Skip to main content
Log in

Bioactive metabolites from new or rare fimicolous fungi with antifungal activity against plant pathogenic fungi

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Herbivorous mammal dung supports a large variety of fimicolous fungi and the number of new genera and species is constantly increasing. Dung is a complex ecosystem and to win the struggle for life, these fungi produce a plethora of bioactive secondary metabolites to compete with other organisms. Fimicolous fungi and their bioactive metabolites are mostly evaluated for a possible use in medicine. Very little information is available about their possible exploitation in agriculture against plant pathogens. Three fimicolous isolates of Cleistothelebolus nipigonensis, Neogymnomyces virgineus and Rodentomyces reticulatus, collected from dung of different herbivorous were investigated. Only the organic extracts of Solid State Fermentation (SSF) cultures of C. nipigonensis and N. virgineus grown on rye flour showed strong antifungal activity against fungal pathogens of some important crops. The purification of the organic extracts allowed us to obtain different fractions and the isolation of some pure metabolites and their preliminary chemical and biological characterization are reported in this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58, 649–662.

    Article  CAS  PubMed  Google Scholar 

  • Berger, S., & Braun, S. (2004). 200 and more basic NMR experiments: A practical course (1st ed.). Weinheim: Wiley-VCH.

    Google Scholar 

  • Bills, G. F., Gloer, J. B., & An, Z. (2013). Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Current Opinion in Microbiology, 16, 1–17.

    Article  Google Scholar 

  • Breitmaier, E., & Voelter, W. (1987). Carbon-13 NMR spectroscopy (pp. 183–280). Weinheim: VCH.

    Google Scholar 

  • Burges, A. (1958). Microorganisms in the soil. Hutchinson University London.

  • Domınguez, J. M., Martın, J. J. (2005). Sordarins: inhibitors of fungal elongation factor-2. In A Z. Marcel Dekker (Ed.) Handbook of Industrial Mycology. (pp. 335–353).

  • Doveri, F. (2004). Fungi fimicoli italici. AMB Fondazione Centro Studi Micologici.

  • Doveri, F., Pecchia, S., Sarrocco, S., Minnocci, F., & Vannacci, G. (2010). Rodentomyces, a new hypocrealean genus from Italy. Fungal Diversity, 42(1), 57–69.

    Article  Google Scholar 

  • Doveri, F., Pecchia, S., Vergara, M., Sarrocco, S., & Vannacci, G. (2012). A comparative study and relationship with Onygenales of Neogymnomyces virgineus, a new keratinolytic species from dung. Fungal Diversity, 52(1), 13–34.

    Article  Google Scholar 

  • Doveri, F., Sarrocco, S., & Vannacci, G. (2013). Studies on three rare coprophilous Plectomycetes from Italy. Mycotaxon, 124, 279–300.

    Article  Google Scholar 

  • Garret, S. D. (1963). Soil fungi and soil fertility. Oxford: Pergamon Press.

    Google Scholar 

  • Gloer, G. B. (2007). Applications of fungal ecology in thes for new bioactive natural products. Environmental and microbial relationships. The Mycota, 4, 257–283.

    Article  Google Scholar 

  • Kendrick, B. (2000). The fifth kingdom (3rd ed.). Newburyport: Focus Publishing, R. Pullins Co.

    Google Scholar 

  • Lehr, N. A., Meffert, A., Antelo, L., Sterner, O., Anke, H., & Weber, R. W. S. (2006). Antomoebins, myrocin B and the basis of antifungal antibiosis in the coprophilous fungus Stilbella erythrocephala (syn. S. fimetaria). FEMS Microbiology Ecology, 55, 105–112.

    Article  CAS  PubMed  Google Scholar 

  • Mudur, S. V., Gloer, J. B., & Wicklow, D. T. (2006). Sporminarins A and B: antifungal metabolites from a fungicolous isolate of Sporormiella minimoides. Journal of Antibiotics, 59, 500–506.

    Article  CAS  PubMed  Google Scholar 

  • Pasricha, R., Kumar, R. N., & Mukerji, K. G. (1994). Succession of coprophilous fungi in relation to chemical composition of the substrate. Ukrainian Botanical Journal, 51, 94–99.

    Google Scholar 

  • Pretsch, E., Bühlmann, P., & Affolter, C. (2000). Structure determination of organic compounds – tables of spectral data (3rd ed., pp. 161–243). Berlin: Springer.

    Book  Google Scholar 

  • Richardson, M. J. (2001). Diversity and occurrence of coprophilous fungi. Mycological Research, 15, 387–482.

    Article  Google Scholar 

  • Ridderbusch, D. C., Weber, R. W. S., Anke, T., & Sterner, O. (2004). Tulasnein and podospirone from the coprophilous xylariaceous fungus Podosordaria tulasnei. Zeitschrift für Naturforschung C. A Journal of Biosciences, 59, 379–383.

    CAS  Google Scholar 

  • Weber, R. W. S., Meffert, A., Anke, H., & Sterner, O. (2005). Production of sordarin and related metabolites by the coprophilous fungus Podospora pleiospora in submerged culture and in its natural substrate. Mycological Research, 109, 619–626.

    Article  CAS  PubMed  Google Scholar 

  • Wicklow, D. T. (1981). Interference competition and the organization of fungal communities. In D. T. Wicklow & G. C. Carroll (Eds.), The fungal community. Its organization and role in the ecosystem (pp. 351–375). New York: 1′vlarcel Dekker.

    Google Scholar 

Download references

Acknowledgments

This paper is dedicated to Maurizio Forti, recently passed away.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Sarrocco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarrocco, S., Diquattro, S., Avolio, F. et al. Bioactive metabolites from new or rare fimicolous fungi with antifungal activity against plant pathogenic fungi. Eur J Plant Pathol 142, 61–71 (2015). https://doi.org/10.1007/s10658-014-0589-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0589-0

Keywords

Navigation