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Abstract
Estimating bird and bat mortality at wind facilities typically involves searching for
carcasses on the ground near turbines. Some fraction of carcasses inevitably lie out-
side the search plots, and accurate mortality estimation requires accounting for those
carcasses usingmodels to extrapolate from searched to unsearched areas. Suchmodels
should account for variation in carcass density with distance, and ideally also for varia-
tion with direction (anisotropy). We compare five methods of accounting for carcasses
that land outside the searched area (ratio, weighted distribution, non-parametric, and
two generalized linear models (glm)) by simulating spatial arrival patterns and the
detection process to mimic observations which result from surveying only, or pri-
marily, roads and pads (R&P) and applying the five methods. Simulations vary R&P
configurations, spatial carcass distributions (isotropic and anisotropic), and per turbine
fatality rates. Our results suggest that the ratiomethod is less accurate with higher vari-
ation relative to the other four methods which all perform similarly under isotropy.
All methods were biased under anisotropy; however, including direction covariates
in the glm method substantially reduced bias. In addition to comparing methods of
accounting for unsearched areas, we suggest a semiparametric bootstrap to produce
confidence-based bounds for the proportion of carcasses that land in the searched area.
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1 Introduction

Impacts to birds (particularly raptors) from collisions with wind turbines have been of
concern in the U.S. since the early 1990s (Orloff and Flannery 1992) and impacts to
bats since the early-2000s (Kerns and Kerlinger 2004). The magnitude of the impact
is typically assessed through post-construction monitoring (PCM) (Howell and DiDo-
nato 1991;Kunz et al. 2007;Arnett et al. 2008; Strickland et al. 2011). PCM to estimate
mortality—the total number of turbine-induced bird or bat fatalities occurring over a
specified period of time at individual wind projects—typically involves conducting
carcass surveys, where human observers (orwell-trained human–dog teams) search for
carcasses within plots centered at randomly selected turbines (US Fish and Wildlife
Service 2012). Under ideal circumstances, all carcasses from the sampled turbines
land and remain in the designated search plots, and the entire area within each plot is
searchable. In addition, under ideal conditions, all carcasses are detected by searchers
with probability = 1.

In practice, search conditions tend to be far from this ideal and counts of observed
turbine-caused wildlife fatalities will necessarily underestimate total mortality (Huso
2011), because not all turbine-caused fatalities are observed in the search process
and each carcass may have a unique probability of detection depending on when or
where it falls and its specific characteristics (e.g., size or color). Carcasses can be
removed by scavengers very soon after they arrive (Bernardino et al. 2011; Bispo
et al. 2013; Flint et al. 2010), and humans and even the best scent-dogs fail to detect
some carcasses (Homan et al. 2001; Arnett 2006; Mathews et al. 2013; Beebe et al.
2016; Reyes et al. 2016). Trials designed to estimate the probability that a carcass
persists to the next search must be flexible enough to allow for non-constant removal
and must account for potential differences due to carcass size, season, vegetation
density in which the carcass lands, and other carcass-specific factors (Bernardino
et al. 2011; Bispo et al. 2013; Turner et al. 2017). Likewise, searcher efficiency—the
ability of a searcher to find a carcass that is present—may change in time (Wolpert
2013). The number of trial carcasses necessary to adequately estimate the effects of
each of these factor combinations can be expensive. For example, placing 50 trial
carcasses, as recommended by Strickland et al. (2011), in each of 4 size classes, 4
visibility/vegetation classes, and 4 seasons would result in 3200 total carcasses during
a year and could potentially attract scavengers to the site.

The maximum distance at which a carcass can land from the turbine is unknown
(Hull and Muir 2010), but empirical evidence suggests that species as small as bats
can land ≥ 90 m from the turbine (Erickson et al. 2003; Chatfield et al. 2009) (Fig. 1).
Extending the most commonly implemented plot shapes, square or circular (US Fish
and Wildlife Service 2012), to or past 90 m is expensive and inefficient, because area
increases with the square of the distance searched, but even with constant numbers
within each distance class, carcass density (carcasses per unit area) decreases (Fig. 1).
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Fig. 1 (Left) Location with respect the nearest turbine of 200 carcasses observed on plots cleared of
vegetation out to 90 m from April to November of 2013 at a wind project in the midwestern US. (Right)
Observed (dots) carcass density (number of carcasses per meter2) for each 10-m annulus and estimated
carcass density (dashed line). Poisson regression was used to obtain the fitted curve assuming the log mean
carcass density follows a quadratic function of distance

Furthermore, even if the designated search plot encompasses the entire population
of carcasses, thick vegetation, crops, dangerous terrain, and rivers or lakes within the
plot boundaries can make surveying the entire plot impractical. Accurate estimation of
mortality requires accounting for unsearched areas by estimating the proportion of total
carcasses that landed within the searched area (Jain 2005; Huso and Dalthorp 2014;
Huso et al. 2017), not the proportion of the designated plot area that was searched.
A method to accurately estimate the probability density of carcasses at any distance
and direction from the turbine would enable accurate estimation of the proportion
of carcasses falling inside the searched area of plots of varying shapes and sizes,
accommodating the site-specific conditions thatmight prevent full searches of standard
plots.

Estimators of mortality, M , the total number of turbine-caused fatalities at a wind
project over a specified period of time, have primarily been Horvitz–Thompson type
estimators where observed carcass counts are divided by an estimated probability of
detecting a carcass (Shoenfeld 2004; Huso 2011; Huso et al. 2012; Korner-Nievergelt
et al. 2013; Wolpert 2015; Dalthorp et al. 2018), but see Etterson (2013) and Dalthorp
et al. (2017) for alternative approaches. Although detection probability must account
for all the major sources of imperfect detection outlined above, in this paper we focus
on estimating one aspect: the proportion of carcasses landing within the searched area,
a. Because the magnitude and variance of a can greatly influence the precision with
which M is estimated, in this study we look at accuracy and precision of estimating
both a and M . To isolate the influence of the magnitude and uncertainty of â we
evaluate its properties under idealized conditions where other detection factors are
assumed known, but realistic in their magnitudes.

We consider two primary factors that could influence estimates of a: (i) themortality
rate at each turbine, which in turn influences the number of carcasses discovered with
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which to fit models of a; and (ii) the spatial distribution of carcasses around each
turbine relative to the searched area that in turn can influence the number of carcasses
discovered with which to fit models of a, particularly if prevailing winds or other
factors cause anisotropic spatial distributions.

In practice, resources available to conduct PCM are limited, and trade-offs must
be made between the size of the search plot beneath each turbine and the fraction
of turbines that can be visited (Dalthorp et al. 2017): the larger the search plot, the
fewer turbines that can be sampled for a fixed monitoring budget. In addition, larger
search plots will often comprise several visibility/vegetation classes with different
probabilities of carcass persistence or searcher efficiency within each, incurring addi-
tional expense to conduct trials to estimate these probabilities within each class. In
this context, it would be logical to consider limiting searching to areas in a single
visibility/vegetation class (where carcass density or probability of detection is highest
and consequently, variance of estimated mortality within the searched area is likely
lowest) and rely on models of the proportion of carcasses landing within the searched
area to extrapolate to the unsearched areas at the site. Such an approach would enable
researchers to design carcass surveys that deviate from traditional square or circular
plots and are conducive to increasing the maximum distance searched from the tur-
binewithout sacrificing efficiency.Road and pad (R&P) surveys represent a convenient
form of implementation of this methodology.

In principle, an R&P search protocol has many potential advantages. The critical
question is how reliably total mortality M can be estimated from data primarily (or
entirely) collected on roads and pads. The general approach is to first estimate the
number of carcasses arriving on R&P and then divide by the estimated proportion of
carcasses falling on R&P, â. Ratio estimation (Thompson 2012) has also been utilized
to obtain â (Good et al. 2011) by clearing vegetation from a small number of square
or circular plots out to a specified distance, exhaustively searching the entire cleared
areas, and calculating the proportion of the total carcasses found onR&P. A potentially
more robust and less costly alternative might be to model the distribution of carcasses
as a function of distance (and possibly direction) from turbines and integrate over
the R&P. Such methods have been implemented by Arnett et al. (2009), Huso and
Dalthorp (2014), and Hallingstad et al. (2018).

In this paper we compare the performance of five different estimators of a under a
range of conditions that might be found in practice. For example, the configurations
of roads might be along the cardinal directions in flat agricultural areas, but along
ridgelines inmore rugged terrain. The reported average number of carcasses per turbine
can vary considerably among facilities,which affects the number of carcasses observed
on R&P. Spatial carcass distributions can vary in unpredictable ways or may be highly
dependent on direction of predominant winds. Comparisons focus on both potential
bias and precision of each method for estimating a, and M from it, under varying
conditions. In Sect. 2, we describe five methods for estimating the proportion of
carcasses that fell within the searched areas: four methods developed from concepts
proposed by Jain (2005), Good et al. (2011), Arnett et al. (2009) andHuso andDalthorp
(2014), and one novel method using a parametric weighted distribution. In Sect. 3 we
describe our simulation of spatial distributions of carcasses and the search process
under a range of conditions. In Sect. 4 we evaluate the statistical properties of these
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methods. In Sect. 5 we propose a semi-parametric bootstrap method to capture the
uncertainty associated with estimating a, the proportion of carcasses falling within
searched area boundaries. We conclude with a general discussion of the performance
of the methodologies and potential limitations of estimation from R&P surveys in
Sect. 6.

2 Methods of accounting for unsearched area

After collidingwith amoving turbine blade, birds and bats fall to the ground in variable
patterns that depend on several factors, including location of the strike along the blade,
speed of the blade, wind speed, body weight, wing span, and possibly even animal
movement after getting struck (for example, injured animals flapping in the air or
crawling to relative safety after hitting the ground). The result is a spatial distribution
of carcass density that is not constant but generally decreases with increasing distance
from the turbine (Fig. 1). Because density is not constant, models that account for
non-constant density must be employed to estimate the proportion of carcasses, a,
that have landed in searched areas of variable configuration. Conditioned on a given
carcass realization, a is a parameter. Several methods have been proposed to estimate a
(Jain 2005; Huso and Dalthorp 2014; Good et al. 2011; Studyvin et al. 2019). A fourth
method used by, for example, Gruver et al. (2009) and Drake et al. (2012) calculates
a as the simple proportion of area searched withing the designated plot. This assumes
that the designated plot comprises all areas within which a carcass could fall and the
carcass density is independent of distance, “an implausible assumption when turbine-
induced mortality occurs” (Huso and Dalthorp 2014). We compared the first three
methods, but the method used by Studyvin et al. (2019) had not been published when
we completed our analysis and is not included.

The methods described in this section assume data are derived from carcass surveys
conducted on plots that extend at most rmax m from the center of the turbines selected
for surveying. Let i in {1, . . . ,C} index each observed carcass with C as the total
number of observed carcasses. Each method can be implemented by recording the
location of each carcass as a distance, ri , and direction, θi in [0, 2π), with respect to
the nearest turbine. Note that we assume no carcass can land within 2 m of the center
of any turbine due to the girth of the tower; therefore, ri is in [2, rmax ].

In the description of the methods in this section, we assume that the searched area
has been mapped out in a GIS software, so that information such as the proportion or
amount of area searched at a specified distance or location relative to nearest turbines
is known.

In the description of some methods below, and in the results presented in Sect. 4,
we assume the conditional probability, G, that a carcass is observed given it landed on
R&P is known. In addition, for the ratio method, we assume the probability, Gclr , that
a carcass is observed given it landed on non-R&P at a turbine cleared of vegetation
and surveyed is also known. In practice, these quantities are unknown, and numerous
methods have been proposed for their estimation (Shoenfeld 2004;Huso 2011;Korner-
Nievergelt et al. 2015; Wolpert 2015; Dalthorp et al. 2017). Including uncertainty
in mortality estimates from the probability of detection is beyond the scope of this
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research. For the comparison of all methods, except the ratio method, it is acceptable
to assumeG is known, because a is estimated independently ofG, so uncertainty from
estimating G would have a similar effect on these methods. In the case of the ratio
method, the detection probabilities in the two visibility classes are used to estimate a,
so assuming these values are known results in more precise estimates of a than would
be observed in practice; however, as discussed in Sect. 4, the performance of this
method is generally poor, so this slight advantage does not obscure the conclusions of
this research.

In this section we introduce five methods for obtaining a point estimate for a. In
Sect. 5 we propose a general method that can be used to calculate a standard error of
â or confidence interval for a using any of the methods described below.

2.1 Cakemethod

Jain (2005) proposed accounting for unsearched areas by partitioning the area beneath
turbines into 10 m concentric annuli, or rings, and calculating mortality independently
for each ring. This method intrinsically assumes that carcass density is homogeneous
within an annulus, which under isotropic carcass spatial distributions, becomes more
reasonable as the buffer—distance between the outer and inner radii of a ring—goes to
zero. In practice, the lower bound of the buffer will be determined by the resolution of
the equipment used to record carcass distance with respect to the center of the nearest
turbine. The Cake method refers to the methodology proposed by Jain (2005) with
a buffer < 10 m. We introduce the notation of the Cake method in this section, and
examine the relative performance of this methodology in the results presented in Sect.
4 utilizing a 1 m buffer.

To implement the Cake method, let j in {2, . . . , (rmax − 1)} index the rings, C j =
∑C

i=1 I(ri = j) be the number of observed carcasses j m from the center of the
surveyed turbines, and A j be the known proportion of area searched j m from the
surveyed turbines. For an individual ring, the total number of fatalities,Mj , is estimated
as,

M̂ j =
C j /G

A j
.

This method directly estimates M with M̂cake = ∑(rmax−1)
j=2 M̂ j . Given M̂cake, the

estimate of a is calculated as

âcake =
C/G

M̂cake
= C

∑(rmax−1)
j=2

C j
A j

. (1)

We refer to this as the “Cake” method, because annuli closest to the turbine tend to
have the highest density of carcasses (Fig. 1), and the assumption of homogeneity
within an annulus creates a step function yielding a tiered wedding cake appearance
when plotted in three dimensions.
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2.2 Ratio method

Good et al. (2011) used ratio estimation (Thompson 2012) at Fowler Ridge Wind
Farm in Indiana, USA to account for unsearched areas. The R&P of 109 out of 355
turbines were searched out to 40 m, and in addition, a square 80 × 80 m plot around
9 of the turbines was cleared of vegetation and searched, albeit with a lower searcher
efficiency than on the R&P.

Implementation of the ratio method requires each carcass be assigned an indicator,
I(clr)i , to indicate if the carcasswas found at a turbine cleared of vegetation (regardless
of visibility class), and an indicator, I(RP)i , to indicate if the carcass was observed
on R&P. This information can be obtained either using the location data, or within
survey records.

To implement this method, define CRP = ∑C
i=1

(
I(clr)i · I(RP)i

)
as the num-

ber of observed carcasses on R&P at turbines cleared of vegetation, and CnonRP =
∑C

i=1

(
I(clr)i · (

1 − I(RP)i
))

as the number of observed carcasses on non-R&P at

turbines cleared of vegetation; and recall that G and Gclr are the known conditional
probabilities a carcass is observed given it landed on R&P or non-R&P, respectively,
at surveyed turbines. Implementing the ratio method, a is estimated as

âratio =
CRP
G

CRP
G + CnonRP

Gclr

. (2)

When applying the ratio method in the simulations described in Sect. 3, we deviated
from the protocol used by Good et al. (2011), simulating estimates from a protocol
where the cleared plots encompass the entire spatial carcass distribution (out to 120m),
and the R&P are searched out to 120 m at every turbine. Obviously this would produce
more precise and accurate estimates relative to cleared plots that do not comprise the
full spatial carcass distribution and R&P searches conducted on less than one third of
the total number of turbines.

2.3 Weighted distribution (WD)method

The weighted distribution method uses maximum likelihood estimation to estimate
the univariate carcass distance distribution by viewing the observed carcass distances,
{r1, . . . , rc}, as a random sample from the observed carcass distribution, fo(r |�).
Assuming that carcass distance (both observed and unobserved) follows a parametric
family distribution (e.g. Weibull, Gamma, Log-normal, etc.), indexed by a parameter
vector �, and the spatial carcass distribution is isotropic—independent of direction—
the pdf of the observed carcass distribution is

fo(r |�) = A(r) f (r |�)
∫ rmax
2 A(r) f (r |�)dr

I(r ∈ [2, rmax ]),

where A(r) is a known function that yields the fraction of area searched r meters from
the center of surveyed the turbines (Patil and Rao 1978). Heuristically, this assumes
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Fig. 2 Histogramof the 200 observed carcasses distances described in Fig. 1 Left, alongwith fitted truncated
probability density functions from select parametric distributions

the probability a carcass is found at a given distance is proportional to the probability
a carcass lands at that distance, times the proportion of that distance searched. The
maximum likelihood estimate (mle) of �, �̂mle, can be estimated by maximizing the
log-likelihood function,

l(�|{r1, . . . , rc}) =
C∑

i=1

log (A(ri )) + log( f (ri |�)) −
[

log(
∫ rmax

2
A(r) f (ri |�)dr)

]

,

which can be used to estimate a as

âwd =
∫ rmax

2
A(r) f (r |�̂mle)dr . (3)

In practice, this method can accommodate any parametric family distribution, and
AIC (Akaike 1998) can be used to compare between fitted models. In obtaining the
results discussed Sect. 3, we assumed carcass distance can be modeled with a Weibull
distribution, because it produced the lowest AIC of the parametric models considered
for modeling the distance of the carcass distances (Fig. 2). We also assumed distance
to the nearest turbine could be measured within a meter, and recorded ri as either
2.5, 3.5, . . . , or 119.5. We defined A(r) as the proportion of area within 0.5 meters
of r contained in R&P, which is analogous to A(r−0.5) in the notation introduced for
the Cake method.

After development, we shared this method with researchers who implemented the
weighted distribution method in the context of estimating eagle fatalities at wind
projects (Hallingstad et al. 2018).
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2.4 Generalized linear model method

Originally proposed by Arnett et al. (2009), Huso and Dalthorp (2014) examined
the statistical properties of accounting for unsearched areas by partitioning the area
beneath surveyed turbines into a grid andmodeling the spatial distribution of carcasses
with a generalized linear model (glm).

Huso andDalthorp (2014) introduced theirmethodusing logistic regression.Warton
andShepherd (2010) demonstrated that aPoissonpoint processmodel produces similar
coefficient estimates and standard errors as a logistic regression as long as the grid
used to fit the models is sufficiently dense. In the simulations described in Sect. 3,
we used a 1m dense grid and results for the logistic and Poisson regression models
were virtually indistinguishable. The Poisson model is advantageous in this setting as
it allows for more than one carcass to occupy a grid cell. It is worth noting that this
method can also be established by partitioning the area beneath turbines into rings,
similar to the Cake method. We chose to use grid notation to draw attention to the
similarity of this method to the Anisotropic glm method introduced below.

The method to account for unsearched areas developed by Huso and Dalthorp
(2014) in the context of a Poisson regression model fit on a grid where cells are
indexed by distance, r in [2, rmax ] m, and direction, θ in [0, 2π) radians, to the
nearest turbine, assumes the number of observed carcasses in a grid cell, Cr ,θ =
∑C

i=1

(
I(r = ri ) · I(θ = θi )

)
, follows a Poisson distribution. Its mean, λr ,θ , modeled

as a function of distance from the turbine,

Cr ,θ ∼ Poisson(λr ,θ ) log(λr ,θ ) = β0 + β1r + β2r
2 + log(Or ,θ ),

where Or ,θ is the offset for the cell indexed by (r , θ), and is equal to the number of
turbines at which that cell is searched. The fitted Poisson regression model can be
utilized to estimate the spatial carcass distribution, f̂ (r , θ), as

f̂ (r , θ) = exp(β̂0 + β̂1r + β̂2r2)
∫ 2π
0

∫ rmax
2 exp(β̂0 + β̂1r + β̂2r2)rdrdθ

I(r ∈ [2, rmax ]).

The estimate of a is obtained by integrating f̂ (r , θ) over the searched area. If an s-
meter dense grid is utilized, with S representing the collection of points indexed by
(r , θ), then the integral can be calculated numerically as

âglm =
∑

(r ,θ)∈S
f̂ (r , θ)

s2Or ,θ

T
, (4)

where T is the total number of turbines at the wind facility.
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2.5 Anisotropic generalized linear model method

The cake, weighted distribution, and glm methods all assume the spatial carcass dis-
tribution is isotropic. Under an anisotropic distribution, carcass density changes with
direction, in addition to distance, with respect to the nearest turbine. The glm method
can readily be modified to account for anisotropic carcass distributions by incorporat-
ing direction, θ , into the Poisson regressionmodel. Thus, the Anisotropic glm method,
like the glm method also partitions the area beneath surveyed turbines into a grid with
cells indexed by r in [2, rmax ]m and θ in [0, 2π) radians, and assumes that the number
of observed carcasses for a specific grid cell, Cr ,θ = ∑C

i=1 (I (r = ri ) · I (θ = θi )),
follows a Poisson distribution; however, the anisotropic glm allows E(Cr ,θ ) = λr ,θ to
differ by direction.

Direction has to be included into the model as a circular variable, which accounts
for the cyclic pattern of direction in which, for example, 0◦ and 360◦ are equivalent
and 5◦ and 355◦ are equidistant from 0◦. There are numerous techniques for incorpo-
rating circular variables into regression models (see Pewsey et al. (2013)). Perhaps the
simplest approach for modeling a continuous response, Y , as a function of a circular
variable, θ , is E(Y ) = β0+β1cos(θ)+β2sin(θ). Thismodel can bemademore flexible
by considering the Kth Fourier expansion on θ , and including cosine and sine terms for
each of kθ , k ∈ {1, . . . , K }. Accounting for an anisotropic spatial carcass distribution
in the context of Poisson regression requires allowing the predicted carcass density
for a given distance to differ by direction, which can be achieved using interactions
between distance terms and direction terms (represented by sine and cosine terms),

log(λr ,θ ) = β0 + β1r + β2r
2

+
K∑

k=1

β4k−1rcos(kθ) + β4krsin(kθ) + β4k+1r
2cos(kθ) + β4k+2r

2sin(kθ)

+ log(Or ,θ ). (5)

Themain effects for angle (i.e. sin(θ ) and cos(θ )) are not incorporated into (5), because
it seems reasonable to assume a common intercept. In this application, no carcass can
land within 2 m of the turbine, but theoretically the generalized linear model used to
estimate the spatial carcass distribution produces an estimated carcass density at the
origin. If the main effects for angle were included in the model, the estimated density
at the origin could change depending on the value for θ that is used, providing multiple
density estimates for a single location. To avoid this issue, the main effects are not
included in (5).

The value of K represents the order of the Fourier expansion on θ . Higher values
of K allow for more flexible models; however, increasing K by 1 requires estimation
of four additional parameters. An excess of terms in the model could potentially
increase the variation in mortality estimates. In practice, different values of K can be
considered, alongwith nestedmodels, such as those excluding sine terms or termswith
r2, and the appropriate Poisson regressionmodel can be obtained using any reasonable
model selection method. To obtain the Poisson regression model for the anisotropic
glm method in the simulation described in Sect. 3, we used forward model selection,
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increasing the value of K one unit at a time (up to K = 3), and using the likelihood
ratio test with α = 0.05 to compare models.

The anisotropic glm method differs from the (isotropic) glm method only in the
Poisson regression model used to obtain the estimated bivariate carcass distribution.
After obtaining the fitted model, the procedure for estimating a is identical. The fitted
values from anisotropicmethod, ̂log(λr ,θ ), can be used tomodel the anisotropic spatial
carcass distribution (designated by superscript (a)) as

f̂ (a)(r , θ) = e ̂log(λr ,θ )

∫ 2π
0

∫ rmax
2 e ̂log(λr ,θ )rdrdθ

I(r ∈ [2, rmax ]).

Analogous to (4), if an s-meter dense grid is utilized, withS representing the collection
of points indexed by (r , θ), the estimate of a is calculated as

â(a)
glm =

∑

(r ,θ)∈S
f̂ (a)(r , θ)

s2Or ,θ

T
. (6)

3 Simulation study

We compared the performance of the five methods described above using simulations
designed to (i) evaluate accuracy and precision of estimates for the proportion of
carcasses that land in the searched area, i.e., on R&P; (ii) evaluate the influence of
various conditions, e.g., per-turbine fatality rate, R&P configuration, spatial density
patterns, etc. on the accuracy and precision of each method; and (iii) understand how
variability in â contributes to variation in mortality estimates, M̂ . The simulations
considered four spatial carcass distributions, two R&P configurations of actual wind
projects, and four per-turbine fatality rates. One thousand trials were performed for
every combination of settings. Each trial simulated a data set of observed carcasses,
designed to mimic the random process that would be observed in practice.

3.1 Distance distributions

Our capacity to accurately estimate the fraction of carcasses that landwithin our search
boundaries depends on whether the spatial distribution is isotropic and if not, whether
our search boundaries comprise a disproportionate amount of area with either higher
or lower carcass density. Actual spatial distributions of carcasses will likely depend
on (i) wind speed at the time of collision that will affect distance the carcass travels
downwind, (ii) location of the collision along the blade that will determine the relative
speed at which the blade is moving when the carcass is struck, and (iii) position of
the blade in its rotational arc that will determine whether the carcass is lifted as it is
struck or forced directly downward, as well as turbine height, topography, scavenger
behavior, and other factors.
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Fig. 3 Underlying carcass distributions used to simulate carcass locations. Created using 200 observed
carcass locations displayed in Fig 1Left. a Isotropic Empirical (dots) andGamma (smooth line) distributions
created using observed distance of each carcass to the nearest turbine (open points indicate simulated data.)
b Carcass location relative to the nearest turbine, oriented relative to a southern originating average nightly
wind direction (open points indicate simulated data.) c Heatmap of the Anisotropic Empirical distribution
created by sampling the locations in (b) and uniformly shifting within a 10 m radius. d Heatmap of the
Anisotropic Gamma distribution

We simulated carcass locations using four spatial distributions from factorial com-
binations of isotropy/anisotropy and empirical/modeled based on 200 bat carcasses
observed at a wind project in the Midwestern U.S. from April to November in 2013
(Figs. 1, 2, and 3). Searches were conducted daily on 15 circular plots cleared of
vegetation out to 90 m from the turbine. Assuming constant probability of observing
a carcass within each cleared plot, the distribution of observed carcasses provides an
estimate for the true underlying spatial carcass distribution. Furthermore, searchers
were able to determine that the 200 carcasses arrived the night prior to the search,
enabling us to assign covariate information, such as average nightly wind direction,
which was used to create an anisotropic spatial carcass distribution.
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We refer to the two spatial carcass distributions that are independent of direction as
the IsotropicEmpirical distribution and the IsotropicGammadistribution (Fig. 3a). The
Isotropic Empirical distribution is the empirical distribution of the 200 observed car-
cass distances to the nearest meter, plus 10 simulated carcass distances. The simulated
carcass distances were included because the empirical distribution (and corresponding
parametric fits) indicated that carcasses likely landed past 90 m (Fig. 2). Therefore we
used the triangular distribution on 90 m to 120 m, to simulate ten additional locations
increasing the total by 5% to create a more realistic carcass distribution. The Isotropic
Gamma parameters, shape = 2.4 and scale = 19.5, were calculated by fitting a Gamma
distribution to the observed carcass distances, and then using this fit to extrapolate to
120m. The Gamma distribution was utilized, because it produced the third lowest AIC
of the parametric methods we considered to model carcass distance (Fig. 2). Although
the Weibull distribution and scaled-Poisson regression model had lower AICs, we
chose to model the spatial distribution with the Gamma to avoid favoring either the
weighted distribution (3), or the glm (4), methods by generating and fitting data with
the same model.

We refer to the two spatial carcass distributions that depend on direction as the
Anisotropic Empirical distribution and the Anisotropic Gamma distribution. The
Anisotropic Empirical distribution was created using the location of the 200 observed
carcasses, maintaining their distances but rotating them by an amount equal to the
average wind direction on the night they were killed minus 180o. This simulates the
location relative to a prevailing wind originating from the south (Fig. 3b). To these,
we added the same 10 simulated distances used for the Isotropic Empirical distribu-
tion, and the angle was determined by sampling with replacement from the rotated
angles that landed at least 45 m from the turbine. Simulated carcass location under
the Anisotropic Empirical distribution was assigned by randomly sampling a loca-
tion displayed in Fig. 3b and shifting the coordinates uniformly within a 10-m radius
of the sampled location (Fig. 3c). The 10-m shift represents a compromise between
reproducing the observed data too closely vs. not closely enough. The Anisotropic
Gamma distribution (Fig. 3d) was created by distorting the spatial carcass distribution
of the Isotropic Gamma distribution, to create a realistic anisotropic distribution, while
maintaining the same univariate carcass distance distribution to its isotropic counter-
part. The Anisotropic Gamma distribution simulates conditions where the prevailing
winds originate in the east; carcasses are twice as likely to land west (downwind) of
the turbine, where they are also more dispersed relative to carcasses that land east
(upwind) of the turbine. There is a vast variety of possible patterns of anisotropy, and
it is well beyond the scope of this study to analyze or characterize them all in any
meaningful way. Instead, we chose two contrasting patterns that represent two some-
what extreme cases because the wind directions in each are so constant, as illustrated
in the contrast between the observed carcass dispersion pattern (Fig. 1a) with variable
winds and the anisotropic dispersion pattern derived from the same data but adjusted
to mimic a constant prevailing wind direction (Fig. 3b).

To simulate carcass location for a specific spatial carcass distribution, we assigned
a probability mass to each 1 m grid cell, and sampled grid cells proportionally to the
probability a carcass lands in that cell. For more detail see the R code in Appendix 1.
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3.2 R&P configurations

We selected two current wind projects to demonstrate how the methods perform under
completely different R&P configurations. WP1 is located amid corn and soy farms in
Indiana, has 355 turbines, and road orientation is predominately aligned with cardinal
directions. WP2 is located along two mountain ridges in Pennsylvania and has 23
turbines. The roads at WP2 have more twist and turns with no pronounced unifying
pattern like WP1. The R&P configurations for both facilities were obtained using
Google Earth, mapped in ArcGIS, and imported into R R-statistical software (R Core
Team 2015) as polygons (Fig. 4).

3.3 Average number of fatalities per turbine

In a given simulation trial, mortality was determined by the number of turbines at the
wind project, 355 at WP1 and 23 at WP2, and the average number of carcasses per
turbine: 2, 10, 25, or 70. We chose these mortality levels to represent the range of
rates reported in the publicly available literature. A rate of 70 carcasses per turbine
represents the average of two of the highest estimatedmortality per turbine rates we are
aware of. BHE Environmental (2011) estimated 50.5 (90%CI 36.1–70.3) bat fatalities
per turbine at Cedar Ridge Wind Farm in Wisconsin, and Hein et al. (2014) estimated
90 (95% CI 57–153) fatalities per fully operational turbine at Pinnacle Wind Farm in
West Virginia. We chose 2 carcasses per turbine to evaluate how the methods preform
with few observed carcasses, while trying to avoid generating trials with 0 observed
carcasses at WP2, as such trials provide no information on how the methods compare
to each other and complicate the interpretation of the results if excluded. With a rate
of 2 carcasses per turbine, the average number of observed carcasses per trial at WP2
is about 8 for each carcass distribution (Table 1), and the probability that 0 carcasses
are observed is less than 0.00015. Averages of 10 and 25 carcasses per turbine were
selected to assess the performance of the methods when the rate is between 2 and 70.

While mortality was fixed for a set of conditions, the number of observed carcasses
differed in each trial. The expected number of carcasses observed depends on spatial
carcass distribution, R&P configuration, and average number of carcasses per turbine
(Table 1).

3.4 Simulating carcass counts

Simulations were designed to mimic a setting where R&P carcass surveys were con-
ducted at every turbine, to the maximum assignable distance from the turbine: 120
m. To simulate a set of observed carcasses used to estimate mortality, M simulated
carcasses were assigned (i) a turbine number using the discrete uniform distribution
on the number of turbines at the wind project, (ii) a carcass location using one of the
four spatial carcass distributions, (iii) an indicator of whether the carcass landed on
an R&P based on its location and the specific R&P configuration of its turbine, and
(iv) an indicator of whether the carcass was observed based on a random draw from a
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Bernoulli with p = 0.85 (Good et al. 2011). In each trial M is a fixed value equal to
the number of turbines times the mean fatality per turbine rate.

In addition toR&Psurveys, the ratiomethod also requires information fromcleared-
plot surveys. Good et al. (2011) searched 9 out of 355 (2.5%) turbines cleared of
vegetation within an 80 m × 80 m plot centered at the turbine to provide information
for the ratio estimator. To reflect this method, we simulated carcass surveys on non-
R&P areas within 120 m of 9 turbines for WP1, although, this represents a far greater
area than was searched in practice. We are not aware of the ratio method having been
applied at facilitieswith only 23 turbines. Clearing the same percent of turbines atWP2
asWP1 corresponds to clearing< 1 turbine; therefore, we arbitrarily chose to conduct
simulated surveys on non-R&P at 3 out of 23 (13%) turbines. The turbines selected
for clearing differed in each trial, and were selected using a simple random sample.
Each carcass on non-R&P was assigned an indicator of whether it was observed based
on a random draw from a Bernoulli with p = 0.32 as reported by Good et al. (2011).

Simulations were perfomed using R-statistical software. One thousand trials were
generated for every combination of settings (2 R&P configurations× 4 distributions×
4 rates =32 combinations). We applied all five methods to the same data generated in
every trial, or simulated data set, to obtain the estimated proportion, â, of carcasses that
land on R&P for each combination of settings, except at WP2 where the anisotropic
glm method was not applied when the rate was 2 due to the low number of simulated
carcasses observed (Table 1).

4 Results

The objective of this research is to compare several methods used to estimate a;
however, in practice, a is a nuisance parameter that must be estimated in order to
estimate the true quantity of interest: mortality,M . Therefore, in addition to displaying
and discussing each method’s performance in estimating a (Figs. 5 and 6), we show
how variability in â contributes to variability in mortality estimates by considering
mortality estimate,

M̂ = C

â · G ,

where Cwas the number of observed carcasses onR&P andG is the known probability
a carcass is observed given it landed within the searched area (Table 2). In practice G
is unknown and must be estimated, in which case the estimator M̂ would involve Ĝ.

In displaying the results of â for each method, we calculated â
a for each estimate

in every trial. We divided â by a, because a is a random variable that changes from
trial to trial even under the same settings (e.g. underlying carcass distribution, R&P
configurations, and fatality per turbine rate). We chose to plot the results on the log
scale, because underestimating a leads to greater bias in mortality estimates relative
to an equidistant overestimate of a.
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4.1 Isotropic spatial carcass distributions

In general, each method performed at its relative best at both wind projects under
isotropic spatial carcass distributions with high average fatality rates per turbine (Table
2, Figs. 5 and 6). The cake, weighted distribution, glm, and anisotropic glm methods
tend to produce similar results for estimates of mortality, (M̂), with the anisotropic
glm method having a slightly larger standard deviation in some cases. The maximum
observed bias for these methods under isotropic distributions with an average fatality
per turbine rate of 70 is 3.9%. The ratio method produces the most biased results
and the largest standard deviation in almost all cases. Under the Isotropic Empirical
distribution, when the average rate of carcasses per turbine is 70, the standard deviation
of mortality estimates for the ratio method at WP1 and WP2 are 3.5 and 1.5 times
larger, respectively, than the standard deviation of the other four methods. To prevent
its large variation from obscuring results of other estimators, we do not include results
from the ratio estimator in Figs. 5 or 6, but the results are given in Table 2.

As expected, as the rate of carcasses per turbine decreases, the number of observed
carcasses decreases and the variation of â

a increases for all methods. For the ratio

method, both bias and the variation of â, and consequently M̂ , increase as the average
rate of carcasses per turbine decreases. For example, under the Isotropic Empirical
distribution at WP1 the relative bias of the ratio method increases from 2.4%when the
average rate is 70 to 15.5% when the rate is 2 (Table 2). In addition, the ratio method
cannot produce a mortality estimate if 0 carcasses are observed on the R&P at cleared
turbines. When the mortality rate was low (2/turbine) this occurred in about 10% of
trials atWP1 andmore than 33%of trials atWP2, for every spatial carcass distribution.
Results for which more than 1/3 of the estimates are inestimable are reported as NR.

4.2 Anisotropic spatial carcass distributions

The effect that anisotropic spatial carcass distributions have on each of the methods
differed by wind project and the two anisotropic distributions. Consider the results
from the cake,weighted distribution, and isotropic glmmethods.Again, thesemethods
all performed similarly for both anisotropic distributions at both wind project R&P
configurations (Table 2, Figs. 5 and 6). It is not surprising that these methods are
affected similarly in each setting, because none of the methods take direction into
consideration in addition to distance, and therefore intrinsically assume the spatial
carcass distribution is isotropic. The results from the simulations suggest that when
this assumption is violated the effect depends on the spatial carcass distribution, and
R&P configurations. Under the Anisotropic Empirical distribution, these methods
overestimate a and consequently underestimate mortality at WP1 and WP2; while
under the Anisotropic Gamma distribution, these methods overestimate mortality at
WP1 and underestimate mortality at WP2 (Figs. 5 and 6).

The direction of the bias when estimating mortality using a method that assumes
isotropy can be explained by examining the anisotropic distribution and a composition
plot of the R&P configurations at the wind project of interest (Fig. 7). A composition
plot displays the proportion of turbines’ R&P that contain a specific point. Points

123



786 Environmental and Ecological Statistics (2020) 27:769–801

Ta
bl
e
2

M
ea
n
(a
nd

st
an
da
rd

de
vi
at
io
n)

fo
r
th
e
es
tim

at
ed

av
er
ag
e
nu
m
be
r
of

fa
ta
lit
ie
s
pe
r
tu
rb
in
e,
ca
lc
ul
at
ed

as
M̂

di
vi
de
d
by

th
e
nu

m
be
r
of

tu
rb
in
es

(3
55

at
W
P1

an
d
23

at
W
P2

).
T
he

an
is
ot
ro
pi
c
m
et
ho
d
w
as

no
t
ap
pl
ie
d
(N

A
)
at

W
P2

w
he
n
th
e
ra
te

w
as

tw
o,

be
ca
us
e
of

th
e
lo
w

nu
m
be
r
of

ex
pe
ct
ed

ca
rc
as
se
s.
T
he

re
su
lts

fo
r
th
e
ra
tio

m
et
ho

d
at

W
P2

w
he
n
th
e
ra
te
w
as

tw
o
w
er
e
no
tr
ep
or
te
d
(N

R
),
be
ca
us
e
th
is
m
et
ho
d
fa
ile
d
to

pr
od
uc
e
an

es
tim

at
e
in

m
or
e
th
an

33
%

of
tr
ia
ls

W
P1

W
P2

ra
te
=
2

ra
te
=
10

ra
te
=
25

ra
te
=
70

ra
te
=
2

ra
te
=
10

ra
te
=
25

ra
te
=
70

Is
o.

E
m
p.

M̄
ca

ke
2.
01

(0
.4
1)

10
.0
(0
.9
)

25
.1
(1
.4
)

69
.9
(2
.4
)

2.
05

(0
.9
5)

9.
9
(2
.1
)

25
.1
(3
.4
)

69
.8
(5
.6
)

M̄
ra

ti
o

2.
28

(1
.5
2)
a

11
.2
(4
.6
)

26
.1
(5
.9
)

71
.1
(1
0.
9)

N
R

12
(7
.6
)

27
.1
(8
.6
)

72
.0
(1
4.
1)

M̄
w
d

1.
99

(0
.4
1)

9.
9
(0
.9
)

24
.9
(1
.4
)

69
.5
(2
.4
)

2.
06

(0
.9
5)

9.
9
(2
.1
)

25
.1
(3
.3
)

69
.8
(5
.5
)

M̄
gl
m

1.
97

(0
.4
0)

9.
8
(0
.9
)

24
.7
(1
.4
)

68
.8
(2
.4
)

2.
06

(0
.9
5)

9.
9
(2
.1
)

25
.0
(3
.3
)

69
.7
(5
.5
)

M̄
gl
m
A

1.
97

(0
.4
1)

9.
8
(0
.9
)

24
.7
(1
.4
)

68
.8
(2
.4
)

N
A

9.
9
(2
.2
)

25
.1
(3
.6
)

69
.6
(5
.6
)

Is
o.

G
am

.
M̄
ca

ke
1.
99

(0
.4
1)

10
.1
(0
.9
)

25
.1
(1
.5
)

70
.3
(2
.4
)

1.
99

(0
.9
5)

10
.0

(2
.1
)

25
.0
(3
.5
)

70
.1
(5
.6
)

M̄
ra

ti
o

2.
30

(1
.5
2)
a

11
.0
(4
.2
)

25
.7
(6
.1
)

71
.1
(1
0.
1)

N
R

11
.9

(7
.5
)

26
.9
(9
.3
)

72
.7
(1
4.
3)

M̄
w
d

2.
02

(0
.4
2)

10
.3
(0
.9
)

25
.7
(1
.5
)

71
.8
(2
.5
)

2.
01

(0
.9
4)

10
.2

(2
.1
)

25
.4
(3
.5
)

71
.1
(5
.5
)

M̄
gl
m

1.
99

(0
.4
1)

10
.1
(0
.9
)

25
.2
(1
.5
)

70
.6
(2
.4
)

2.
00

(0
.9
4)

10
.1

(2
.1
)

25
.1
(3
.4
)

70
.3
(5
.5
)

M̄
gl
m
A

1.
99

(0
.4
2)

10
.1
(0
.9
)

25
.2
(1
.5
)

70
.6
(2
.4
)

N
A

10
.1

(2
.3
)

25
.1
(3
.5
)

70
.4
(5
.7
)

A
ni
so
.E

m
p.

M̄
ca

ke
1.
69

(0
.3
4)

8.
5
(0
.8
)

21
.1
(1
.2
)

59
.0
(2
.1
)

1.
72

(0
.8
5)

8.
7
(1
.9
)

21
.5
(3
.0
)

60
.7
(5
.1
)

M̄
ra

ti
o

2.
24

(1
.4
8)
a

11
.4
(5
.2
)

26
.4
(6
.8
)

71
.7
(1
2)

N
R

11
.8

(7
.8
)

27
.4
(9
.9
)

72
.8
(1
6.
9)

M̄
w
d

1.
72

(0
.3
5)

8.
6
(0
.8
)

21
.5
(1
.2
)

60
.3
(2
.2
)

1.
74

(0
.8
5)

8.
7
(1
.9
)

21
.5
(3
.0
)

60
.9
(5
.0
)

M̄
gl
m

1.
69

(0
.3
5)

8.
5
(0
.8
)

21
.2
(1
.2
)

59
.5
(2
.1
)

1.
72

(0
.8
4)

8.
6
(1
.9
)

21
.3
(2
.9
)

60
.3
(4
.9
)

M̄
gl
m
A

1.
89

(0
.4
4)

9.
5
(0
.9
)

23
.6
(1
.6
)

66
.9
(2
.9
)

N
A

10
.4

(4
.5
)b

25
.5
(5
.2
)

71
.5
(8
.5
)

123



Environmental and Ecological Statistics (2020) 27:769–801 787

Ta
bl
e
2

co
nt
in
ue
d

W
P1

W
P2

ra
te
=
2

ra
te
=
10

ra
te
=
25

ra
te
=
70

ra
te
=
2

ra
te
=
10

ra
te
=
25

ra
te
=
70

A
ni
so
.G

am
.

M̄
ca

ke
2.
28

(0
.4
8)

11
.4
(1
.0
)

28
.4
(1
.6
)

79
.8
(2
.8
)

1.
62

(0
.8
4)

8.
5
(1
.9
)

20
.8
(3
.1
)

57
.9
(5
.1
)

M̄
ra

ti
o

2.
34

(1
.5
0)
a

11
.2
(4
.1
)

26
.3
(6
.2
)

71
.5
(1
0.
5)

N
R

12
.4
(8
.0
)

27
.4
(9
.7
)

72
.9
(1
5.
3)

M̄
w
d

2.
33

(0
.4
9)

11
.6
(1
.1
)

29
.1
(1
.7
)

81
.7
(2
.8
)

1.
65

(0
.8
6)

8.
7
(1
.9
)

21
.2
(3
.1
)

59
.2
(5
.1
)

M̄
gl
m

2.
29

(0
.4
8)

11
.4
(1
.0
)

28
.5
(1
.6
)

80
.2
(2
.8
)

1.
64

(0
.8
6)

8.
6
(1
.9
)

21
.0
(3
.1
)

58
.4
(5
.0
)

M̄
gl
m
A

2.
18

(0
.4
5)

10
.7
(1
.0
)

26
.3
(1
.6
)

72
.6
(3
.1
)

N
A

9.
5
(3
.0
)

24
.1
(5
.5
)b

69
.1
(8
.8
)

T
he

an
is
ot
ro
pi
c
m
et
ho
d
w
as

no
ta
pp
lie
d
(N

A
)a
tW

P2
w
he
n
th
e
ra
te
w
as

tw
o,
be
ca
us
e
of

th
e
lo
w
nu
m
be
ro

fe
xp
ec
te
d
ca
rc
as
se
s.
T
he

re
su
lts

fo
rt
he

ra
tio

m
et
ho

d
at
W
P2

w
he
n

th
e
ra
te

w
as

tw
o
w
er
e
no
t
re
po
rt
ed

(N
R
),
be
ca
us
e
th
is
m
et
ho
d
fa
ile
d
to

pr
od
uc
e
an

es
tim

at
e
in

m
or
e
th
an

33
%

of
tr
ia
ls
a
B
as
ed

on
th
e
90
%

of
tr
ia
ls
w
he
re

an
es
tim

at
e
w
as

ob
ta
in
ed

b
C
al
cu
la
te
d
ex
cl
ud

in
g
on

e
or

tw
o
tr
ia
ls

123



788 Environmental and Ecological Statistics (2020) 27:769–801

that are darker are contained in the R&P of many turbines, and points that are lighter
are contained in the R&P on few turbines. From this plot it becomes apparent that
most of the roads at WP1 are aligned with cardinal directions. Furthermore, most
roads approach the turbine from the west, and fewest from the north. Now consider
the two anisotropic distributions displayed in Fig. 3. Recall, under the Anisotropic
Gamma carcass distribution, most carcasses land west of the turbine; and given the
R&P configuration at WP1, the most data for any distance greater than 10 m from
the turbine is collected west of the turbine. This causes the isotropic methods to
overestimate the number of carcasses at most distances, producing an overestimate of
mortality. Under the Anisotropic Empirical distribution relatively few carcasses land
west of the turbine producing an underestimate of mortality. Using the same logic and
Fig. 7(right), the direction of the bias for mortality estimates atWP2 using an isotropic
method can be explained.

Three trials were excluded when calculating the results for the anisotropic glm
method at WP2: two under the Anisotropic Empirical distribution when the rate was
10, and one under the Anisotropic Gamma distribution when the average rate was 25.
In each of these trials, the forward selection method identified the Poisson regression
model with the third order Fourier expansion of θ as the most appropriate model,
and the estimated mortality exceeded 4000 carcasses per turbine. These unreasonable
estimates occur when the quadratic term for distance, which is the sum of seven
terms for a fixed direction (see Eq. 5), is positive, causing predicted carcass density to
increase with distance from the turbine. Researchers can easily identify this situation
in practice with a graphical display, and use a lower order Fourier expansion or avoid
this anisotropic method altogether; therefore, it is reasonable to exclude these trials
when reporting the results. Attention to these trials is included here, so researchers
are aware of a potential issue that may arise when including quadratic terms in the
generalized linear model.

TheAnisotropic glmmethod had success in reducing the bias inmortality estimates
under anisotropic spatial carcass distributions. When compared to the isotropic glm
method, under theAnisotropic Empirical distribution the bias in â was reduced by 52%
and 75% atWP1 for average rates of 2 and 70 respectively, with negligible increases in
the standard deviation. Under the same distribution at WP2 the bias of â was reduced
by 73% and 94% for average rates 10 and 70 respectively; however, there was a 31%
and 16% increase in standard deviation.

Recall, the order of the Fourier expansion, K , was determined using forward selec-
tion by increasing K one unit at a time and using the likelihood ratio test with α = 0.05
to compare models. Under the isotropic models, the coefficients for terms with cos and
sin are all zero, and expectedly about 95% of the trials select the Poisson regression
model with K = 0, which is the model used in the isotropic glm method (Table 3).
In general, under the anisotropic distributions, the anisotropic glm method routinely
identified Poisson regression models with K > 0.

The bias of the ratio method was relatively unaffected by the anisotropy at WP1
(Table 2). At WP2, there was an increase in the standard deviation of the ratio method
under the anisotropic distributions. This is likely attributed to an increase in variation in
the proportion of carcasses landing on theR&Pat individual turbines. The ratiomethod
assumes the proportion is similar among turbines. Under anisotropy, this assumption
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Table 3 Proportion of trials in which the anisotropic glm method used the kth order Fourier expansion for
estimation using a forward model selection process based on p-values (α = 0.05) from the likelihood ratio
test

Rate= WP1 WP2

2 10 25 70 10 25 70

Iso. Emp. K = 0 0.944 0.957 0.952 0.950 0.939 0.950 0.952

K = 1 0.055 0.042 0.043 0.049 0.056 0.046 0.047

K = 2 0.001 0.001 0.005 0.001 0.004 0.003 0.001

K = 3 0.000 0.000 0.000 0.000 0.001 0.001 0.000

Iso. Gam. K = 0 0.927 0.946 0.932 0.933 0.907 0.923 0.929

K = 1 0.070 0.047 0.061 0.059 0.083 0.074 0.069

K = 2 0.002 0.007 0.007 0.006 0.008 0.003 0.002

K = 3 0.001 0.000 0.000 0.002 0.002 0.000 0.000

Aniso. Emp. K = 0 0.100 0.000 0.000 0.000 0.132 0.001 0.000

K = 1 0.826 0.840 0.703 0.366 0.760 0.899 0.829

K = 2 0.062 0.061 0.010 0.000 0.092 0.074 0.091

K = 3 0.012 0.099 0.287 0.634 0.016 0.026 0.080

Aniso. Gam. K = 0 0.413 0.001 0.000 0.000 0.729 0.460 0.057

K = 1 0.538 0.831 0.620 0.200 0.248 0.485 0.845

K = 2 0.047 0.149 0.314 0.495 0.020 0.051 0.085

K = 3 0.002 0.019 0.066 0.305 0.003 0.004 0.013

becomes less tenable at wind projects with large variation in R&P configurations at
individual turbines.

5 Accounting for the uncertainty of â

When a is unknown and estimated using the methods described above, uncertainty
induced by â must be taken into account when calculating a confidence interval for
M . In this context, a confidence interval for a and M can be calculated using a semi-
parametric bootstrap (Efron and Gong 1983); however in verifying this, we discovered
using a standard bootstrap—drawing C locations with replacement from the distribu-
tion of observed locations and applying one of (1) through (5) to simulate estimates of
a—in conjunction with the percentile method yields intervals below the desired cov-
erage. This occurs because such a method does not account for binomial uncertainty
in a.

Recall, a becomes a parameter after conditioning on a specific carcass realization
that is generated from an underlying point process. Under this paradigm, F , the num-
ber of carcasses that land on R&P, follows a Binomial(M, Pa) distribution, where Pa
is the probability a carcass lands on R&P for the underlying point process specific to a
wind project during the period when searches are conducted. The methods discussed
in the previous sections actually provide direct estimates for Pa , therein providing a
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reasonable point estimate for a = F/M , because E(a) = Pa . Both the uncertainty
in estimating Pa and binomial uncertainty in F must be accounted for in calculat-
ing a confidence interval for a, which can be accomplished using a semi-parametric
bootstrap to simulate the distribution of (â − a).

A single bootstrap is obtained by simulating Fboot from a Binomial (M̂, â) distri-
bution. Given Fboot , a simulated number of observed carcasses, Cboot , is obtained by
drawing from a Binomial(Fboot ,G) distribution. Observed distances are simulated by
drawing with replacement Cboot locations from the set of locations at which fatalities
were observed, and âboot can be obtained by applying the method used to estimate a
to the simulated locations. A (1 − α) confidence interval for a is created by adding
the α/2 and 1 − α/2 quantile from the distribution of (âboot − aboot ) to â, where
aboot = Fboot/M̂ .

As previously discussed, G is unknown in practice and estimated with Ĝ. Under
such circumstances a confidence interval for a can be calculated by replacing G with
Ĝ in the above description.

Confidence intervals for M can be calculated by simulating a bootstrap distribution
for M̂ . For unknown G, this requires generating a bootstrap distribution for Ĝ, which
can be achieved independently of the bootstrap distribution of â (Huso et al. 2012).
Given Cboot , âboot , and Ĝboot , a bootstrap mortatlity estimate is calculated as,

M̂boot = Cboot

âboot Ĝboot
.

6 Discussion

The primary objective of this research was to compare five approaches to account
for unsearched areas when estimating mortality at wind power facilities. A conve-
nient example comes from defining the searched area as roads leading up to turbines,
and pads beneath turbines (R&P). We compared the methods via a simulation study
that considered different R&P configurations, spatial carcass distributions, and aver-
age carcass per turbine rates. We also proposed a semi-parametric bootstrap method
that can be used to estimate uncertainty in estimates of a when using the weighted
distribution, cake, glm, or anisotropic glm methods.

In nearly all settings we considered, at least one, if not all, of the weighted distribu-
tion, cake, glm, and anisotropic glm methods outperformed the ratio method in terms
of accuracy and precision in estimating M . The ratio method displayed some degree
of bias in every setting, which was expected because ratio estimation is always biased
(Lohr 2009). In the context of turbine-induced bird and bat mortality estimation, the
bias becomes increasingly prevalent as the average fatality rate of carcasses per turbine
decreases.

In theory, the bias and variance of the ratio method could be reduced by clearing
more turbines or increasing the probability of detection in the cleared area; however,
exploratory work suggested that an unreasonable number of turbines (more than 25%)
would have to be cleared to be competitive with the other methods we considered,
and increasing the probably of detection to that of the R&P only produced modest
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increases in performance. It is interesting to note that in the exploratory research our
results suggested that simply treating the data at cleared turbines as a random sample
for mortality estimation produced much better results relative to using the data from
the remaining R&P in ratio estimation.

In addition to its inferior statistical properties relative to the other methods we con-
sidered, the ratio method is alsomore expensive and not always possible to implement.
Under the protocol used in the simulations, all methods require searching the R&P
of every turbine out to 120 m. The weighted distribution, cake, glm, and anisotropic
glm methods also require that the facility be mapped in a GIS program before esti-
mation. The ratio method, though, requires additional data from some plots that are
cleared of vegetation. When the vegetation is dense, terrain is treacherous, or if bod-
ies of water are within the carcass fall zone, obtaining counts for cleared turbines is
impractical or even impossible. Avoiding turbines with these conditions may result in
a non-representative sample of turbines. When clearing beneath turbines is possible,
the cost of machine clearing as well as compensation to the land owner for lost crops
add to the overall cost of the monitoring effort. In non-agricultural settings, clearing
will damage the surrounding habitat, increasing the ecological impact of the wind
facility. The cleared areas may also represent a substantial increase to the total area
searched. At WP1 the area comprising the R&P of all 355 turbines is equivalent to
13.1 turbines cleared to 120 m. Therefore, under the protocol we simulated where 9
turbines were cleared and searched out to 120 m, the ratio method requires searching
66% more area than is required for the other 4 methods. At WP2, searching the R&P
of all 23 turbines is equivalent to searching 1.8 turbines cleared to 120 m. Therefore,
under the protocol we simulated where 3 turbines were cleared and searched out to
120 m, the ratio method requires searching 156% more area than is required for the
other 4 methods.

The weighted distribution, cake, and glm methods all performed similarly in every
simulation, raising the question of which method to implement in practice if it is rea-
sonable to assume the spatial carcass distribution is isotropic. Each method possesses
its own advantages.

The weighted distribution method yields a parametric fit obtained by maximizing
a likelihood function, which enables comparison of parametric models, using AIC,
for example. This method completely specifies the distribution of carcass distance,
and allows convenient estimation of parameters such as the mean, standard deviation,
relevant quantiles, and the proportion of carcasses that landed beyond the maximum
distance searched. For example, when modeling the data used to generate the under-
lying spatial carcass distributions in the simulations along with a Weibull distribution,
it is estimated that 4.7% of carcasses landed past the maximum distance searched (90
m). Using a Gamma distribution, this estimate increases to 9.1%. Given the ease of
extending the maximum distance from the turbine searched along access roads, it is
highly preferred that researchers search at distances beyond the expected maximum
fall distance of a carcass, if possible, instead of relying on extrapolation beyond the
range of the data. If, however, it becomes impractical to extend the plots far enough,
due to resources or terrain, the parametric methods (including the weighted distribu-
tion and the glm) can be used to estimate the proportion of fatalities falling beyond
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the maximum distance searched, whereas such extrapolation is not possible with the
cake or ratio methods.

The cake method estimates mortality non-parametrically allowing for relatively
unbiased estimates under a variety of isotropic spatial distributions when searches
are conducted to or past the maximum fall distance of a carcass. It becomes biased,
however, if searches do not extend far enough, or the carcass distribution is anisotropic.
The cake method proposed in this research partitions the fall zone into concentric
annuli, which is reasonable under isotropic settings. It may be possible to create an
anisotropic version of the cake method using the same non-parametric approach, by
partitioning the fall zone into elements that are internally homogeneous with respect to
the anisotropic spatial carcass distribution (see Maurer (2017)); however, determining
an appropriate partition requires information about the spatial carcass distribution,
which is unknown.

The glm model is advantageous because, unlike the weighted distribution and cake
methods,which only use the univariate carcass distances, it fits amodel on the observed
spatial carcass distribution. The model can easily be modified to form the anisotropic
glm by incorporating additional parameters that reflect dependence of carcass density
on direction as well as distance. In addition to reducing bias under anisotropic spatial
carcass distributions, a statistical hypothesis test can be used to determine if anisotropy
is detectable by testing if terms including direction are statistically significant to the
model. If there is insufficient evidence of anisotropy, then the isotropic glmmethod can
be selected as the most appropriate model, and results will be similar to the weighted
distribution and cake methods.

As discussed in Sect. 1, R&P searches provide a convenient example for implement-
ing and comparing the statistical methods discussed above. In addition, there are some
logical advantages to R&P searches relative to full-plot searches conducted by human
searchers: (i) the probability of detection tends to be maximized on R&P (Kerns et al.
2005; Good et al. 2012); (ii) searcher efficiency and carcass persistence trials only
need be conducted in a single visibility class; (iii) extending the maximum distance
searches increases required resources at a linear rate, if at all; and (iv) Searches can
be conducted at a larger number of turbines, yielding information on spatial patterns
across the entire project.

It was beyond our scope to compare these methods to a protocol that searches the
entirety of a randomly selected subset of turbines when holding the total searched
area constant; however, we did conduct some exploratory research. Our results sug-
gested that under isotropic carcass distributions, estimation based on R&P was more
precise relative to searches conducted on an equivalent amount of area at cleared tur-
bines, when the probability of detectionwas lower in cleared areas than onR&P.As the
probability of detection in the cleared areas approached the probability of detection on
R&P, the performance became similar. This suggests that it would behoove researchers
to focus on areas with high detection probabilities before searching areas with lower
detection probabilities. It should be noted that the areas with higher detection prob-
abilities do not necessarily align perfectly with areas of higher searcher efficiency;
increased visibility of carcasses to humans might apply to scavengers, as well, result-
ing in higher carcass removal rates and potentially lower overall detection rates in
those areas. Also, the model assumes that the distribution of carcasses with respect to
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distance from turbine is the same in searched and unsearched areas. It is not likely that
carcass deposition distances vary between searched and unsearched areas. However,
it is possible that animal movement after hitting the ground could vary significantly
by ground cover, as injured animals move from exposed areas (like roads and pads)
to more protected areas before dying. The degree to which this may introduce bias in
practice is unknown but may be an interesting topic for future research.

Of course, accurate and precise estimation using R&P searches in conjunction with
the methods described in this research has limitations. The weighted distribution,
cake, glm, and anisotropic glm methods estimate mortality by estimating the spatial
carcass distribution, which requires a reasonable sample size. For example, with only
23 turbines installed at WP2, an average of 2 carcasses per turbine equated to an
average of eight total carcasses observed on R&P across all simulations. In a similar
setting, the precision of the weighted distribution, cake, and glm methods will likely
be poor, and the anisotropic glm inestimable. Therefore mortality estimation based
on data solely collected on R&P should be avoided when few carcasses are expected
to be observed and precise estimates of mortality are needed. If R&P searches are
performed and few carcasses are observed, then it may be possible to use information
from a nearby wind project with similar fauna, topography, wind, and turbines to
estimate a spatial carcass distribution.

These methods may also fail to produce reasonable estimates if the sample of
observed distances is non-representative of the underlying fall distribution. This could
happen if anisotropy is present and either (i) major proportions of certain directions go
unsearched, or (ii) the anisotropic carcass distribution at individual turbines interacts
with the R&P configurations. For example, (i) could occur if every turbine access road
came in from the same direction. In this instance there would be no way of testing or
accounting for an anisotropic carcass distribution, because of the lack of information
in the other directions. Situation (ii) is possible to encounter in practice, because road
engineers often take topography into consideration and winds respond to topography.
This could be problematic if, for example, all access roads are parallel to prevailing
wind direction, although access direction may not be constant. In this situation, the
carcass locations obtained from R&P searches would clearly not be representative.
Researchers should be able to identify such situations by consulting with the engineers
that built the project or using wind direction data collected at individual turbines.

Mortality estimation based entirely on R&P searches may not be applicable in all
settings, but when it is, it can provide an efficient way to gather useful estimates at a
relatively low cost. The simulations preformed in this research demonstrate that it is
possible to obtain accurate and precise mortality estimates from data collected entirely
on R&P searches under a wide variety of settings.
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Appendix 1

See Figs. 4, 5, 6, 7 and Table 4
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Fig. 4 Google Earth images (top; Google Earth (2012)) and R polygon plots (bottom) of a typical R&P
configuration at WP1 (left) and WP2 (right)
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Fig. 5 Plot of â
a on the log scale at WP1 for each combination of average fatality per turbine rate, where

a is the random variable for the proportion of carcasses that landed on R&P in a given trial. Box plots
were define using default parameters in R, with boxes showing medians and inter-quartile ranges (IQR) and
whiskers are drawn to the most extreme data points within 1.5 IQR of the 1st and 3rd quartiles
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Table 4 Notation

a Probability a carcass lands on R&P

â An estimate of a

M True mortality

M̂ An estimate of M

G Probability a carcass that lands on R&P is observed

Gclr Probability a carcass that lands in an area cleared of vegetation is observed

Ĝ An estimate of G

C Observed number of carcasses on R&P

r An index indicating distance from the center of the turbine

ri Distance from the nearest turbine of the i th carcass

rmax Maximum distance from turbine searched

θ An index indicating direction in Azimuth from the center of a turbine

θi Direction in Azimuth from nearest turbine of the i th carcass

C j Observed number of carcasses in the j th annulus

A j Proportion of the j th annulus contained in R&P (known)

CRP Number of carcasses on R&P at cleared turbines

CnonRP Number of carcasses on non-R&P at cleared turbines

A(r) Proportion of area r meters from the center of the turbine contained in R&P

f (r |�) Parametric pdf of carcass distances (observed and unobserved)

fo(r |�) Parametric pdf of observed carcass distribution

l(�|{r1, . . . , rc}) Log-likelihood function of �

Cr ,θ Observed number of carcasses in cells indexed by (r , θ)

λr ,θ Expected number of observed carcasses in cells index by (r , θ)

O(r ,θ) Offset for Poisson Regression = Number of cells indexed by (r , θ) contained in R&P

f̂ (r , θ) Estimated spatial carcass distribution

T Total number of turbines

K Order of the Fourier expansion used for the anisotropic glm method

F Number of carcasses landing on R&P (F = aM)

Pa Probability a carcass lands on R&P

Fboot Bootstrap value for F

Cboot Bootstrap value for C

aboot Bootstrap value of a

âboot Bootstrap estimate of a

Ĝboot Bootstrap estimate of G

M̂boot Bootstrap estimate of M
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