Skip to main content

Advertisement

Log in

Characterization of mineral particles in winter fog of Beijing analyzed by TEM and SEM

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Aerosol samples were collected during winter fog and nonfog episodes in Beijing. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were applied to study morphologies, sizes, and compositions of aerosol particles. TEM observation indicates that most mineral particles collected in fog episode are scavenged in fog droplets. Number–size distributions of mineral particles collected in fog and nonfog episodes show two main peaks at the ranges of 0.1–0.3 and 1–2.5 μm, respectively. Based on their major compositions, mineral particles mainly include Si-rich, Ca-rich, and S-rich. Average S/Ca ratio of mineral particles collected in fog episode is 6.11, being eight times higher than that in nonfog episodes. Development mechanism of individual mineral particles in fog droplets is proposed. It is suggested that mineral particles with abundant alkaline components (e.g., “Ca-rich” particles) occurred in air should alleviate acidic degree of fog and contribute to complexity of fog droplets in Beijing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Hosney, H. A., & Grassian, V. H. (2005). Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: A transmission and ATR-FTIR study. Physical Chemistry Chemical Physics, 7(6), 1266–1276. doi:10.1039/b417872f.

    Article  CAS  Google Scholar 

  • Buseck, P. R., Jacob, D. J., Pósfai, M., Li, J., & Anderson, J. R. (2002). Minerals in the air: An environmental perspective. In W. G. Ernst (Ed.), Frontiers in geochemistry: Global inorganic geochemistry (Konrad Krauskopf Vol. 1, International Book Series Vol. 5, pp. 106–122). Geological society of America, Columbia: Bellwether publishing, Ltd. Columbia.

  • Collett, J. L., Hoag, K. J., & Rao, X. (1999). Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing. Atmospheric Environment, 33(29), 4833–4847. doi:10.1016/S1352-2310(99)00221-6.

    Article  CAS  Google Scholar 

  • Del Monte, M., & Rossi, P. (1997). Fog and gypsum crystals on building materials. Atmospheric Environment, 31(11), 1637–1646. doi:10.1016/S1352-2310(96)00343-3.

    Article  Google Scholar 

  • He, L. Y., Hu, M., Huang, X. F., Zhang, Y. H., & Tang, X. Y. (2006). Seasonal pollution characteristics of organic compounds in atmospheric fine particles in Beijing. The Science of the Total Environment, 359, 167–176. doi:10.1016/j.scitotenv.2005.05.044.

    Article  CAS  Google Scholar 

  • Hoag, K. J., Collett, J. L., & Pandis, S. N. (1999). The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs. Atmospheric Environment, 33(29), 4817–4832. doi:10.1016/S1352-2310(99)00268-X.

    Article  CAS  Google Scholar 

  • IPCC (2007). Climate change 2007. The physical science basis. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, et al. (Eds.), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Kim, B. G., & Park, S. U. (2001). Transport and evolution of a winter-time Yellow sand observed in Korea. Atmospheric Environment, 35(18), 3191–3201. doi:10.1016/S1352-2310(00)00469-6.

    Article  CAS  Google Scholar 

  • Lakhani, A., Parmar, R. S., Satsangi, G. S., & Prakash, S. (2007). Chemistry of fogs at Agra, India: Influence of soil particulates and atmospheric gases. Environmental Monitoring and Assessment, 133(1–3), 435–445. doi:10.1007/s10661-006-9598-6.

    Article  CAS  Google Scholar 

  • Lau, K. M., Ramanathan, V., Wu, G. X., Li, Z., Tsay, S. C., Hsu, C., et al. (2008). The joint aerosol-monsoon experiment—a new challenge for monsoon climate research. Bulletin of the American Meteorological Society, 89(3), 369–383. doi:10.1175/BAMS-89-3-369.

    Article  Google Scholar 

  • Li, W. J., & Shao, L. Y. (2008). Observation of nitrate coatings on atmospheric mineral dust particles. Atmospheric Chemistry and Physics Discussion, 8(6), 19249–19272.

    Google Scholar 

  • Lu, S. L., Shao, L. Y., Wu, M. H., Jiao, Z., & Chen, X. H. (2007). Chemical elements and their source apportionment of PM10 in Beijing urban atmosphere. Environmental Monitoring and Assessment, 133, 79–85. doi:10.1007/s0661-006-9561-6.

    Article  CAS  Google Scholar 

  • Minami, Y., & Ishizaka, Y. (1996). Evaluation of chemical composition in fog water near the summit of a high mountain in Japan. Atmospheric Environment, 30(19), 3363–3376. doi:10.1016/1352-2310(96)00029-5.

    Article  CAS  Google Scholar 

  • Nemery, B., Hoet, P. H. M., & Nemmar, A. (2001). The Meuse Valley fog of 1930: An air pollution disaster. Lancet, 357(9257), 704–708. doi:10.1016/S0140-6736(00)04135-0.

    Article  CAS  Google Scholar 

  • Okada, K., & Kai, K. (2004). Atmospheric mineral particles collected at Qira in the Taklamakan desert, China. Atmospheric Environment, 38(40), 6927–6935. doi:10.1016/j.atmosenv.2004.03.078.

    Article  CAS  Google Scholar 

  • Okada, K., Qin, Y., & Kai, K. (2005). Elemental composition and mixing properties of atmospheric mineral particles collected in Hohhot, China. Atmospheric Research, 73(1–2), 45–67. doi:10.1016/j.atmosres.2004.08.001.

    Article  CAS  Google Scholar 

  • Pandis, S. N., & Seinfeld, J. H. (1989). Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry. Journal of Geophysical Research—Atmospheres, 94, 1105–1126.

    Article  CAS  Google Scholar 

  • Raja, S., Ravikrishna, R., Kommalapati, R. R., & Valsaraj, K. T. (2005). Monitoring of fogwater chemistry in the gulf coast urban industrial corridor: Baton Rouge (Louisiana). Environmental Monitoring and Assessment, 110(1–3), 99–120. doi:10.1007/s10661-005-6281-2.

    Article  CAS  Google Scholar 

  • Sasakawa, M., Ooki, A., & Uematsu, M. (2003). Aerosol size distribution during sea fog and its scavenge process of chemical substances over the northwestern North Pacific. Journal of Geophysical Research, 108(D3), 13–11. doi:10.1029/2002JD002329.

    Article  Google Scholar 

  • Seinfeld, J. H. (1986). Atmospheric chemistry and physics of air pollution. New York: Wiley.

    Google Scholar 

  • Shao, L. Y., Li, W. J., Shi, Z., & Lu, S. (2007). Mineralogical characteristics of individual airborne particles collected in Beijing during a severe Asian dust storm period in spring 2002. Science in China Series D, 50(6), 953–959. doi:10.1007/s11430-007-0035-7.

    Article  CAS  Google Scholar 

  • Shao, L. Y., Li, W. J., Xiao, Z. H., & Sun, Z. Q. (2008). The mineralogy and possible sources of spring dust particles over Beijing. Advances in Atmospheric Sciences, 25, 395–403. doi:10.1007/s00376-008-0395-8.

    Article  CAS  Google Scholar 

  • Shao, L. Y., Shi, Z., Jones, T. P., Li, J., Whittaker, A. G., & BeruBe, K. A. (2006). Bioreactivity of particulate matter in Beijing air: Results from plasmid DNA assay. The Science of the Total Environment, 367(1), 261–272. doi:10.1016/j.scitotenv.2005.10.009.

    Article  CAS  Google Scholar 

  • Shi, Z. B., Shao, L. Y., Jones, T. P., Whittaker, A. G., Lu, S., Berube, K. A., et al. (2003). Characterization of airborne individual particles collected in an urban area, a satellite city and a clean air area in Beijing, 2001. Atmospheric Environment, 37(29), 4097–4108. doi:10.1016/S1352-2310(03)00531-4.

    Article  CAS  Google Scholar 

  • Song, Y., Tang, X. Y., Xie, S. D., Zhang, Y. H., Wei, Y. J., Zhang, M. S., et al. (2007). Source apportionment of PM2.5 in Beijing in 2004. Journal of Hazardous Materials, 146, 124–130. doi:10.1016/j.jhazmat.2006.11.058.

    Article  CAS  Google Scholar 

  • Sun, Y. L., Zhuang, G. S., Tang, A. H., Wang, Y., & An, Z. S. (2006). Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environmental Science & Technology, 40(10), 3148–3155. doi:10.1021/es051533g.

    Article  CAS  Google Scholar 

  • Takahashi, Y., Kanai, Y., Kamioka, H., Ohta, A., Maruyama, H., Song, Z., et al. (2006). Speciation of sulfate in size-fractionated aerosol particles using sulfur K-edge X-ray absorption near-edge structure. Environmental Science & Technology, 40(16), 5052–5057. doi:10.1021/es060497y.

    Article  CAS  Google Scholar 

  • Uematsu, M., Yoshikawa, A., Muraki, H., Arao, K., & Uno, I. (2002). Transport of mineral and anthropogenic aerosols during a Kosa event over East Asia. Journal of Geophysical Research—Atmospheres, 107(D7–D8), 4059–4067.

    Google Scholar 

  • Weathers, K. C., Likens, G. E., Bormann, F. H., Eaton, J. S., Bowden, W. B., Andersen, J. L., et al. (1986). A regional acidic cloud/fog water event in the eastern United States. Nature, 319(6055), 657–658. doi:10.1038/319657a0.

    Article  Google Scholar 

  • Wyzga, R. E., & Folinsbee, L. J. (1995). Health effects of acid aerosols. Water, Air, and Soil Pollution, 85(1), 177–188. doi:10.1007/BF00483699.

    Article  CAS  Google Scholar 

  • Zhang, D. Z., & Iwasaka, Y. (1999). Nitrate and sulfate in individual Asian dust-storm particles in Beijing, China in spring of 1995 and 1996. Atmospheric Environment, 33(19), 3213–3223. doi:10.1016/S1352-2310(99)00116-8.

    Article  CAS  Google Scholar 

  • Zhang, G. Z., Bian, L. G., Wang, J. Z., Yang, Y. Q., Yao, W. Q., & Xu, X. D. (2005). The boundary layer characteristics in the heavy fog formation process over Beijing and its adjacent areas. Science in China Series D, 48, 88–101.

    CAS  Google Scholar 

  • Zhang, X. Y., Gong, S. L., Shen, Z. X., Mei, F. M., Xi, X. X., Liu, L. C., et al. (2003). Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations—art. no. 4261. Journal of Geophysical Research—Atmospheres, 108(D9), 4261–4261. doi:10.1029/2002JD002632.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Shao, L. Characterization of mineral particles in winter fog of Beijing analyzed by TEM and SEM. Environ Monit Assess 161, 565–573 (2010). https://doi.org/10.1007/s10661-009-0768-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0768-1

Keywords

Navigation