Skip to main content
Log in

Biocontrol of Botrytis cinerea by chitin-based cultures of Paenibacillus elgii HOA73

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The chitinase-producing bacterium, Paenibacillus elgii HOA73, is a biocontrol agent that limits the damage caused to plants by microbial pathogens, insects, and nematodes. However, the mechanisms involved in the biocontrol of plant diseases by HOA73 have not been determined. The objective of this study was to elucidate the role of extracellular chitinase obtained from isolate HOA73 in the control of the fungal pathogen Botrytis cinerea, the causative agent of gray mold in tomato. The HOA73 strain grew efficiently in a chitin-containing broth and produced chitin oligomers through chitinase activity; protease, lipase, and Fe-chelating siderophores were also secreted by the bacterium. Cultures containing intact bacteria inhibited B. cinerea conidia germination to a greater extent than did the bacterial cells alone or the cell-free culture supernatant. The antifungal activity increased with culture age and was heat-sensitive because of chitinase-mediated production of long-chain chitin oligomers. The biocontrol efficacy of undiluted bacterial cultures against gray mold in tomato was comparable to that of a standard fungicide. This study demonstrated that P. elgii HOA73 bacterial cultures grown on chitin-based minimal medium may be an effective formulation for the integrated control of gray mold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AbuQamar, S. F., Moustafa, K., & Tran, L.-S. P. (2016). ‘Omics’ and plant responses to Botrytis cinerea. Frontiers in Plant Science, 7, 1658.

    Article  PubMed  PubMed Central  Google Scholar 

  • AbuQamar, S., Moustafa, K., & Tran, L. S. (2017). Mechanisms and strategies of plant defense against Botrytis cinerea. Critical Reviews in Biotechnology, 37(2), 262–274.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, E., & Holmstrom, S. J. (2014). Siderophores in environmental research: Roles and applications. Microbial Biotechnology, 7(3), 196–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Askar, A. A., Rashad, Y. M., Hafez, E. E., Abdulkhair, W. M., Baka, Z. A., & Ghoneem, K. M. (2015). Characterization of alkaline protease produced by Streptomyces griseorubens E44G and its possibility for controlling Rhizoctonia root rot disease of corn. Biotechnology, Biotechnological Equipment, 29(3), 457–462.

    Article  CAS  Google Scholar 

  • Alexander, D. B., & Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12(1), 39–45.

    Article  CAS  Google Scholar 

  • Arora, N. K., & Mishra, J. (2016). Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Applied Soil Ecology, 107, 405–407.

    Article  Google Scholar 

  • Bharucha, U., Patel, K., & Trivedi, U. B. (2013). Antifungal activity of catecholate type siderophore produced by Bacillus sp. International Journal of Pharmaceutical Sciences and Research, 4(4), 528–531.

    Google Scholar 

  • Cui, T. B., Chai, H. Y., & Jiang, L. X. (2012). Isolation and partial characterization of an antifungal protein produced by Bacillus licheniformis BS-3. Molecules, 17(6), 7336–7347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das, S. N., Dutta, S., Kondreddy, A., Chilukoti, N., Pullabhotla, S. V., Vadlamudi, S., et al. (2010). Plant growth-promoting chitinolytic Paenibacillus elgii responds positively to tobacco root exudates. Journal of Plant Growth Regulation, 29(4), 409–418.

    Article  CAS  Google Scholar 

  • Ding, R., Li, Y., Qian, C., & Wu, X. (2011a). Draft genome sequence of Paenibacillus elgii B69, a strain with broad antimicrobial activity. Journal of Bacteriology, 193(17), 4537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, R., Wu, X. C., Qian, C. D., Teng, Y., Li, O., Zhan, Z. J., et al. (2011b). Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus. Journal of Microbiology, 49(6), 942–949.

    Article  CAS  Google Scholar 

  • Eden, M. A., Hill, R. A., Beresford, R., & Stewart, A. (1996). The influence of inoculum concentration, relative humidity, and temperature on infection of greenhouse tomatoes by Botrytis cinerea. Plant Pathology, 45(4), 795–806.

    Article  Google Scholar 

  • Felix, G., Regenass, M., & Boller, T. (1993). Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: Induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. The Plant Journal, 4(2), 307–316.

    Article  CAS  Google Scholar 

  • Fernández-Ortuño, D., Grabke, A., Bryson, P. K., Amiri, A., Peres, N. A., & Schnabel, G. (2014). Fungicide resistance profiles in Botrytis cinerea from strawberry fields of seven southern U.S. states. Plant Disease, 98(6), 825–833.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Y., Huang, E., Yuan, C., Zhang, L., & Yousef, A. E. (2012). Isolation of a Paenibacillus sp. strain and structural elucidation of its broad-spectrum lipopeptide antibiotic. Applied and Environmental Microbiology, 78(9), 3156–3165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha, W. J., Kim, Y. C., & Park, H. J. K. (2014). Control of the root-knot nematode (Meloidogyne spp.) on cucumber by a liquid bio-formulation containing chitinolytic bacteria, chitin and their products. Resarch in Plant Disease, 20(2), 112–118.

    Article  CAS  Google Scholar 

  • Hidangmayum, A., Dwivedi, P., Katiyar, D., & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. [journal article]. Physiology and Molecular Biology of Plants, In Press. https://doi.org/10.1007/s12298-12018-10633-12291.

  • Itoh, T., Sugimoto, I., Hibi, T., Suzuki, F., Matsuo, K., Fujii, Y., et al. (2014). Overexpression, purification, and characterization of Paenibacillus cell surface-expressed chitinase ChiW with two catalytic domains. Bioscience, Biotechnology, and Biochemistry, 78(4), 624–634.

    Article  CAS  PubMed  Google Scholar 

  • Junaid, J. M., Dar, N. A., Bhat, T. A., Bhat, A. H., & Bhat, M. A. (2013). Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. International Journal of Modern Plant and Animal Sciences, 1(2), 39–57.

    Google Scholar 

  • Kamil, F. H., Saeed, E. E., El-Tarabily, K. A., & AbuQamar, S. F. (2018). Biological control of mango dieback disease caused by Lasiodiplodia theobromae using streptomycete and non-streptomycete actinobacteria in the United Arab Emirates. Frontiers in Microbiology, 9, 829.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kendra, D. F., & Hadwiger, L. A. (1984). Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Experimental Mycology, 8(3), 276–281.

    Article  CAS  Google Scholar 

  • Kim, B. S., Lim, T. H., Park, E. W., & Cho, K. Y. (1995). Occurence of multiple resitant isolates of Botrytis cinerea to benzimidazole and N-phenylcarbamate fungicides. Plant Pathology Journal, 11(2), 146–150.

    Google Scholar 

  • Kim, D. S., Bae, C. Y., Jeon, J. J., Chun, S. J., Oh, H. W., Hong, S. G., et al. (2004). Paenibacillus elgii sp. nov., with broad antimicrobial activity. International Journal of Systematic and Evolutionary Microbiology, 54(Pt 6), 2031–2035.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. C., Jung, H., Kim, K. Y., & Park, S. K. (2008). An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. European Journal of Plant Pathology, 120(4), 373–382.

    Article  Google Scholar 

  • Kim, Y. C., Lee, J. H., Bae, Y.-S., Sohn, B.-K., & Park, S. K. (2010). Development of effective environmentally-friendly approaches to control Alternaria blight and anthracnose diseases of Korean ginseng. [journal article]. European Journal of Plant Pathology, 127(4), 443–450.

    Article  Google Scholar 

  • Kim, Y. C., Kang, B. R., Kim, Y. H., & Park, S. K. (2017a). An effective and practical strategy for biocontrol of plant diseases using on-site mass cultivation of chitin-degrading bacteria. Resarch in Plant Disease, 23(1), 19–34.

    Article  CAS  Google Scholar 

  • Kim, Y. H., Park, S. K., Hur, J. Y., & Kim, Y. C. (2017b). Purification and characterization of a major extracellular chitinase from a biocontrol bacterium, Paenibacillus elgii HOA73. Plant Pathology Journal, 33(3), 318–328.

    Article  CAS  PubMed  Google Scholar 

  • Kishore, G. K., & Pande, S. (2007). Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions. Letters in Applied Microbiology, 44(1), 98–105.

    Article  CAS  PubMed  Google Scholar 

  • Kishore, G. K., Pande, S., & Podile, A. R. (2005a). Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology, 95(10), 1157–1165.

    Article  CAS  PubMed  Google Scholar 

  • Kishore, G. K., Pande, S., & Podile, A. R. (2005b). Chitin-supplemented foliar application of Serratia marcescens GPS 5 improves control of late leaf spot disease of groundnut by activating defence-related enzymes. Journal of Phytopathology, 153(3), 169–173.

    Article  CAS  Google Scholar 

  • Kumar, S. N., Jacob, J., Reshma, U. R., Rajesh, R. O., & Kumar, B. S. (2015). Molecular characterization of forest soil based Paenibacillus elgii and optimization of various culture conditions for its improved antimicrobial activity. Frontiers in Microbiology, 6, 1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Mire, G., Nguyen, M. L., Fassotte, B., du Jardin, P., Verheggen, F., Delaplace, P., et al. (2016). Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnology, Agronomy, Society and Environment, 20(S), 1–15.

    Google Scholar 

  • Lee, Y. S., Nguyen, X. H., Cho, J. Y., Moon, J. H., & Kim, K. Y. (2017). Isolation and antifungal activity of methyl 2,3-dihydroxybenzoate from Paenibacillus elgii HOA73. Microbial Pathogenesis, 106, 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Tian, S., Meng, X., & Xu, Y. (2007). Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 44(3), 300–306.

    Article  CAS  Google Scholar 

  • Myresiotis, C., Karaoglanidis, G., & Tzavella-Klonari, K. (2007). Resistance of Botrytis cinerea isolates from vegetable crops to anilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide fungicides. Plant Disease, 91(4), 407–413.

    Article  CAS  PubMed  Google Scholar 

  • Neung, S., Nguyen, X. H., Naing, K. W., Lee, Y. S., & Kim, K. Y. (2014). Insecticidal potential of Paenibacillus elgii HOA73 and its combination with organic sulfur pesticide on diamondback moth, Plutella xylostella. Journal of the Korean Society for Applied Biological Chemistry, 57(2), 181–186.

    Article  CAS  Google Scholar 

  • Nguyen, X. H., Naing, K. W., Lee, Y. S., Jung, W. J., Anees, M., & Kim, K. Y. (2013). Antagonistic potential of Paenibacillus elgii HOA73 against the root-knot nematode, Meloidogyne incognita. Nematology, 15(8), 991–1000.

    Article  CAS  Google Scholar 

  • Nguyen, X. H., Naing, K. W., Lee, Y. S., & Kim, K. Y. (2015a). Isolation of butyl 2,3-dihydroxybenzoate from Paenibacillus elgii HOA73 against Fusarium oxysporum f.sp. lycopersici. Journal of Phytopathology, 163(5), 342–352.

    Article  CAS  Google Scholar 

  • Nguyen, X. H., Naing, K. W., Lee, Y. S., Moon, J. H., Lee, J. H., & Kim, K. Y. (2015b). Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. Journal of Basic Microbiology, 55(5), 625–634.

    Article  CAS  PubMed  Google Scholar 

  • O'Neill, T. M., Shtienberg, D., & Elad, Y. (1997). Effect of some host and microclimate factors on infection of tomato stems by Botrytis cinerea. Plant Disease, 81(1), 36–40.

    Article  CAS  PubMed  Google Scholar 

  • Palma-Guerrero, J., Lopez-Jimenez, J. A., Pérez-Berná, A. J., Huang, I.-C., Jansson, H.-B., Salinas, J., et al. (2010). Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Molecular Microbiology, 75(4), 1021–1032.

    Article  CAS  PubMed  Google Scholar 

  • Parnell, J. J., Berka, R., Young, H. A., Sturino, J. M., Kang, Y., Barnhart, D. M., et al. (2016). From the lab to the farm: An industrial perspective of plant beneficial microorganisms. Frontiers in Plant Science, 7, 1110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pusztahelyi, T. (2018). Chitin and chitin-related compounds in plant-fungal interactions. Mycology, 9(3), 189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian, C.-D., Liu, T.-Z., Zhou, S.-L., Ding, R., Zhao, W.-P., Li, O., et al. (2012). Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii. BMC Microbiology, 12(1), 197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkumar, M., Lee, K. J., & Freitas, H. (2008). Effects of chitin and salicylic acid on biological control activity of Pseudomonas spp. against damping off of pepper. South African Journal of Botany, 74(2), 268–273.

    Article  CAS  Google Scholar 

  • Réblová, Z. (2012). Effect of temperature on the antioxidant activity of phenolic acids. Czech Journal of Food Sciences, 30(2), 171–177.

    Article  Google Scholar 

  • Reddy, M. V. B., Angers, P., Castaigne, F., & Arul, J. (2000). Chitosan effects on blackmold rot and pathogenic factors produced by Alternaria alternata in postharvest tomatoes. Journal of the American Society for Horticultural Science, 125(6), 742–747.

    Article  CAS  Google Scholar 

  • Rupp, S., Weber, R. W. S., Rieger, D., Detzel, P., & Hahn, M. (2017). Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture. Frontiers in Microbiology, 7, 2075.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S., & Tribedi, P. (2016). Microbial siderophores and their potential applications: A review. Environmental Science and Pollution Research International, 23(5), 3984–3999.

    Article  CAS  PubMed  Google Scholar 

  • Sang, M. K., Kim, E. N., Han, G. D., Kwack, M. S., Jeun, Y. C., & Kim, K. D. (2014). Priming-mediated systemic resistance in cucumber induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare. Phytopathology, 104(8), 834–842.

    Article  CAS  PubMed  Google Scholar 

  • Seo, C. C., Jung, H., & Park, S. K. (2007). Control of powdery mildew of pepper using culture solutions of chitinolytic bacteria, Chromobacterium sp. and Lysobacter enzymogenes. Research in Plant Disease, 13(1), 40–44.

    Article  Google Scholar 

  • Sharp, R. (2013). A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy, 3(4), 757–793.

    Article  CAS  Google Scholar 

  • Shibuya, N., & Minami, E. (2001). Oligosaccharide signalling for defence responses in plant. Physiological and Molecular Plant Pathology, 59(5), 223–233.

    Article  CAS  Google Scholar 

  • Sid Ahmed, A., Ezziyyani, M., Pérez Sánchez, C., & Candela, M. E. (2003). Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. European Journal of Plant Pathology, 109(6), 633–637.

    Article  CAS  Google Scholar 

  • Singh, A. K., & Chhatpar, H. S. (2011). Purification, characterization and thermodynamics of antifungal protease from Streptomyces sp. A6. Journal of Basic Microbiology, 51(4), 424–432.

    Article  CAS  PubMed  Google Scholar 

  • Singh, G., Bhalla, A., Bhatti, J., Chandel, S., Rajput, A., Abdullah, A., et al. (2013). Potential of chitinases as a biopesticide against agriculturally harmful fungi and insects. Resarch and Reviews: Journal of Microbiology and Biotechnology, 3, 27–32.

    Google Scholar 

  • Teng, Y., Zhao, W., Qian, C., Li, O., Zhu, L., & Wu, X. (2012). Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by Paenibacillus elgii B69. BMC Microbiology, 12, 45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verlee, A., Mincke, S., & Stevens, C. V. (2017). Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate Polymers, 164, 268–283.

    Article  CAS  PubMed  Google Scholar 

  • von Tigerstrom, R. G., & Stelmaschuk, S. (1989). The use of tween 20 in a sensitive turbidimetric assay of lipolytic enzymes. Canadian Journal of Microbiology, 35(4), 511–514.

    Article  Google Scholar 

  • Wang, S. L., Shih, I. L., Liang, T. W., & Wang, C. H. (2002). Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. Journal of Agricultural and Food Chemistry, 50(8), 2241–2248.

    Article  CAS  PubMed  Google Scholar 

  • Wen, Y., Wu, X., Teng, Y., Qian, C., Zhan, Z., Zhao, Y., et al. (2011). Identification and analysis of the gene cluster involved in biosynthesis of paenibactin, a catecholate siderophore produced by Paenibacillus elgii B69. Environmental Microbiology, 13(10), 2726–2737.

    Article  CAS  PubMed  Google Scholar 

  • Williamson, B., Tudzynski, B., Tudzynski, P., & van Kan, J. A. (2007). Botrytis cinerea: The cause of grey mould disease. Molecular Plant Pathology, 8(5), 561–580.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X. C., Shen, X. B., Ding, R., Qian, C. D., Fang, H. H., & Li, O. (2010). Isolation and partial characterization of antibiotics produced by Paenibacillus elgii B69. FEMS Microbiology Letters, 310(1), 32–38.

    Article  CAS  PubMed  Google Scholar 

  • Yen, Y.-H., Li, P.-L., Wang, C.-L., & Wang, S.-L. (2006). An antifungal protease produced by Pseudomonas aeruginosa M-1001 with shrimp and crab shell powder as a carbon source. Enzyme and Microbial Technology, 39(2), 311–317.

    Article  CAS  Google Scholar 

  • Zarei, M., Aminzadeh, S., Zolgharnein, H., Safahieh, A., Daliri, M., Noghabi, K. A., et al. (2011). Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A. Brazilian Journal of Microbiology, 42(3), 1017–1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by grants (314084-3 and 316032-5) from the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries, Ministry for Food, Agriculture, Forest, and Fisheries, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seur Kee Park.

Ethics declarations

The authors declare that ethical standards have been followed and that no human participants or animals were involved in this research.

Competing interests

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.C., Hur, J.Y. & Park, S.K. Biocontrol of Botrytis cinerea by chitin-based cultures of Paenibacillus elgii HOA73. Eur J Plant Pathol 155, 253–263 (2019). https://doi.org/10.1007/s10658-019-01768-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01768-1

Keywords

Navigation