for the year 2010. This work was jointly supported by the National Natural Science Foundation of China (Grant No. 41322007) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51221892).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Mei Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subrahmanyam, G., Shen, JP., Liu, YR. et al. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition. Environ Monit Assess 188, 112 (2016). https://doi.org/10.1007/s10661-016-5099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5099-4

Keywords

Navigation