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Abstract
The objective of the present study was to identify proteins that contribute to pathophysiology and allow prediction of incident 
type 2 diabetes or incident prediabetes. We quantified 14 candidate proteins using targeted mass spectrometry in plasma 
samples of the prospective, population-based German KORA F4/FF4 study (6.5-year follow-up). 892 participants aged 
42–81 years were selected using a case-cohort design, including 123 persons with incident type 2 diabetes and 255 persons 
with incident WHO-defined prediabetes. Prospective associations between protein levels and diabetes, prediabetes as well as 
continuous fasting and 2 h glucose, fasting insulin and insulin resistance were investigated using regression models adjusted 
for established risk factors. The best predictive panel of proteins on top of a non-invasive risk factor model or on top of 
HbA1c, age, and sex was selected. Mannan-binding lectin serine peptidase (MASP) levels were positively associated with 
both incident type 2 diabetes and prediabetes. Adiponectin was inversely associated with incident type 2 diabetes. MASP, 
adiponectin, apolipoprotein A-IV, apolipoprotein C-II, C-reactive protein, and glycosylphosphatidylinositol specific phos-
pholipase D1 were associated with individual continuous outcomes. The combination of MASP, apolipoprotein E (apoE) 
and adiponectin improved diabetes prediction on top of both reference models, while prediabetes prediction was improved by 
MASP plus CRP on top of the HbA1c model. In conclusion, our mass spectrometric approach revealed a novel association 
of MASP with incident type 2 diabetes and incident prediabetes. In combination, MASP, adiponectin and apoE improved 
type 2 diabetes prediction beyond non-invasive risk factors or HbA1c, age and sex.

Keywords Type 2 diabetes · Prediabetes · Population-based · Biomarker · Proteomics · Prediction

Introduction

Type 2 diabetes causes an enormous burden for the indi-
vidual as well as for societies of many countries worldwide 
[1]. Therefore, improved understanding of disease patho-
physiology and the development of preventive measures are 

particularly important, as well as tools for optimal predic-
tion of future disease occurrence enabling targeted preven-
tive measures. Biomarker data may contribute to these aims 
[2–5].

Research on type 2 diabetes risk stratification either aims 
at diagnosis of insulin resistance or prediabetes [6, 7] or 
attempts to directly predict the future risk of diabetes [7–10]. 
Ideally, already the development of prediabetes is prevented 
as not only diabetic patients but also prediabetic persons may 
suffer from complications caused by hyperglycemia [11]. 
Yet, only few studies have developed algorithms to predict 
incident prediabetes [12].

An important issue for new prediction algorithms or 
devices is the selection of an appropriate benchmark model. 
Typical decision points are whether the new algorithm shall 
add benefit on top of or replace mostly questionnaire-based 

Cornelia Huth and Christine von Toerne as well as Stefanie M. 
Hauck and Barbara Thorand contributed equally to this work.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s1065 4-018-0475-8) contains 
supplementary material, which is available to authorized users.

 * Cornelia Huth 
 huth@helmholtz-muenchen.de

Extended author information available on the last page of the article

http://orcid.org/0000-0003-2421-433X
http://orcid.org/0000-0002-4132-4322
http://orcid.org/0000-0002-2050-093X
http://orcid.org/0000-0003-2229-1120
http://orcid.org/0000-0002-9026-6544
http://orcid.org/0000-0001-6645-0985
http://orcid.org/0000-0002-1630-6827
http://orcid.org/0000-0002-8416-6440
http://crossmark.crossref.org/dialog/?doi=10.1007/s10654-018-0475-8&domain=pdf
https://doi.org/10.1007/s10654-018-0475-8


410 C. Huth et al.

1 3

non-invasive tools or other benchmark biomarkers [13]. 
Often a combination of both is relevant. Type 2 diabetes 
is usually diagnosed by fasting glucose or HbA1c concen-
trations [14] and several other blood markers (most prom-
inently insulin) are known to play important roles in the 
pathophysiology [3, 15]. Therefore, several biomarkers are 
already available and a deliberate choice is needed.

The German Diabetes Risk Score (GDRS) is a non-inva-
sive tool and currently recommended for type 2 diabetes 
screening and risk prediction in Germany [16, 17]. Since 
there is no international consensus regarding prediction 
algorithms in the field of type 2 diabetes, we used the estab-
lished risk factors included in the GDRS for benchmarking 
in our German study. Additionally, we used HbA1c con-
centrations, which have been proposed to be evaluated in 
combination with the GDRS for screening and prediction 
[17]. The main advantage of HbA1c in contrast to glucose 
is its spontaneous availability, avoiding fasting, which is no 
longer required in routine clinical practice [18], and avoiding 
oral glucose tolerance test (OGTT) burden [19].

Our study aimed to identify novel protein associations 
with incident type 2 diabetes or incident prediabetes in order 
to further elucidate pathophysiological processes underlying 
diabetes development. 14 candidate proteins selected based 
on previous results from a mouse model on type 2 diabe-
tes (5), unpublished shotgun discovery proteomic analyses, 
and literature mining were quantified by a targeted selec-
tion reaction monitoring (SRM) mass spectrometry (MS) 
approach. In addition to the dichotomous outcomes, we 
investigated whether baseline plasma protein levels were 
prospectively associated with the diabetes-related continu-
ous outcomes fasting glucose, OGTT 2-h-glucose, fasting 
insulin, and insulin resistance. Furthermore, our study aimed 
to assess whether our protein panel improved the prediction 
of incident type 2 diabetes or incident prediabetes on top of 
established risk factors and to select the protein subsets with 
the best predictive power.

Methods

Study population, definitions of incidence outcomes 
and selection criteria

The Cooperative Health Research in the Region of Augsburg 
(KORA) F4 (2006–2008) and FF4 studies (2013–2014) are 
follow-up examinations of the population-representative 
KORA S4 study (1999–2001), which was conducted in 
Augsburg (Germany) and two surrounding counties. The 
study design has been described previously in detail [20].

Previously known type 2 diabetes was defined as self-
report that could be validated by the responsible physician or 
medical chart review, or as current use of glucose-lowering 

medication. All participants without known diabetes were 
assigned to receive a standard 75  g oral glucose toler-
ance test (OGTT). Blood samples were taken without 
stasis after an overnight fast of at least 8 h and 2 h after 
glucose solution intake. Normoglycemia (i.e. fasting glu-
cose < 6.1 mmol/l and 2-h-glucose < 7.8 mmol/l), predia-
betes (fasting glucose ≥ 6.1 mmol/l but < 7.0 mmol/l, and 
2-h-glucose < 7.8 mmol/l [isolated impaired fasting glucose 
(IFG)] or fasting glucose < 6.1 mmol/l and 2–h-glucose 
≥ 7.8 mmol/l but < 11.1 mmol/l [isolated impaired glucose 
tolerance (IGT)], or both [IFG and IGT]), and newly diag-
nosed diabetes (fasting glucose ≥ 7.0 mmol/l or 2-h-glucose 
≥ 11.1 mmol/l) were defined according to the 1999/2006 
WHO criteria [21, 22]. Newly diagnosed and known diabetic 
participants for whom the diabetes type could not be vali-
dated and for whom no contradictory information was given 
were assumed to have type 2 diabetes. The outcome diabetes 
included known and newly diagnosed diabetes.

The KORA F4 study included 3080 participants aged 
32–81 years, of whom 2161 also participated in KORA 
FF4 (Fig. 1). For the current prospective KORA F4/FF4 
investigation we excluded 189 KORA F4 participants with 
prevalent diabetes, 112 participants with unclear diabetes 
status or missing/invalid OGTT at KORA F4 or FF4, 407 
participants younger than 42 years at KORA F4 (due to the 
low incidence of type 2 diabetes in the lowest 10-year age-
category), and six participants with missing covariate data. 
The remaining 1447 participants qualified for SRM-MS 
protein measurements. Out of these, we randomly selected 
a subcohort of 728 participants plus all additional incident 
type 2 diabetes or incident prediabetes cases. Two partici-
pants were excluded due to outliers in the SRM-MS data. 
The final study comprised 890 participants. The type 2 dia-
betes analysis sample included 660 non-cases from the sub-
cohort and 123 incident cases. The (pre)diabetes analysis 
sample contained 446 non-cases from the subcohort and 255 
incident cases; these 255 cases comprised 223 prediabetic 
and 32 diabetic cases who directly progressed from nor-
moglycemia to diabetes. The case-cohort sampling is illus-
trated in Supplemental Fig. 1. The longitudinal analyses of 
the continuous diabetes-related outcomes were restricted to 
831–855 (depending on outcome) participants with complete 
data who were not taking glucose-lowering medication.

Clinical measurements and assessments of risk 
factors

All participants underwent standard physical and medical 
examinations at KORA F4 and FF4.

HbA1c in KORA F4 was assessed in hemolyzed whole 
blood using a cation-exchange high performance liquid 
chromatographic, photometric assay on an Adams HA 8160 
Hemoglobin Analysis System (Arkray Inc., distributed by 
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A. Menarini Diagnostics, Florence, Italy). Insulin levels in 
KORA F4 were measured in thawed serum by an electro-
chemiluminescence immunoassay on a Cobas e602 instru-
ment (Roche Diagnostics GmbH, Mannheim, Germany). 
The assessment of the other metabolic, anthropometric, 
and lifestyle variables was performed as described [23]. 
In KORA FF4, glucose concentrations were measured in 
fresh serum by an enzymatic, colorimetric method using the 
GLU assay on a Dimension Vista 1500 instrument (Siemens 

Healthcare Diagnostics Inc., Newark, USA) or using the 
GLUC3 assay, on a Cobas c702 instrument (Roche). KORA 
FF4 serum insulin concentrations were assessed by a solid-
phase enzyme-labeled chemiluminescent immunometric 
assay on an Immulite 2000 systems analyzer (Siemens) or 
by an electrochemiluminescence immunoassay on a Cobas 
e602 instrument (Roche). The measurement instrument and 
assays changed in KORA FF4 from Siemens to Roche half-
way during the study. Calibration formulas were developed 

excl.: 

KORA F4 (2006‒2008) study sample 

n=3080 

Sample for prospective statistical analyses 

n=890 

No participation at follow-up KORA FF4 (2013/14);  

reasons: dead, moved out of study area, refused, too ill, not 

interested, too busy to participate, could not be contacted: n=919 

Prevalent diabetes at KORA F4: n=189 

Unclear diabetes status (n=1) or no or invalid OGTT (n=111)  

at KORA F4 or FF4: n=112 

Age lower than 42 years at KORA F4: n=407 

Missing covariates at KORA F4: n=6 

Not selected for SRM-MS protein measurements (n=555) or 

invalid SRM-MS protein measurements (n=2): n=557 

Outcome: incident type 2 diabetes 

- n=123 incident cases 
- n=660 non-cases 

Outcome: incident (pre)diabetes 

- n=255 incident cases 
- n=446 non-cases 

Continuous outcomes 

- n=855 for fasting glucose  
(n=1 missing value)  

- n=851 for fasting insulin and 

HOMA-IR (n=5 missing values) 

- n=831 for 2 hour glucose  

(n=25 missing values) 

Incident prediabetic 

cases not in subcohort: 

n=107 

Not normoglycemic at 

KORA F4: n=189 

Intake of glucose- 

lowering medication  

at KORA FF4: n=34 

excluded: 

excl.: 

excl.: 

excl.: 

excl.: 

excl.: 

excl.: excl.: 

Fig. 1  Flowchart showing sample sizes and reasons for exclusions
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using 122 (194 for insulin) FF4-samples measured with both 
methods during the time of the change. No calibration was 
needed for glucose, because the double measurements were 
very similar. The Siemens insulin results were calibrated to 
the Roche measurements using the following formula: Insu-
lin_Roche = 7.842 pmol/L + Insulin_Siemens × 1.016. The 
homeostasis model assessment insulin resistance (HOMA-
IR) was calculated as fasting insulin (in pmol/l) × fasting 
glucose (in mmol/l) ÷ 135.

Parental history of diabetes was defined as positive (at 
least one parent with diabetes), negative (both parents with-
out diabetes) or unknown diabetes status (else). Sibling his-
tory of diabetes was defined as positive (at least one sib-
ling with diabetes) or negative (no siblings or all siblings 
without diabetes or with unknown diabetes status). Because 
the KORA F4 participants older than 72 years had not been 
asked for their parental and sibling history of diabetes, 
missing values were replaced using the participants’ data 
from the KORA/MAGiC-Control, KORA S4 or FF4 stud-
ies where available. One sibling history value was imputed 
using covariate data with the package mice in R [24].

Targeted SRM‑MS protein measurements

The plasma samples of 271 persons of the subcohort had 
already been measured previously (lot 1) [23]. The remain-
ing subcohort and all additional incident cases were newly 
measured in 2016 when the FF4 data became available (lot 
2, n = 621). These measurements were performed similarly 
as published for lot 1 and are described together with the 
combined data preprocessing in detail in the Supplemental 
Material.

In short, the 621 lot 2 samples were randomly distributed 
into thirteen processing batches and quality control was per-
formed as described for lot 1 [23]. All lot 2 sample prepara-
tion batches passed quality control. All measured peptides 
were proteotypic with the exception of the two ‘MASP’ 
peptides TGVITSPDFPNPYPK and AAGNECPELQP-
PVHGK which together with the SLPTCLPVCGLPK pep-
tide are transcribed from the MASP1 gene (according to 
Ensembl human database, release 90, August 2017). While 
the ‘SLPT’ peptide only translates into the MASP-1 isoform, 
the ‘TGVI’ and ‘AAGN’ peptides translate into the protein 
isoforms MASP-1, MASP-3 and MAP44 [25]. Accordingly, 
all results for the protein originally termed MASP-1 [23] are 
addressed in this manuscript as MASP. Isotope-labelled syn-
thetic peptides were used for each peptide as internal control 
to correct signal integration and for relative quantification 
as described [23]. Liquid chromatography MSMS analysis 
was performed on an Ultimate3000-HPLC system (Thermo 
Fischer Scientific, Dreieich, Germany) coupled online to a 
QTrap4000 mass-spectrometer (ABSCIEX, Framingham, 

MS, USA) by a nanospray ion source. This technique meas-
ures the area under the curve (AUC) signals of pre-spec-
ified collision-induced peptide dissociation products, the 
so-called transitions.

Coefficients of variation (CV) of pooled samples were 
calculated for all transition signals based on five replicate 
measurements per lot using the software AuDIT [26]. Tran-
sitions with a CV ≥ 30% were excluded. Light (endogenous) 
to heavy (synthetic) ratios of the AUC values were calcu-
lated,  log2-transformed, and averaged for all transitions of 
each peptide. Peptide-level light-to-heavy-ratios were aver-
aged per protein to yield relative protein levels. Within this 
process, the data was corrected for technical covariates. 
Quality control of signals was based on CV-results of lot 1 
and lot 2 pools and 29 duplicate measurements of lot 2 sam-
ples. Only peptides demonstrating reliable reproducibility 
were included in the combined analysis, leaving a total of 30 
peptides in lot 1 and 31 peptides in lot 2, and representing 14 
candidate proteins (Supplemental Table 1). The SRM-MS 
signals of all analyzed transitions are shown in Supplemen-
tal Fig. 2 exemplarily for a plasma sample pool. The work-
flow from plasma depletion, via SRM-MS measurement, to 
computation of multivariable adjusted odds ratios (ORs) is 
illustrated in Supplemental Fig. 3.

Statistical analysis

Statistical analyses were performed using R version 3.4.2 
[27]. All SRM-MS protein-level light-to-heavy-ratios were 
divided by their sex-specific SDs. Associations between 
standardized protein light-to-heavy-ratios and incident type 
2 diabetes/incident (pre)diabetes were analyzed by logis-
tic regression. For the prospective analyses between pro-
tein light-to-heavy-ratios and continuous diabetes-related 
outcomes, all diabetic participants using glucose-lowering 
medication were excluded; the glucose and insulin variables 
were  loge-transformed and z-standardized and analyzed by 
linear regression, adjusting the follow-up outcome for the 
respective baseline variable.

The association analyses focusing on pathophysiologi-
cal mechanisms were adjusted for important baseline type 
2 diabetes risk factors, i.e. for sex (male/female), age, waist 
circumference, and height (all continuous) (model 1), plus 
smoking (current/former/never), physical inactivity (inac-
tive/active), actual hypertension (yes/no), triglyceride 
concentration, and total cholesterol/HDL-cholesterol ratio 
(model 2a). Model 3a was adjusted for all variables avail-
able in KORA F4 of the primary prediction reference model, 
the non-invasive GDRS [16]  (GDRSadapted, the adaptations 
are described in the Supplemental Material). Compared to 
model 2a, the two lipid variables were replaced with paren-
tal (both parents/one parent/unknown/no) and sibling (at 
least one sibling/no sibling) history of diabetes. The models 
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2b and 3b were additionally adjusted for baseline HbA1c 
concentrations.

Interactions between sex and plasma protein levels were 
assessed in the main pathophysiological model 2a. Because 
the MASP protein signal comprised peptides derived from 
different protein isoforms, we conducted sensitivity analyses 
on the association between the individual MASP peptides 
and incident type 2 diabetes. In another sensitivity analy-
sis, we tested whether exclusion of the participants who 
converted directly from normoglycemia to incident type 
2 diabetes affected the association estimates for incident 
prediabetes.

In the prediction analyses, we first selected the protein 
subsets which best predicted incident diabetes or incident 
(pre)diabetes according to the Akaike Information Criterion 
using logistic regression with stepwise variable selection 
on top of the following basic models: (1)  GDRSadapted, (2) 
age + sex + HbA1c, (3)  GDRSadapted + HbA1c. For assess-
ment of the predictive performance, we calculated the 
following metrics with 95% CIs using 10,000 bootstrap-
samples as internal validation approach: (1) area under the 
receiver operating characteristic (ROC) curve (AUC) of 
the basic and protein-extended models and their difference 
(DeltaAUC), (2) integrated discrimination improvement 
(IDI) and (3) category-free net reclassification improvement 
(cfNRI) [28]. ROC-plots and risk assessment plots, which 
separately show the sensitivity of case prediction and the 
false positive rate of non-case-prediction over all possible 
risk cut-off values [29], were drawn.

Test results with two-sided p value < 0.05 were consid-
ered statistically significant.

Results

Descriptive statistics

Table 1 shows the characteristics of the study participants. 
The cases comprised more men than women and were on 
average older. At baseline, they were more likely to be physi-
cally inactive, to suffer from actual hypertension, and to have 
a parental and sibling history of diabetes. Furthermore, they 
had a higher waist circumference, a higher total cholesterol/
HDL-cholesterol ratio, and higher triglyceride concentra-
tions. At baseline and at follow-up cases had higher levels of 
fasting glucose, 2-h-glucose, fasting insulin, and HOMA-IR.

Analyses focused on pathophysiological 
mechanisms

After adjustment for age, sex, waist and height (model 1), 
the levels of adiponectin were inversely and of apolipopro-
tein C-II (apoC-II), apoC-III, apoE, and MASP positively 

associated with incident type 2 diabetes (Supplemental 
Table 2). MASP levels were also positively associated with 
incident (pre)diabetes. After adjustment for additional risk 
factors (model 2a), adiponectin (OR per sex-specific SD: 
0.785 [95% CI 0.617, 0.999] and MASP (1.306 [1.052, 
1.621]) remained significantly associated with incident type 
2 diabetes (Fig. 2); MASP also remained significantly asso-
ciated with incident (pre)diabetes (1.241 [1.036, 1.486]). 
Adiponectin association estimates for incident diabetes and 
incident (pre)diabetes tended to be stronger in men than in 
women (p  valuesex-interaction = 0.053 and 0.067, respectively), 
and the apoC-II diabetes association tended to be stronger in 
women (p  valuesex-interaction = 0.077).

In the sensitivity analysis of the outcome incident pre-
diabetes, in which we excluded the 32 study participants 
having progressed directly from normoglycemia to incident 
diabetes, the results remained essentially the same (Sup-
plemental Table 3). In the sensitivity analysis investigating 
separate associations between the three measured MASP 
peptides and incident diabetes, the ‘TGVI’ peptide showed 
the strongest association (OR per sex-specific SD = 1.392 
[95% CI 1.132, 1.711], model 2a), followed by ‘AAGN’ 
(1.260 [1.024, 1.551]) and ‘SLPT’ (1.104 [0.897, 1.359]).

In the prospective analyses of the continuous outcomes, 
adiponectin levels were inversely associated with fasting 
insulin and HOMA-IR levels at follow-up (Fig. 3). Positive 
associations were observed for apoC-II with fasting glucose, 
fasting insulin and HOMA-IR, for C-reactive protein (CRP) 
as well as for glycosylphosphatidylinositol specific phospho-
lipase D1 (GPLD1) with fasting insulin and HOMA-IR, and 
for apoA-IV and MASP with 2-h-glucose.

Prediction analyses

The non-invasive GDRS-variables predicted incident type 
2 diabetes with an AUC of 0.749 [0.687, 0.807] (Table 2). 
A subset of three out of all 14 proteins, namely MASP, adi-
ponectin and apoE, was found to best improve the predic-
tion on top of the non-invasive risk factors, with an AUC 
of 0.772 [0.712, 0.828]. Figure 4a illustrates the AUC val-
ues estimated using the complete study data without boot-
strapping because they cannot be adequately drawn for the 
bootstrap-approach.

The same protein panel also best improved diabetes pre-
diction compared to our second reference model consist-
ing of age, sex, and HbA1c. The AUC was 0.816 [0.759, 
0.870] for the basic and 0.828 [0.773, 0.881] for the pro-
tein-extended model. Compared to the protein-extended 
HbA1c-model, the model which additionally included the 
 GDRSadapted-variables did not yield a higher AUC (0.828 
[0.775, 0.879]).

The IDI and the cfNRI metrics confirmed the pre-
dictive value of the protein panel for type 2 diabetes on 
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top of the GDRS-variables (IDI = 0.031 [95% CI 0.004, 
0.059]; cfNRI = 0.393 [95% CI 0.103, 0.680]) and also on 
top of age, sex, and HbA1c (IDI = 0.030 [0.000, 0.059]; 
cfNRI = 0.400 [0.116, 0.682]) (Table 2). While the cfNRI 

describes the proportion of individuals for whom the 
change in calculated risk was in the desired direction 
(higher for cases, lower for non-cases), the IDI quantifies 
the actual change in calculated risk for each individual 

Table 1  Baseline characteristics of the study population

Percentages are given for categorical variables, arithmetic means ± SDs for approximately normally distributed, and median  (25th;  75th percen-
tile) for skewed continuous variables
a Nondiabetic (fasting glucose < 7.0 mmol/l and 2-h-glucose ≤ 11.1 mmol/l) at baseline and follow-up
b Nondiabetic at baseline and known clinically diagnosed (n = 56) or newly OGTT diagnosed (n = 67) type 2 diabetes (fasting glucose 
≥ 7.0 mmol/l and/or 2-h-glucose ≥ 11.1 mmol/l) at follow-up
c Normoglycemia (fasting glucose < 6.1 mmol/l and 2-h-glucose < 7.8 mmol/l) at baseline and follow-up
d Normoglycemia at baseline and prediabetes (n = 223) or known (n = 16) or newly diagnosed (n = 16) type 2 diabetes at follow-up (fasting glu-
cose ≥ 6.1 mmol/l and/or 2-h-glucose ≥ 7.8 mmol/l)
e For differences between groups: Kruskal–Wallis test for continuous variables; χ2 test for categorical variables
f Skewed, continuous variables
g Descriptive statistics for the continuous type 2 diabetes related traits are only given for the study participants who were included in the linear 
regression analyses of these traits; number of non-cases/cases incident type 2 diabetes: n = 660/88 for fasting glucose, n = 660/64 for 2-h-glu-
cose, n = 657/87 for fasting insulin and HOMA-IR; non-cases/cases (pre)diabetes: n = 446/247 for fasting glucose, n = 446/239 for 2-h-glucose, 
n = 445/246 for fasting insulin and HOMA-IR

Characteristics Incident type 2 diabetes Incident (pre)diabetes

Non-casesa n = 660 Casesb n = 123 p  valuee Non-casesc n = 446 Casesd n = 255 p  valuee

Male (%) 47.3 56.1 0.089 43.7 57.6 0.001
Characteristics at baseline
 Age (years) 57.4 ± 9.4 63.4 ± 8.6 <0.001 55.8 ± 9.1 59.9 ± 9.3 <0.001
 Waist circumference (cm) 92.4 ± 13.8 102.2 ± 11.9 <0.001 90.0 ± 12.4 97.5 ± 11.0 <0.001
 Height (cm) 169.0 ± 9.4 167.9 ± 9.2 0.377 169.0 ± 9.5 168.8 ± 9.5 0.976
 Physically inactive (%) 35.5 51.2 0.001 33.6 41.6 0.044
 Smoking (%) 0.035 0.880
  Never 45.0 55.3 45.1 45.1
  Former 39.2 36.6 39.0 37.6
  Current 15.8 8.1 15.9 17.3

 Actual hypertension (%) 34.7 57.7 <0.001 26.9 47.1 <0.001
 Parental history of diabetes (%) 0.010 <0.001
  No 61.4 48.8 67.3 46.7
  Unknown 15.0 20.3 11.7 24.3
  One parent 21.4 24.4 19.5 25.1
  Both parents 2.3 6.5 1.6 3.9

 Sibling history of diabetes (%) 6.2 15.4 0.001 4.3 8.6 0.028
 Triglyceride level (mmol/l)f 1.2 (0.8, 1.6) 1.6 (1.2, 2.2) <0.001 1.1 (0.8, 1.5) 1.3 (0.9, 1.9) <0.001
 Total chol./HDL-cholesterol  ratiof 3.9 (3.2, 4.6) 4.4 (3.8, 5.4) <0.001 3.7 (3.1, 4.5) 4.2 (3.5, 4.9) <0.001
 HbA1c (%) 5.4 ± 0.3 5.8 ± 0.3 <0.001 5.3 ± 0.3 5.5 ± 0.3 <0.001
 HbA1c (mmol/mol) 35.6 ± 3.4 39.8 ± 3.6 <0.001 34.9 ± 3.2 37.0 ± 3.2 <0.001
 Fasting  glucosef,g (mmol/l) 5.2 (4.9, 5.5) 5.8 (5.4, 6.3) <0.001 5.1 (4.8, 5.3) 5.4 (5.2, 5.7) <0.001
 2-h-glucosef,g (mmol/l) 5.8 (4.9, 6.9) 8.3 (7.0, 9.2) <0.001 5.4 (4.7, 6.3) 6.3 (5.5, 7.0) <0.001
 Fasting  insulinf,g (pmol/l) 49.8 (36.6, 66.0) 72.0 (53.4, 123.0) <0.001 46.2 (34.2, 60.0) 60.0 (44.4, 78.0) <0.001
 HOMA-IRf,g 1.9 (1.4, 2.7) 3.1 (2.3, 5.2) <0.001 1.7 (1.3, 2.3) 2.4 (1.8, 3.2) <0.001

Characteristics at follow-up
 Fasting  glucosef,g (mmol/l) 5.4 (5.1, 5.8) 6.8 (6.0, 7.3) <0.001 5.3 (5.0, 5.5) 6.0 (5.6, 6.3) <0.001
 2-h-glucosef,g (mmol/l) 5.9 (5.0, 7.3) 11.8 (10.3, 13.0) <0.001 5.5 (4.7, 6.2) 8.2 (7.3, 9.2) <0.001
 Fasting  insulinf,g (pmol/l) 55.4 (37.8, 81.0) 96.0 (66.0, 132.0) <0.001 49.2 (35.3, 68.8) 74.9 (54.2, 104.5) <0.001
 HOMA-IRf,g 2.2 (1.5, 3.3) 4.8 (3.0, 6.9) <0.001 1.9 (1.3, 2.8) 3.4 (2.3, 4.7) <0.001
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(sensitivity for cases and 1-specificity for non-cases). For 
both reference models the gain in prediction performance 
mainly consisted of an improved sensitivity to identify 
diabetes cases (Fig. 4b, c).

The predictive performance for incident (pre)diabetes of 
the  GDRSadapted-variables (AUC = 0.723 [0.671, 0.773]) and 
of age, sex, and HbA1c (0.719 [0.669, 0.771]) was lower 
than for diabetes (Table 3). For the  GDRSadapted reference 
model only MASP and for the age, sex, and HbA1c reference 
model, the combination of MASP and CRP was selected 
as predictor in stepwise logistic regression analysis. While 
MASP did not add statistically significant information on top 
of the  GDRSadapted-variables, MASP combined with CRP 
improved the (pre)diabetes prediction on top of age, sex, and 
HbA1c with an IDI of 0.021 [0.005, 0.036] and a cfNRI of 
0.270 [0.051, 0.481].

Discussion

This large SRM-MS-based cohort study discovered a novel 
association between MASP protein levels and both incident 
type 2 diabetes as well as incident (pre)diabetes even after 
adjustment for established risk factors and biomarkers. This 
means that MASP levels are not only elevated relatively 
shortly before the onset of type 2 diabetes but already in 
those normoglycemic individuals who will progress to (pre)
diabetes during the next 6.5 years. The results of this study 

also clearly show that MASP together with apoE and adi-
ponectin improves the prediction of type 2 diabetes on top 
of non-invasive risk factor variables and on top of age, sex, 
and HbA1c concentrations, which are well-known to have a 
high predictive power [30].

MASP signal

Our previous cross-sectional investigation of the KORA F4 
study showed that, compared to normoglycemic persons, 
prediabetic and diabetic cases had higher MASP plasma 
levels. Moreover, higher MASP levels were associated with 
both higher fasting and 2-h-glucose levels [23]. Krogh and 
coworkers have recently confirmed this cross-sectional asso-
ciation by reporting higher MASP-1 levels in persons with 
type 2 diabetes compared to controls [31].

The current prospective investigation, in which we newly 
measured protein data for more than two thirds of the studied 
persons, adds that MASP plasma levels are already elevated 
years before type 2 diabetes or (pre)diabetes developed. The 
potential mechanistic link is currently unclear, but non-tra-
ditional roles of complement proteins, such as involvement 
in type 2 diabetes associated inflammation, beta-cell secre-
tory function and maintaining homeostasis of the pancreatic 
islets have been suggested [32]. In our data MASP was spe-
cifically associated with elevated 2-h-glucose concentrations 
suggesting that particularly insulin secretion after glucose 
stimulation may be impaired.
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Since our MASP signal stems from peptides which are 
proteotypic for the three isoforms MASP-1, MASP-3, and 
MAP44, a clear discrimination between these isoforms is 
currently not possible. MASP-1 is the most abundant ser-
ine protease of the complement lectin pathway and thus a 

major player in the complement cascade which is initiated 
when a complex comprising mannose-binding lectin (MBL), 
MBL-associated serine proteases (MASPs: MASP-1, 
MASP-2, MASP-3) and MBL-associated proteins (MAP19 
and MAP44) binds to its target carbohydrate-containing 
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ligands, primarily derived from pathogens or damaged tis-
sues [33, 34]. In our peptide-specific sensitivity analysis, the 
‘TGVI’ and ‘AAGN’ peptides were most strongly associ-
ated with incident diabetes. In contrast to the ‘SLPT’ pep-
tide which is proteotypic solely for the MASP-1 isoform, 
these two peptides can derive from MASP-1, MASP-3 or 
MAP44, suggesting that not MASP-1 but rather MASP-3 
or MAP44 are responsible for the observed association 
and should also be most useful for prediction purposes. As 
compared to MASP-1 and MASP-2, MASP-3 has a distinct 
substrate specificity and inhibitor profile and for instance 
selectively cleaves insulin-like growth factor (IGF) binding 
protein 5 (IGFBP-5) which binds to IGFs such as IGF-1. 
MASP-3 may thus modulate the interaction between IGFs 
and their receptors on cell surfaces [35]. Circulating IGF-1 
has been shown to correlate negatively with HOMA-IR in 
the Framingham Heart Study [36].

Further mechanistic implications

While it has been known for a long time that triglycerides, 
total cholesterol and HDL cholesterol are associated with 
type 2 diabetes risk, the association between different apoli-
poprotein components and type 2 diabetes has only recently 
been addressed. In the present study apoE, apoC-II and 
apoC-III levels were higher in those study participants who 
later developed incident type 2 diabetes, when adjusted for 
age, sex, and anthropometric measures. This confirms previ-
ous studies for apoE [37] and apoC-III [37, 38]. All three 
apolipoproteins correlate positively with the total choles-
terol/HDL-cholesterol ratio and triglycerides [23] (although 
this fact is not completely understood for apoC-II, because 
this apolipoprotein is an essential cofactor for the lipopro-
tein lipase which mediates triglyceride hydrolysis [39]). 
In order to assess whether the apolipoproteins are associ-
ated with incident diabetes independently of these known 
risk factors, we adjusted for these lipids as a next step. The 

Fig. 3  Estimated difference in continuous outcomes at follow-up for 
study participants not taking glucose-lowering medication expressed 
as the SD change in the continuous outcome (standardized z-score β 
estimate with 95% CI) per one sex-specific SD increase in the respec-
tive protein, adjusted for age, sex, waist circumference, height, smok-
ing, physical inactivity, actual hypertension, triglyceride level, total 
cholesterol/HDL-cholesterol ratio (model 2a) and the baseline value 
of the investigated outcome variable. FG fasting glucose (n = 855); 
2hG 2-h-glucose (n = 831); FI fasting insulin (n = 851), IR HOMA-
insulin resistance (n = 851). Bars and diamonds of proteins associated 
statistically significantly are printed in bold. apoA-IV apolipoprotein 
A-IV; apoC-II apolipoprotein C-II; apoC-III apolipoprotein C-III; 
apoE apolipoprotein E; CD5L CD5 molecule-like; CRP C-reactive 
protein; GPLD1 glycosylphosphatidylinositol-specific phospholipase 
D1; MASP mannan-binding lectin serine peptidase; MBL2 mannose-
binding lectin 2; PZP pregnancy-zone protein; RBP4 retinol-binding 
protein 4; SHBG sex hormone-binding globulin; THBS1 thrombos-
pondin 1
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adjustment attenuated all associations which corresponds to 
previous results observed for apoE but not for apoC-III [37]; 
the reason might be that in contrast to the previous study, 
we adjusted not only for triglycerides but also for the total 
cholesterol/HDL-cholesterol ratio.

Interestingly, apoC-II, which to our knowledge has not 
been investigated for association with incident type 2 dia-
betes to date, showed the strongest positive associations 
with fasting glucose, fasting insulin and HOMA-IR of all 
investigated apolipoproteins in the present study. Several 
pathways have been suggested to link apolipoproteins with 
diabetes risk. Apart from the pathogenic role of higher tri-
glyceride levels associated with higher apolipoprotein levels 
[39], and their possible role in inflammatory pathways [38], 
it was shown in animal and cell studies that apoC-III may 
promote the development of diabetes directly, by interfering 
with both function and survival of pancreatic beta-cells [40].

The inverse association between concentrations of the 
adipose-tissue derived hormone adiponectin and incident 
type 2 diabetes observed in the present study is well estab-
lished and confirms our own previous investigations using a 
different measurement technology [4] and work from other 
groups [41].

Predictive value of proteins

Regarding our prediction results, several issues deserve to be 
highlighted. First, the HbA1c reference model predicted type 
2 diabetes substantially better than the  GDRSadapted-variables 
alone. Nevertheless, MASP, apoE, and adiponectin improved 
the prediction on top of HbA1c, age and sex to a similar 
extent in terms of the IDI- and NRI-metrics as on top of 
the  GDRSadapted reference model. Second, the combination 
of the circulating biomarkers MASP, apoE, adiponectin, 
HbA1c, age and sex predicted diabetes equally well as the 
 GDRSadapted-variables and HbA1c. We therefore conclude 
that while the non-invasive GDRS was mainly developed for 
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Fig. 4  a Receiver operating characteristic (ROC) curves comparing 
main prediction models for incident type 2 diabetes. b Risk assess-
ment plot for the  GDRSadapted prediction model, without (dashed 
lines) and with (solid lines) protein-extension. Lines in the lower 
left part of the figure represent 1-specificity for all possible risk cut-
offs for non-cases; lines in the upper right part represent sensitivity 
for type 2 diabetes cases. The grey area represents the integrated 
discrimination improvement (IDI). c Risk assessment plot for the 
‘Age + Sex + HbA1c’ prediction model, without (dashed lines) and 
with (solid lines) protein-extension. The non-case data was grossed 
up to represent the complete study cohort for the parts B and C of 
this figure in order to illustrate the relationship between risk of type 
2 diabetes, sensitivity and specificity correctly. The ROC- and risk 
assessment plots were drawn using the complete study data without 
bootstrapping. Therefore, the AUC values displayed here deviate 
from the AUC bootstrap values given in the text. All basic, extended and 
DeltaAUC values computed based on the complete study data are 
supplied in the Supplemental Table 4
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self-assessment of one’s own risk of type 2 diabetes develop-
ment [42], biomarker information may strongly improve the 
predictive power. HbA1c combined with information on age 
and sex is highly predictive, and the additional assessment of 
the circulating proteins MASP, apoE and adiponectin may 
improve the prediction even further.

Other recent unbiased biomarker prediction studies using 
different measurement platforms have also identified prom-
ising candidates for type 2 diabetes prediction such as fer-
ritin, α-hydroxybutyrate, or α-tocopherol [9, 10]. Combin-
ing these markers with the novel markers identified in the 
present study may further improve the prediction. However, 
this needs to be investigated in additional studies as the com-
parison of the predictive performance across different pub-
lished studies is hampered by use of different methodology, 
especially by use of different study populations, reference 
models and prediction measures [43]. Moreover, the clini-
cal relevance of the biomarkers’ gain in predictive power 
will depend on the availability of cost-efficient measurement 
devices.

Concerning (pre)diabetes, both reference models had 
similar predictive power in terms of AUCs, but overall 
the AUCs for the prediction of incident (pre)diabetes were 
substantially lower as compared to incident diabetes. The 
proteins’ predictive power was also lower. On top of the 
non-invasive  GDRSadapted-variables, there was no evidence 
of improved prediction. However, on top of HbA1c, age, 
and sex, MASP combined with CRP improved (pre)diabetes 
prediction significantly in terms of both IDI- and cfNRI-met-
rics. We are aware of only one other study that has assessed 
the utility of biomarkers to predict incident prediabetes [12]. 
This study investigated electronic health record data and also 
found that CRP levels (besides HDL cholesterol and alanine 
aminotransferase) predicted the progression from normogly-
cemia to prediabetes, though no information on statistical 
significance of the prediction improvement was reported.

Strengths and limitations

To our knowledge, this study is the largest SRM-MS-based 
proteomics biomarker study in the field of type 2 diabetes 
research. An additional strength is the prospective design 
with OGTT data available at baseline and follow-up. This 
enabled us to investigate (1) who progressed to type 2 diabe-
tes (including newly diagnosed diabetes) among all partici-
pants who were nondiabetic at baseline, (2) who converted 
to (pre)diabetes among all participants who were normo-
glycemic at baseline, and (3) prospective associations with 
continuous glucose and insulin outcomes. The availability 
of many established type 2 diabetes risk factors and HbA1c 
concentrations made adjustment of our association analyses 
for the most relevant confounders and selection of appropri-
ate reference models for prediction benchmarking possible. Ta
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Finally, we assessed the predictive power of the proteins 
thoroughly, using several metrics and plots as recommended 
[43].

A limitation is that our approach did not provide absolute 
protein concentrations, which, however, should not affect the 
reported associations. Moreover, it was unclear to which pro-
tein isoform the MASP signal belonged. Nevertheless, the 
signal can be used for prediction purposes, but future studies 
should clarify which protein isoform or combination thereof 
is physiologically most relevant. Another limitation is the 
use of an adapted version of the GDRS as reference model, 
which most probably lead to a slightly lower basic predictive 
performance compared to the originally proposed model. In 
our second reference model, we used HbA1c together with 
age and sex information amongst others because HbA1c 
concentrations are not affected by food intake. However, 
because our study only comprised fasting blood sampling, 
we could not investigate whether the predictive power of our 
selected proteins would be equally high using non-fasting 
samples. Finally, although this study used a state-of-the-art 
statistical technique for internal validation of the prediction 
performance, no replication in an independent study has 
been conducted. Therefore, and because we did not adjust 
our analyses for multiple testing due to our relatively small 
sample size (compared to other epidemiological studies 
investigating single or only few markers), corroboration of 
our findings will be necessary.

Conclusion

In summary, we report a novel association of increased 
MASP plasma protein levels with incident type 2 diabetes 
and incident prediabetes, independent of established type 
2 diabetes risk factors. In combination with apoE and adi-
ponectin, MASP improved the prediction of type 2 diabe-
tes beyond non-invasive risk factor variables and beyond 
HbA1c, age, and sex. External replication and cost-effec-
tiveness studies will need to assess the clinical relevance of 
the proteins’ gain in predictive power.
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