Skip to main content
Log in

Evaluation of river water quality variations using multivariate statistical techniques

Sava River (Croatia): a case study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

For the evaluation of seasonal and spatial variations and the interpretation of a large and complex water quality dataset obtained during a 7-year monitoring program of the Sava River in Croatia, different multivariate statistical techniques were applied in this study. Basic statistical properties and correlations of 18 water quality parameters (variables) measured at 18 sampling sites (a total of 56,952 values) were examined. Correlations between air temperature and some water quality parameters were found in agreement with the previous studies of relationship between climatic and hydrological parameters. Principal component analysis (PCA) was used to explore the most important factors determining the spatiotemporal dynamics of the Sava River. PCA has determined a reduced number of seven principal components that explain over 75 % of the data set variance. The results revealed that parameters related to temperature and organic pollutants (CODMn and TSS) were the most important parameters contributing to water quality variation. PCA analysis of seasonal subsets confirmed this result and showed that the importance of parameters is changing from season to season. PCA of the four seasonal data subsets yielded six PCs with eigenvalues greater than one explaining 73.6 % (spring), 71.4 % (summer), 70.3 % (autumn), and 71.3 % (winter) of the total variance. To check the influence of the outliers in the data set whose distribution strongly deviates from the normal one, in addition to standard principal component analysis algorithm, two robust estimates of covariance matrix were calculated and subjected to PCA. PCA in both cases yielded seven principal components explaining 75 % of the total variance, and the results do not differ significantly from the results obtained by the standard PCA algorithm. With the implementation of robust PCA algorithm, it is demonstrated that the usage of standard algorithm is justified for data sets with small numbers of missing data, nondetects, and outliers (less than 4 %). The clustering procedure highlighted four different groups in which the sampling sites have similar characteristics and pollution levels. The first and the second group correspond to relatively low and moderately polluted sites while stations which are located in the middle of the river belong to the third and fourth group and correspond to highly and moderately polluted sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA. (1995). Standard Methods for the Examination of Water and Waste Water, 19th edn. Washington, DC: American Public Health Association, American Water Works Association and Water Pollution Control Federation.

    Google Scholar 

  • Bouza-Deano, R., Ternero-Rodriguez, M., & Fernandez-Espinosa, A.J. (2008). Trend study and assessment of surface water quality in the Ebro River (Spain). Journal of Hydrology, 361(3–4), 227–239. doi:10.1016/j.jhydrol.2008.07.048.

    Article  CAS  Google Scholar 

  • Campbell, N. A. (1980). Robust procedures in multivariate-analysis. I. Robust covariance estimation. Applied Statistics-Journal of the Royal Statistical Society Series C, 29(3), 231237. doi:10.2307/2346896.

    Google Scholar 

  • Croux, C., & Haesbroeck, G. (2000). Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies. Biometrika, 87(3), 603–618. doi:10.1093/biomet/87.3.603.

    Article  Google Scholar 

  • Dixon, W., & Chiswell, B. (1996). Review of aquatic monitoring program design. Water Research, 30(9), 1935–1948. doi:10.1016/0043-1354(96)00087-5.

    Article  CAS  Google Scholar 

  • EPA. (1999). Method 1664, EPA-821-R-98-002. Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  • Fan, X., Cui, B., Zhao, H., Zhang, Z., & Zhang, H. (2010). Assessment of river water quality in Pearl River Delta using multivariate statistical techniques. Procedia Environmental Sciences, 2, 1220–1234. doi:10.1016/j.proenv.2010.10.133.

    Article  Google Scholar 

  • Farnham, I., Singh, A., Stetzenbach, K., & Johannesson, K. (2002). Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemometrics and Intelligent Laboratory Systems, 60(1–2), 265–281. doi:10.1016/S0169-7439(01)00201-5. 4th International Conference on Environmentrics and Chemometrics, LAS VEGAS, NEVADA, SEP 08–20, 2000.

    Article  CAS  Google Scholar 

  • Hayashi, M. (2004). Temperature-electrical conductivity relation of water for environmental monitoring and geophysical data inversion. Environmental Monitoring and Assessment, 96(1–3), 119–128. doi:10.1023/B:EMAS.0000031719.83065.68.

    Article  Google Scholar 

  • Hubert, M., Rousseeuw, P., & Verboven, S. (2002). A fast method for robust principal components with applications to chemometrics. Chemometrics and Intelligent Laboratory Systems, 60(1–2), 101–111. doi:10.1016/S0169-7439(01)00188-5. 4th International Conference on Environmentrics and Chemometrics, LAS VEGAS, NEVADA, SEP 08–20, 2000.

    Article  CAS  Google Scholar 

  • Jiang, J., Sharma, A., Sivakumar, B., & Wang, P. (2014). A global assessment of climate-water quality relationships in large rivers: an elasticity perspective. Science of the Total Evironment, 468, 877–891. doi:10.1016/j.scitotenv.2013.09.002.

    Article  Google Scholar 

  • Kazi, T.G., Arain, M.B., Jamali, M.K., Jalbani, N., Afridi, H.I., Sarfraz, R.A., Baig, J.A., & Shah, A.Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety, 72(2), 301–309. doi:10.1016/j.ecoenv.2008.02.024.

    Article  CAS  Google Scholar 

  • Li, S., Li, J., & Zhang, Q. (2011). Water quality assessment in the rivers along the water conveyance system of the Middle Route of the South to North Water Transfer Project (China) using multivariate statistical techniques and receptor modeling. Journal of Hazardous Materials, 195, 306–317. doi:10.1016/j.jhazmat.2011.08.043.

    Article  CAS  Google Scholar 

  • Liu, C.W., Lin, K.H., & Kuo, Y.M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313(1–3), 77–89. doi:10.1016/S0048-9697(02)00683-6.

    Article  CAS  Google Scholar 

  • Mahalanobis, P.C. (1936). On the generalised distance in statistics. Proceedings of the National Institute of Sciences of India, 2(1), 49–55.

    Google Scholar 

  • Malmqvist, B., & Rundle, S. (2002). Threats to the running water ecosystems of the world. Environmental Conservation, 2, 134–153. doi:10.1017/S0376892902000097.

    Google Scholar 

  • Maronna, R., Martin, R.D., & Yohai, V.J. (2006). Robust statistics: Theory and methods. Chichester: John Wiley & Sons.

    Book  Google Scholar 

  • Mayer, B., Boyer, E.W., Goodale, C., Jaworski, N.A., Van Breemen, N., Howarth, R.W., Seitzinger, S., Billen, G., Lajtha, L., Nosal, M., & Paustian, K. (2002). Sources of nitrate in rivers draining sixteen watersheds in the northeastern US: Isotopic constraints. Biogeochemistry, 57(1), 171–197. doi:10.1023/A:1015744002496.

    Article  Google Scholar 

  • Mei, K., Liao, L., Zhu, Y., Lu, P., Wang, Z., Dahlgren, R.A., & Zhang, M. (2014). Evaluation of spatial-temporal variations and trends in surface water quality across a rural-suburban-urban interface. Environmental Science and Pollution Research, 21(13), 8036–8051. doi:10.1007/s11356-014-2716-z.

    Article  CAS  Google Scholar 

  • Meybeck, M. (1998). Man and river interface: multiple impacts on water and particulates chemistry illustrated in the Seine river basin. Hydrobiologia, 374, 1–20. 3rd International Joint Conference on Limnology and Oceanography : Oceans, Rivers and Lakes - Energy and Substance Transfers at Interfaces, NANTES, FRANCE, OCT, 1996.

    Article  Google Scholar 

  • Nasir, M.F.M., Samsudin, M.S., Mohamad, I., Awaluddin, M.R.A., Mansor M.A., Juahir, H., & Ramli, N. (2011). River water quality modeling using combined principle component analysis (PCA) and multiple linear regressions (MLR): A case study at Klang River, Malaysia. World Applied Sciences Journal, 14, 73–82.

    CAS  Google Scholar 

  • Olsen, R.L., Chappell, R.W., & Loftis, J.C. (2012). Water quality sample collection, data treatment and results presentation for principal components analysis - literature review and Illinois River watershed case study. Water Research, 46(9), 3110–3122. doi:10.1016/j.watres.2012.03.028.

    Article  CAS  Google Scholar 

  • Ouyang, Y., Nkedi-Kizza, P., Wu, Q.T., Shinde, D., & Huang, C.H. (2006). Assessment of seasonal variations in surface water quality. Water Research, 40(20), 3800–3810. doi:10.1016/j.watres.2006.08.030.

    Article  CAS  Google Scholar 

  • Ozaki, N., Fukushima, T., Harasawa, H., Kojiri, T., Kawashima, K., & Ono, M. (2003). Statistical analyses on the effects of air temperature fluctuations on river water qualities. Hydrological Processes, 17(14). doi:10.1002/hyp.1437.

  • Pinto, U., & Maheshwari, B.L. (2011). River health assessment in pen-urban landscapes: an application of multivariate analysis to identify the key variables. Water Research, 45(13), 3915–3924. doi:10.1016/j.watres.2011.04.044.

    Article  CAS  Google Scholar 

  • Prathumratana, L., Sthiannopkao, S., & Kim, K.W. (2008). The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environment International, 34 (6), 860–866. doi:10.1016/j.envint.2007.10.011.

    Article  CAS  Google Scholar 

  • Razmkhah, H., Abrishamchi, A., & Torkian, A. (2010). Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: a case study on Jajrood River (Tehran, Iran). Journal of Environmental Management, 91(4), 852–860. doi:10.1016/j.jenvman.2009.11.001.

    Article  CAS  Google Scholar 

  • Ruymgaart, F.H. (1981). A robust principal component analysis. Journal of Multivariate Analysis, 11(4), 485–497. doi:10.1016/0047-259X(81)90091-9.

    Article  Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan (Vol. 22, pp. 464–475). International Symposium on Environment Software System, James Madison Univ, Harrisonburg, VA, MAY 18–21, 2004.

  • Simeonov, V., Stratis, J.A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37(17), 4119–4124. doi:10.1016/S0043-1354(03)00398-1.

    Article  CAS  Google Scholar 

  • Stanimirova, I., Daszykowski, M., & Walczak, B. (2007). Dealing with missing values and outliers in principal component analysis. Talanta, 72(1), 172–178. doi:10.1016/j.talanta.2006.10.011.

    Article  CAS  Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12), 3581–3592. doi:10.1016/S0043-1354(98)00138-9.

    Article  CAS  Google Scholar 

  • Wang, X., Cai, Q., Ye, L., & Qu, X. (2012). Evaluation of spatial and temporal variation in stream water quality by multivariate statistical techniques: a case study of the Xiangxi River basin, Chin. Quaternary International, 282, 137–144. doi:10.1016/j.quaint.2012.05.015.

    Article  Google Scholar 

  • Weilguni, H., & Humpesch, U. (1999). Long-term trends of physical, chemical and biological variables in the River Danube 1957–1995: a statistical approach, 61(3), 234–259. doi:10.1007/PL00001325.

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52. doi:10.1016/0169-7439(87)80084-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the anonymous referees whose detailed and very careful review of the manuscript helped us to significantly improve the quality of this paper.

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Marinović Ruždjak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinović Ruždjak, A., Ruždjak, D. Evaluation of river water quality variations using multivariate statistical techniques. Environ Monit Assess 187, 215 (2015). https://doi.org/10.1007/s10661-015-4393-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4393-x

Keywords

Navigation