Skip to main content
Log in

Hydrogeochemical features of groundwater of semi-confined coastal aquifer in Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Hydrogeochemical data of groundwater from the semi-confined aquifer of a coastal two-tier aquifer in Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran reveal salinization of the fresh groundwater (FGW). The saline groundwater zone is oriented at an angle to both Caspian Sea coastline and groundwater flow direction and extends inland from the coastline for more than 40 km. Spearman’s rank correlation coefficient matrices, factor analysis data, and values of C ratio, chloro-alkaline indices, and Na+/Cl molar ratio indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicate minerals, relict connate saline water, and ion exchange reactions. Saline groundwater samples (SGWS) (n = 20) can be classified into two groups. SGWS of group 1 (n = 17) represent the saline groundwater zone below the Caspian Sea level, and salinization is attributed essentially to (1) lateral intrusion of Caspian seawater as a consequence of (a) excessive withdrawal of groundwater from closely spaced bore wells located in the eastern part of the coastal zone and (b) imbalance between recharge and discharge of the two-tier aquifer and (2) upconing of paleobrine (interfaced with FGW) along deep wells. SGWS of this group contain, on average, 7.9 % of saltwater, the composition of which is similar to that of Caspian seawater. SGWS of group 2 (n = 3) belong to the saline groundwater zone encountered above the Caspian Sea level, and salinization of the groundwater representing these samples is attributed to irrigation return flow (n = 2) and inflow of saline river water (n = 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • APHA. (1995). Standard methods for the examination of water and waste water (20th ed.). Washington, DC: American Public Health Association. 100 pp.

    Google Scholar 

  • Appelo, C. A. J. (1994). Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Resources Research, 30(10), 2793–2805.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (1996). Geochemistry, groundwater and pollution. Rotterdam: Balkema.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed.). Rotterdam: Balkema.

    Book  Google Scholar 

  • Berner, E. K., & Berner, R. A. (1987). Global water cycle: Geochemistry and environment. Englewood Cliffs: Prentice-Hall, Inc.

    Google Scholar 

  • Brown, G. H., Sharp, M. J., & Tranter, M. (1996). Subglacial chemical erosion: Seasonal variations in solute provenance, Haut Glacier d'Arolla, Valais, Switzerland. Annals of Glaciology, 22, 25–31.

    CAS  Google Scholar 

  • Calvache, M. L., & Pudilo-Bosch, A. (1997). Effects of geology and human activity on the dynamics of salt-water intrusion in three coastal aquifers in southern Spain. Environmental Geology, 30, 215–223.

    Article  Google Scholar 

  • Cardona, A., Carrillo-Rivera, J. J., Huizar-A’lvarez, R., & Graniel-Castro, E. (2004). Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico. Environmental Geology, 45, 350–366.

    Article  CAS  Google Scholar 

  • Carling, M., & Hammar, M. (1995). Nitrogen metabolism and leakage from pit latrines. Report 020E, University of Ludea, Ludea, Sweden.

  • Cerling, T. E., Pederson, B. L., & Von Damm, K. L. (1989). Sodium–calcium ion exchange in the weathering of shales: Implications for global weathering budgets. Geology, 17(6), 552–554.

    Article  CAS  Google Scholar 

  • Chebotarev, I. I. (1955). Metamorphism of natural waters in the crust of weathering. Geochmica et Cosmochimica Acta, 8, 22–48. 137–170, 198–212.

    Article  CAS  Google Scholar 

  • Dewan, M., & Famouri, J. (1964). The soils of Iran. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Donnelly, J. P., & Bertness, M. D. (2001). Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences, 98(25), 14218–14223.

    Article  CAS  Google Scholar 

  • Fidelibus, M. D. (2003). Environmental tracing in coastal aquifers: old problems and new solutions. In: J. A. Lopez Geta (Ed.) Coastal aquifers intrusion technology—Mediterranean countries (Volume II, pp. 79–111). Madrid: Institute of Geology and Mineralogy (IGME).

  • Fisher, R. S., & Mullican, W. F. (1997). Hydrochemical evolution of sodium–sulfate and sodium–chloride groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeology Journal, 10, 445–474.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice Hall Inc.

    Google Scholar 

  • Gibbs, R. J. (1970). Mechanism controlling world water chemistry. Science, 170, 1088–1090.

    Article  CAS  Google Scholar 

  • Giménez, E., & Morell, I. (1997). Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellón, Spain). Environmental Geology, 29(1/2), 118–131.

    Google Scholar 

  • Hem, J. D. (1989). Study and interpretation of the chemical characteristics of natural water. USGS water supply paper, 2254. Washington, DC: US Government Printing Office.

    Google Scholar 

  • Jeong, C. H. (2001). Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology, 253(1–4), 194–210.

    Article  CAS  Google Scholar 

  • Kim, K., Natarajan, R., Kim, H. J., Hwang, G. S., & Cho, M. J. (2004). Assessment of groundwater chemistry in a coastal region (Kunan, Korea) having complex contaminant sources: A stoichiometric approach. Environmental Geology, 46, 763–774.

    Article  CAS  Google Scholar 

  • Kumar, M., Ramanathan, A. L., Rao, M. S., & Kumar, B. (2006). Identification and evaluation of hydrogeochemical process in the groundwater environment of Delhi. India. Environmental Geology. doi:10.1007/500254-006-0275-4.

    Google Scholar 

  • Magaritz, M., & Luzier, J. E. (1985). Water–rock interactions and seawater–freshwater mixing effects in the coastal dunes aquifer, Coos Bay, Oregon. Geochimica et Cosmochimica Acta, 49(12), 2515–2525.

    Article  CAS  Google Scholar 

  • Masterson, J. P., & Garabedian, S. P. (2007). Effects of sea-level rise on ground water flow in a coastal aquifer system. Ground Water, 45(2), 209–217.

    Article  CAS  Google Scholar 

  • Meybeck, M. (1987). Global chemical-weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287(5), 401–428.

    Article  CAS  Google Scholar 

  • Min, J. H., Yun, S. T., Kim, K., Kim, H. S., & Kim, D. J. (2003). Geologic controls on the chemical behaviors of nitrate in riverside alluvial aquifers, Korea. Hydrological Proceedings, 17, 1197–1211.

    Article  Google Scholar 

  • Mondal, N., Singh, V., Saxena, V., & Prasad, R. (2008). Improvement of groundwater quality due to fresh water ingress in Potharlanka Island, Krishna delta, India. Environmental Geology, 55(3), 595–603.

    Article  CAS  Google Scholar 

  • Mondal, N. C., Singh, V. P., Singh, V. S., & Saxena, V. K. (2010). Determining the interaction between groundwater and saline water through groundwater major ion chemistry. Journal of Hydrology, 388(1–2), 100–111.

    Article  CAS  Google Scholar 

  • Nadler, A., Margaritz, M., & Mazor, E. (1980). Chemical reactions of seawater with rocks and freshwater: Experimental and field observations on brackish waters in Israel. Geochimica et Cosmochimica Acta, 44, 879–886.

    Article  CAS  Google Scholar 

  • Najihammodi, J., & Khadir, H. (2003). Studying in environmental and economical effect of the salty water from wells in Mazandaran. 2nd FIG Regional Conference, Marrakech, Morocco, 1–7.

  • Nuttle, W. K., & Portnoy, J. W. (1992). Effect of rising sea level on runoff and groundwater discharge to coastal ecosystems. Estuarine, Coastal and Shelf Science, 34, 203–212.

    Article  Google Scholar 

  • Oetting, C. G., Banner, J. L., & John, M. S., Jr. (1996). Regional controls on the geochemical evolution of saline groundwaters in the Edwards aquifer, Central Texas. Journal of Hydrology, 181, 251–283.

    Article  CAS  Google Scholar 

  • Park, S. C., Yun, S. T., Chae, G. T., Yoo, I. S., Shin, K. S., Heo, C. H., & Lee, S. K. (2005). Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. Journal of Hydrology, 313(3–4), 182–194.

    Article  CAS  Google Scholar 

  • Petalas, C. P., & Diamantis, J. V. (1999). Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, Northeastern Greece. Hydrogeology Journal, 7, 305–316.

    Article  Google Scholar 

  • Petalas, C. P., Cassilios, P., Gemitzi, A., Vassilios, A., Tsihrintzis, & Ouzounis, K. (2009). Current conditions of saltwater intrusion in the coastal Rhodope aquifer system, Northeastern Greece. Desalination, 237, 21–41.

    Article  Google Scholar 

  • Piper, A. M. (1944). A graphical procedure in the chemical interpretation of groundwater analysis. Transaction of American Geophysical Union, 25, 914–928.

    Article  Google Scholar 

  • Rabinove, C. L., Longford, R. H., & Brookhart, J. W. (1958). Saline water resources of North Dakota. USGS water supply paper, 1418. Washington, DC: US Government Printing Office.

    Google Scholar 

  • Raghunath, H. M. (2007). Groundwater. New Delhi: New Age International (P) Limited.

    Google Scholar 

  • Richter, B. C., & Kreitler, C. W. (1993). In K. C. Smoley (Ed.), Geochemical techniques for identifying sources of ground-water salinization. Boca Raton: CRC.

    Google Scholar 

  • Sarin, M. M., Krishnaswamy, S., Dilli, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major ion chemistry of the Ganga–Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 53(5), 997–1009.

    Article  CAS  Google Scholar 

  • Saxena, V. K., Singh, V. S., Mondal, N. C., & Jain, S. C. (2003). Use of hydrochemical parameters for the identification of fresh groundwater resources, Potharlanka Island, India. Environmental Geology, 44(5), 516–521.

    Article  CAS  Google Scholar 

  • Schoeller, H. (1977). Geochemistry of groundwater. In: R. H. Brown, A. A. Konoplyantsev, J. Ineson, V. S. Kovalevsky (Eds.) Groundwater studies—An international guide for research and practice (chapter 15, pp. 1–18). Paris: UNESCO.

  • Sharma, S. (1996). Applied multivariate techniques (pp. 99–143). New York: Wiley.

    Google Scholar 

  • Singh, A. K., Mondal, G. C., Singh, S., Singh, P. K., Singh, T. B., Tewary, B. K., & Sinha, A. (2007). Aquatic geochemistry of Dhanbad, Jharkhand: Source, evaluation and quality assessment. Journal of the Geological Society of India, 69(5), 1088–1102.

    CAS  Google Scholar 

  • Singh, A. K., Tewary, B. K., & Sinha, A. (2011). Hydrochemistry and quality assessment of groundwater in part of NOIDA metropolitan city, Uttar Pradesh. Journal of the Geological Society of India, 78(6), 523–540.

    Article  CAS  Google Scholar 

  • Sovoe, D. L., & Prospero, J. M. (1989). Comparison of oceanic and continental source of non-salt sulfate over the Pacific Ocean. Nature, 339, 685–687.

    Article  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon. 2: The influence of the geology and weathering environment on the dissolved load. Journal of Geophysics and Research, 88, 9671–9688.

    Article  CAS  Google Scholar 

  • Stolberg, F. V., Souter, D., Lovbrand, E., & Holmgren, N. (2006) Caspian sea, GIWA regional assessment 23. University of Kalmar on behalf of United Nations Environment Programme, Kalmar, Sweden.

  • TAMAB. (1996). Integrating studies of water resources. Tehran: Water Resources Research Organization (in Persian).

    Google Scholar 

  • Tellam, J. H. (1995). Hydrochemistry of the saline groundwaters of the lower Mersey Basin Permo-Traiassic sandstone aquifer. U.K. Journal of Hydrology, 165, 45–84.

    Article  CAS  Google Scholar 

  • Todd, D. K. (1953). Seawater intrusion in coastal aquifers. Transactions of American Geophysical Union, 34, 749–754.

    Article  Google Scholar 

  • Vahdati Daneshmand, F. (1991). Amol; 1:250,000 scale geological quadrangle map of Iran. Tehran: Geological Survey of Iran.

    Google Scholar 

  • Vahdati Daneshmand, F., & Saidi, A. (1991). Sari; 1:250,000 scale geological quadrangle map of Iran. Tehran: Geological Survey of Iran.

    Google Scholar 

  • Zhang, J., Huang, W. W., Letolle, R., & Jusserand, C. (1995). Major element chemistry of the Huanghe (Yellow River), China—Weathering processes and chemical fluxes. Journal of Hydrology, 168(1–4), 173–203.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. B. Krishna Rao and A. Balasubramanian, Mysore, India and Dr. N.C. Mondal and Dr. V.S. Singh, NGRI, Hyderabad, India for the critical examination of the earlier version of the manuscript. The first author is grateful to S. Khademy and F. Mahbobi, Mazandaran Regional Water Authority, Sari City, Iran for providing logistic support during fieldwork and sample collection. The authors are grateful to the anonymous reviewer for providing constructive comments and valuable suggestions for improving the quality and contents of the earlier manuscript. Authors are highly thankful to the Editor-in-Chief and his staff for the meticulous editorial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Janardhana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khairy, H., Janardhana, M.R. Hydrogeochemical features of groundwater of semi-confined coastal aquifer in Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran. Environ Monit Assess 185, 9237–9264 (2013). https://doi.org/10.1007/s10661-013-3248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3248-6

Keywords

Navigation