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Abstract Graphical techniques are recommended for critical applications because
they allow for visual analysis and helpful understanding of the results, also for non-
statisticians. However, “graphical” estimation methods are often criticized because
they are less efficient with respect to “analytical” methods. This paper proposes a
new general graphical method that leads to the best linear unbiased estimators of
location-scale distribution parameters. Therefore, the reputation of graphical methods
is raised and their strategic use is encouraged. An applicative example analyzes the
earthquakemagnitudes registered during the serious 1983–1984 bradyseismic crisis in
Campi Flegrei, Italy. This graphical analysiswill certainlywork as a strategic reference
picture to which the data, arising from the further bradyseismic crises expected in the
next future, can be compared.
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1 Introduction

As confirmed by the renewed interest appeared in the recent literature (Rigdon and
Basu 1989; Makkonen 2006, 2008a; de Haan 2007; Cook 2011, 2012; Kim et al.
2012; Erto and Lepore 2013; Fuglem et al. 2013; Makkonen and Pajari 2013; Lozano-
Aguilera et al. 2014) practitioners are used to exploiting modern software that adopts
graphical estimation methods via probability papers, even if there is a variety of
effective analytical methods available, such as Maximum Likelihood and Bayesian
techniques. In fact, especially in critical applications, the graphical estimation gives
the unique opportunity to share statistical information with non-statisticians (e.g., by
allowing a visual check of the fit of the chosenmodel and by giving helpful understand-
ing of the consequent conclusions). Clearly, if the approach is to be purely analytical
there is no point in using a probability paper (Kimball 1960).

If we consider the observations x(1), . . . , x(i), . . . , x(N ) of the order statistics
X(1), . . . , X(i), . . . , X(N ) arranged in non-decreasing order, which correspond to
mutually independent and identically-distributed N randomvariables X1, . . . , Xi , . . . ,

XN , the basic problem of graphical methods is how to establish the estimate F̂i of
the cumulative distribution function (cdf) FX

(
x(i)

)
(i.e., the plotting position) that

can ensure a required property (e.g., unbiasedness) for the resulting estimators of the
distribution parameters.

Plotting positions have been used and discussed for many years by engineers,
hydrologists and statisticians. Noticeable remarks on classical extreme value analysis
and plotting positions are included in (Hazen 1914; Gringorten 1963; Jenkinson 1969;
Harris 1996; Palutikof et al. 1999; Simiu et al. 2001; Folland andAnderson 2002; Cook
et al. 2003; Rasmussen and Gautam 2003; Whalen et al. 2004; Cook and Harris 2004;
McRobie 2004; Jordaan 2005; Kharin and Zwiers 2005; Kidson and Richards 2005).
A comprehensive review of the main plotting positions can be found in Harter (1984).

In Sect. 2, a new graphical method is proposed that allows best linear unbiased
estimation of location-scale distribution parameters. As an example, Sect. 3 exploits
Monte Carlo simulation in the case of Gumbel parent distribution in order to confirm
the unbiasedness of the resulting estimators of the distribution parameters as well as to
compare the proposed solution to classical methods. In Sect. 4, critical data registered
during the serious 1983–1984 bradyseismic crisis in Campi Flegrei (Italy) (Luongo
1986) shows the applicative advantage of the proposed method.

2 The plotting position

In general, by choosing suitable real constants A and B (Table 1), most of the plotting
positions appeared in the literature are in the practical form

F̂i = i − A

N + B
i = 1, . . . , N (1)

or

F̂i = i − A

N + 1 − 2A
(2)
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Table 1 Most relevant plotting positions in the form (1) or (2)

References A B

Weibull (1939) 0 1-2A

Cunnane (1978) 2/5 1-2A

Adamowski (1981) 1/4 1-2A

Kerman (2011) 1/3 1-2A

Erto and Lepore (2013) N + (N − 1)/(21/N − 2) 1-2A

Hazen (1914) and Foster (1936) 1/2 1-2A

Tukey (1962) 1/3 1-2A

Gringorten (1963) 0.44 1-2A

De (2000) 0.28 0.28

upon setting in (1) B = 1 − 2A (Blom 1958). It can be easily shown that (2) implies
the following assumption

F̂i = 1 − F̂N−i+1. (3)

which, if N is odd, includes the results F̂(N+1)/2 = 1/2, stated by Erto and Lepore
(2013).

The issue of determining a unique (distribution-free) plotting position formula has
recently come to light again (Lozano-Aguilera et al. 2014; Erto and Lepore 2013;
Makkonen 2008a, b). It is interesting to note that some of the arguments addressed in
the above papers were already clear to Hahn and Shapiro (1967).

Most of the distribution-free plotting positions are essentially based on the median
or the mean value of the cdf FX (X(i)), which, apart from the parent distribution, can
be shown to be a Beta random variable U(i) with probability density function pdf

fU(i) (t) = � (a + b)

� (a) � (b)
ta−1(1 − t)b−1 (4)

where a = i and b = N − i + 1.
In particular, Makkonen (2008a) interprets the plotting position as the non-

exceedanceprobability of the next observation in anorder ranked sample P
{
X ≤ X(i)

}

and obtains (Makkonen et al. 2013)

F̂i = P
{
X ≤ X(i)

} = E
{
FX (X(i))

} = i

N + 1
(5)

which coincides with the classical distribution-free plotting position proposed by
Gumbel (1958) widely known as the Weibull plotting position. This formula, also
promoted by Makkonen (2008b) has given rise to a wide controversial discussion (de
Haan 2007; Makkonen 2007, 2011; Cook 2011, 2012; Erto and Lepore 2013; Fuglem
et al. 2013). However, independently from this controversy the following graphical
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method is focused only on achieving best linear unbiased estimators (BLUEs) of the
location-scale parent distribution parameters.

2.1 Best linear unbiased estimators of location-scale distribution parameters
from graphical method

If X (and then X(i)) is a continuous location-scale random variable, we can introduce
the standardized variable

Z(i) = (
X(i) − a

)
/b (6)

where a and b are the location and the non-negative scale parameters, respectively.
In order to graphically estimate a and b through probability papers, the following

regression model is assumed

x(i) = by(i) + a + εi , i = 1, . . . , N (7)

where the x ′
(i)s are the observations of the order statistics X

′
(i)s, y(i) = F−1

Z

(
F̂i
)
and

εi represents the error/residual.
In the proposed graphical method, we assume y(i) = E

{
Z(i)

}
in accordance with

a well-known approach (Cunnane 1978). However, differently from Cunnane (1978),
we take into account that the covariance σ(X(i),X( j)) between X(i) and X( j) is nonzero
and the variances σ 2

X(i)
= σ(X(i),X(i)) of the X(i)’s are not equal. Note that for location-

scale distributions, the covarianceσ(X(i),X( j)) can be expressed in termof the covariance
σ(i, j) between Z(i) and Z( j) as follows

σ(X(i),X( j)) = b2σ(i, j), j = 1, . . . , N . (8)

Therefore, the covariance matrix of the error ε = [ε1, . . . , εN ]′ is b2V, where

V =
⎡

⎢
⎣

σ(1,1) . . . σ(1,N )

... σ(i, j)
...

σ(N ,1) . . . σ(N ,N )

⎤

⎥
⎦ (9)

is symmetrical, has nonzero off-diagonal elements and different diagonal elements.
Apart from the unknown constant b2, V represents the covariance structure among the
errors and can be shown to be non-singular and positive definite.

In matrix notation, being X = [
x(1) . . . x(N )

]′, the regression model can be
expressed as

X = Aθ + ε (10)
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where θ = (a, b) and the n × 2 matrix

A =
⎡

⎢
⎣

1 E
{
Z(1)

}

...
...

1 E
{
Z(N )

}

⎤

⎥
⎦ . (11)

Thereforewe propose to utilize the generalized least-squares solution to the regression
model (7)

θ̂ =
[
â
b̂

]
=
(

A′V−1A
)−1

A′V−1X (12)

which can be shown to be the BLUEs of θ (Lieblein 1953; Draper and Smith 1981)
and that the variance matrix of θ̂ can be expressed as

Var
(
θ̂
) = b2

(
A′V−1A

)−1
(13)

Now it is clear that the Cunnane (1978) plotting position approach, recently encour-
aged by Hong and Li (2013) and Fuglem et al. (2013), does not allow for BLUEs of
location-scale distribution parameters because the generalized least-squares method
is not applied to the regression model (7).

Unfortunately, in many cases the solution (12) is too complex to be analytically
evaluated (see, e.g., Lieblein and Salzer (1957) and, even when the sample size is
not dramatically small, the ordinary least-squares method cannot be used for practical
estimations such as the return period [see conclusion 4 by (Cunnane 1978) andmotives
1–2 by (Lozano-Aguilera et al. 2014)].

To overcome this problem, we propose to use the k-th order Taylor polynomial of
F−1
Z (·) around μi = E

{
U(i)

} = i/(N + 1)

Z(i) = F−1
Z

(
U(i)

) �
k∑

j=0

F−1( j)
Z

(
μU (i)

)

j !
(
U(i) − μU (i)

) j (14)

where F−1( j)
Z (·) is the j-th derivative of F−1

Z (·).
In particular, by considering k = 4, we use

E
{
Z(i)

} � F−1
Z (μi ) + 1

2
F−1(2)
Z (μi )E

{(
U(i) − μi

)2}

+1

6
F−1(3)
Z (μi )E

{(
U(i) − μi

)3}

+ 1

24
F−1(4)
Z (μi )E

{(
U(i) − μi

)4} (15)
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in the matrix (11) and

σ(i, j) � μi
(
1 − μ j

)

N + 2
F−1
Z (μi ) + μi

(
1 − μ j

)

(N + 2)2

{
(1 − 2μi ) F

−1(2)
Z (μi )

F−1
Z

(
μ j
)+ (

1 − 2μ j
)
F−1(2)
Z

(
μ j
)
F−1
Z (μi ) + 1

2
μi (1 − μi )

F−1(3)
Z (μi ) F

−1
Z

(
μ j
)+ 1

2
μ j

(
1 − μ j

)
F−1(3)
Z

(
μ j
)
F−1
Z (μi )

+1

2
μi
(
1 − μ j

)
F−1(2)
Z (μi ) F

−1(2)
Z

(
μ j
)}

. (16)

in the matrix (9). Note that the Taylor polynomial (16) is obtained by using the results
of David and Johnson (1954).

From a practical point of view, we found that a higher k value does not offer any
significant advantage for a sample size N ≥ 10. However, it is always possible to cal-
culate the matrices V and A (and their inverses) by Monte Carlo method. The Weibull
plotting position proposed by Gumbel (1958) (coincides with the first term of the
Taylor polynomial (15). Moreover, let us remark that the plotting positions proposed
in the past decades (Table 1)—generally in the form (1) or (2)—are different formulas
used to obtain approximations for E

{
Z(i)

}
(see e.g., Gringorten 1963; Cunnane 1978;

Guo 1990).

3 A new Gumbel probability paper

Since the graphical estimators â and b̂ of location-scale distribution parameters are
linear and equivariant (Erto 1981), the quantities

K1 = â − a

b
and K2 = b̂

b
(17)

are parameter-free (Lawless 1978). In order to compare bias and efficiency of the
estimators â and b̂, note that the Root Mean Square Deviation (RMSD) and the bias
modulus of the estimators â and b̂ can be expressed as follows

RMSD(â) =
√

E
{(
â − a

)2} = b

√√√√E

{(
K1

K2

)2
}

(18)

∣∣BI AS(â)
∣∣ = ∣∣E

{
â
}− a

∣∣ = b |E {K1}| (19)

RMSD(b̂) =
√

E

{(
b̂ − b

)2} = b
√
E
{
K 2
2

}− 2E {K2} + 1. (20)

∣∣∣BI AS(b̂)
∣∣∣ =

∣∣∣E
{
b̂
}

− b
∣∣∣ = b |E {K2} − 1| (21)

Therefore, it is sufficient to compare BIAS and RMSD for b = 1.
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Table 2 RMSD(â) and RMSD(b̂) for the Gumbel distribution with b = 1

RMSD(â) RMSD(b̂)

N = 5 N = 10 N = 30 N = 5 N = 10 N = 30

MLE 0.493 0.340 0.194 0.377 0.257 0.145

Erto and Lepore (this study) 0.480 0.335 0.193 0.410 0.267 0.147

Hazen (1914) and Foster (1936) 0.497 0.345 0.196 0.430 0.306 0.182

Tukey (1962) and Kerman (2011) 0.491 0.341 0.196 0.476 0.328 0.189

Gringorten (1963) 0.494 0.343 0.196 0.444 0.312 0.184

De (2000) 0.485 0.339 0.196 0.455 0.317 0.185

Weibull (1939) 0.484 0.338 0.195 0.614 0.402 0.216

Cunnane (1978) 0.493 0.343 0.196 0.455 0.317 0.185

Adamowski (1981) 0.488 0.340 0.195 0.506 0.344 0.194

Erto and Lepore (2013) 0.490 0.341 0.196 0.487 0.333 0.190

Bold text highlights the values achieved by the estimators obtained through the proposed method

As an example, M = 105 pseudo-random samples of size n = 5, 10, 30 are drawn
from the Gumbel parent distribution (cdf)

F(x; a, b) = exp
[− exp {−(x − a)/b}] , b > 0 (22)

which will be used for the critical application of the next section. The RMSD and the
BIAS modulus of the proposed estimators (12) of location and scale parameters are
compared (Tables 2, 3) with the usual estimators obtained through the ordinary least-
square method (i.e., σ(i, j) = σ if i = j and zero otherwise) and the classical plotting
positions (Table 1) as well as with the Maximum Likelihood Estimators (MLEs). The
attained results clearly show that only the proposed graphical estimators are unbiased
[as k goes to infinity, see (15) and (16)] at each sample size. Their efficiency is higher
than the classical graphical ones for both location and scale parameters. However, the
latter result can be not true in general, and it could be theoretically possible to find
more efficient biased solutions. Consequently, the resulting Gumbel probability paper
does not suffer from the typical bias related to the classical probability papers. This is
relevant especially for small sample sizes.

4 A critical application: the Pozzuoli’s bradyseism

Campi Flegrei is a large volcanic complex locatedwest of the city ofNaples, around the
townofPozzuoli Italy.During the 1983–1984bradyseismic crisis (slowvertical ground
uplift) a total seismic energy of about 4 · 1013J (Lima et al. 2009) was released. The
ground uplift and continuous seismic activity diffused highly unsettling emotions and
the conviction that a volcanic explosion was going to happen. The “scientific” proof of
this upcoming event was given by theMogi’s model (Mogi 1958). This model explains
the uplift of a volcanic area as the consequence of the instability due to the increasing
pressure in the underlying magma that tries to reach the surface. The event induced
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Table 3
∣∣Bias(â)

∣∣ and
∣∣
∣Bias(b̂)

∣∣
∣ for the Gumbel distribution with b = 1

Bias(â) Bias(b̂)

N = 5 N = 10 N = 30 N = 5 N = 10 N = 30

MLE 0.082 0.040 0.013 0.158 0.076 0.025

Erto and Lepore (this study) 0.001 0.001 0.001 0.002 0.002 0.000

Hazen (1914) and Foster (1936) 0.085 0.049 0.019 0.064 0.037 0.015

Tukey (1962) and Kerman (2011) 0.058 0.031 0.009 0.047 0.039 0.024

Gringorten (1963) 0.075 0.042 0.015 0.023 0.008 0.000

De (2000) 0.069 0.038 0.013 0.002 0.005 0.005

Weibull (1939) 0.004 0.002 0.006 0.249 0.172 0.090

Cunnane (1978) 0.058 0.031 0.009 0.003 0.010 0.009

Adamowski (1981) 0.053 0.028 0.008 0.099 0.074 0.042

Erto and Lepore (2013) 0.053 0.028 0.008 0.067 0.052 0.030

Bold text highlights the values achieved by the estimators obtained through the proposed method

Table 4 Lunar months from July 1983 to July 1984

1983
I II III IV V VI
July August September October November December

10/07 08/08 07/09 06/10 04/11 04/12

07/08 06/09 05/10 03/11 03/12 02/01

1984

VII VIII IX X XI XII XIII

January February March April May June July

03/01 02/02 02/03 01/04 01/05 30/05 29/06

01/02 01/03 31/03 30/04 29/05 28/06 27/07

city managers to order a devastating full-scale evacuation of the area. The alternative
hypothesis, that explained the ground movement as the consequence of the specific
thermo-fluid-dynamics activity of the subsoil of the Campi Flegrei area (Casertano
et al. 1976), was immediately abandoned. Probably, the careful consideration of

– The time stability of the earthquakes’ magnitude
– The complete independence of both levels and times of the magnitudes from the
focus depths of the corresponding earthquakes

should have been enough to judge the hypothesis of an ascending magmatic intrusion
to be unlikely. In fact, that would have caused ascending rock fractures and consequent
ascending earthquake focuses (with time decreasing depths).

In the “Appendix”, the magnitudes xi (greater than or equal to 1) registered from
July 1983 to July 1984 are reported and grouped by lunar month (labelled by I,…,
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Fig. 1 NewGumbel probability paper of themagnitudes from July 1983 (I) to July 1984 (XIII) (see Table 4)
and the corresponding R2 (Buse 1979) and modified Anderson-Darling (D’Agostino and Stephens 1986)
statistics
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Fig. 1 continued

XIII in Table 4) because of the high correlation among bradyseism and short and long
period tidal components (Casertano et al. 1976).

For each lunar month, the log-magnitudes greater than or equal to 1 are analysed
in Fig. 1 via the proposed Gumbel probability paper (i.e., by using the proposed
plotting positions (15) and the generalized least-squares method). The corresponding
R2 statistics (Buse 1979) are calculated for each month in order to give a measure of
the goodness-of-fit of the Gumbel distribution. Around the regression line â+ b̂y, the
following approximate confidence intervals at level 1−α = 0.98 are reported on each
probability paper (Fig. 1)

x = â + b̂

(
y ± tN−2;α/2

√
Y′ (A′V−1A

)−1 Y
)

(23)
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Table 5 Probability estimates
of a monthly magnitude X
greater than 5 (×10−3)

Lunar month P̂ {X > 5} Lunar month P̂ {X > 5}
I 0.720 VIII 2.22

II 3.20 IX 3.82

III 0.943 X 4.53

IV 6.19 XI 2.23

V 2.04 XII 3.96

VI 2.89 XIII 1.75

VII 2.06

Table 6 Modified
Anderson-Darling statistic
values with Gumbel (unknown)
parameters estimated at each
lunar month

Lunar month Lunar month

I 0.34 VIII 0.18

II 0.18 IX 0.15

III 0.25 X 0.26

IV 0.21 XI 0.27

V 0.15 XII 0.20

VI 0.22 XIII 0.22

VII 0.15

Table 7 Modified
Anderson-Darling statistic
values with Gumbel (unknown)
parameters estimated on the
basis of the cumulative sample
of all the previous lunar
month(s)

Lunar month Lunar month

II 0.22 VIII 0.27

III 0.32 IX 0.27

IV 0.33 X 0.30

V 0.32 XI 0.30

VI 0.27 XII 0.29

VII 0.25 XIII 0.29

where Y = [1 y]′ and tv;p is the 100p-th percentile of the t-distribution with v degrees
of freedom. From the second probability paper on, it is also plotted a bold reference
line with θ̂ obtained on the basis of the cumulative sample of all the previous month(s).
Since the monthly confidence intervals always include the reference line, the hypoth-
esis of earthquakes’ magnitude stability cannot be rejected and can be graphically
shown to non-statisticians in a very concise and informative way. In addition, it is
worth to note that the estimated modest probability of a monthly magnitude X greater
than 5 (Table 5), which in expert opinion is the critical threshold for concrete struc-
tures, could have helped to warn against the alarmism caused by the apocalyptical
newspaper titles at the time (Gore and Mazzatenta 1984).

This real scenario is one of the typical critical cases where an unbiased graphical
analysis of the data can work as a “reliable” way to share statistical conclusions with
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non-statisticianmanagers that have to utilize them tomake grave decisions on territory
and citizens.

However, analytical goodness-of-fit tests for the Gumbel distribution are carried
out through the modified Anderson-Darling upper-tail test (D’Agostino and Stephens
1986) and by estimating the population (unknown) parameter estimators through (12).
In particular, Table 6 reports the modified Anderson-Darling statistic values to test the
goodness-of-fit of the Gumbel distribution for the log-magnitudes (greater than or
equal to 1) at each lunar month. Since they are far smaller than the critical value
0.64 corresponding to a significance level 0.1 (D’Agostino and Stephens 1986), it
is very likely that the data come from the hypothesized distribution. Moreover, the
modified Anderson-Darling statistic values reported in Table 7 show that for each
month, the log-magnitudes likely belongs to the Gumbel distribution with the popu-
lation (unknown) parameters estimated on the basis of the cumulative sample of all
the previous month(s).

Because further bradyseismic crisis are expected for next future, the above graphical
analysis will surely be able to provide a strategic reference picture to which the new
data can be compared as soon as they are collected.

5 Conclusions

On the basis of theoretical considerations, a new probability paper based on the gen-
eralized least-squares method is proposed. Correlation between order statistics and
heteroscedasticity are taken into account. The resulting new graphical estimators are
shown to be the best linear unbiased estimators (BLUEs) of location and scale para-
meters of the parent distribution. Consequently, the resulting population line does not
suffer from the typical bias related to classical probability papers. This is relevant
especially for small sample sizes. An approximate solution is also provided in order
to overcome any computational issue and the bias introduced by such approximation
can be made as small as needed.

As an example, for the Gumbel parent distribution, a Monte Carlo simulation con-
firms that the proposed graphical estimators outperform the usual estimators obtained
through ordinary least-square method and classical plotting positions in terms of the
bias modulus for all the considered sample sizes (n = 5, 10, 30). As the proposed
estimators are BLUEs, this result is expected for every distribution in the location
scale family even though it could be theoretically possible to find more efficient (in
terms of root mean square deviation) but biased solutions. However, in the Gumbel
case, the proposed graphical estimators show root mean square deviations that are
comparable with those achieved by the corresponding maximum likelihood ones.

The attained results reduce the efficiency gap between probability papers and the
concurrent analyticalmethods, so encouraging the use of graphical procedures. The lat-
ter are very strategic especially in critical applications where the visual representation
of the results of statistical analysis are to be fully understood also by non-statisticians
in order to make correct decisions.
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Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: the bradyseism magnitudes (filtered by values less than 1) reg-
istered during in Campi Flegrei (Italy) from July 1983 to July 1984

July 1983
1.3, 1.5, 1.1, 1.2, 2.3, 1.4, 1.2, 1.2, 1.4, 1.4, 1.4, 1.0, 1.4, 1.0, 1.2, 1.2, 1.4, 1.6, 1.7,
1.3, 1.5, 1.5, 1.7, 1.3, 1.5, 1.4, 1.4, 1.0, 1.5, 1.3, 2.4, 1.6, 1.8, 1.4, 1.9, 2.1, 1.3, 1.8,
1.7, 1.4, 1.0, 1.9, 1.5, 1.5, 1.4, 1.4
August 1983
1.4, 2.0, 2.2, 1.0, 1.8, 2.4, 1.1, 2.3, 1.5, 1.0, 1.2, 1.3, 1.2, 2.1, 1.2, 1.3, 1.4, 1.6, 1.5,
1.6, 1.7, 2.8, 1.7, 1.5, 1.8, 1.2, 1.4, 1.0, 1.8, 1.4, 1.6, 1.6, 1.0, 1.4, 1.2, 1.2, 1.2, 1.2,
2.0, 1.9, 1.6, 1.5, 1.3, 1.6, 1.4, 2.5, 2.4, 1.6, 2.0, 1.4, 1.8, 1.3, 1.3, 1.2, 1.8, 1.2, 1.2,
1.2, 1.2, 1.2, 2.2, 1.0, 1.4, 1.4, 2.4, 1.4, 3.6, 1.8, 1.3, 1.6, 2.0, 1.4, 1.0, 1.4, 2.6, 1.2
September 1983
2.0, 1.6, 1.4, 1.0, 1.4, 1.3, 1.5, 1.7, 1.2, 1.0, 1.4, 1.0, 1.1, 1.4, 1.0, 1.4, 1.2, 1.0, 1.3,
1.6, 1.2, 1.6, 1.2, 1.2, 1.2, 2.0, 1.0, 1.2, 1.2, 1.5, 1.0, 1.8, 1.1, 1.2, 1.4, 1.6, 1.8, 1.2,
1.9, 1.4, 1.2, 1.4, 1.4, 2.2, 1.2, 2.6, 1.0, 1.5, 1.2, 1.8, 2.7, 1.8, 1.2, 1.0, 1.5, 1.2, 1.4,
1.4, 1.4, 1.5, 1.0, 1.6, 1.5, 1.2, 1.5, 1.4, 1.7, 1.2, 1.5, 1.2, 1.7, 1.2, 1.2, 1.3, 1.4, 1.3,
2.3, 1.7, 1.8, 1.2, 1.4, 1.3, 1.4, 2.0, 1.3, 1.6, 1.6, 1.4, 1.2, 1.6, 1.3, 1.4, 1.0, 1.2, 1.0,
1.1, 1.1, 1.8, 1.5, 1.2, 1.9, 1.0, 1.7, 1.2, 1.0, 1.2, 1.0, 1.3, 1.2, 1.5, 2.3, 1.0, 1.2, 1.4,
1.3, 1.0, 1.2, 1.4, 1.0, 1.4, 1.2, 1.0, 1.0, 1.8, 1.5, 1.5, 1.1, 1.6, 1.1, 1.0, 1.9, 1.0, 1.2,
1.5, 1.2, 1.1, 1.2, 1.1, 1.9, 1.3, 1.2, 1.9, 1.5, 1.0, 1.0, 1.3, 1.4, 1.0, 1.2, 1.4, 1.5, 1.2,
1.1, 1.7, 1.1, 1.4, 1.2, 1.2, 1.9, 1.5, 1.0, 1.2, 1.2, 1.7, 1.0, 1.6, 1.0, 1.3, 1.4, 2.0, 1.7,
2.3, 1.3, 2.9, 1.7, 1.8, 1.6, 1.7, 1.6, 1.2, 1.6, 1.6, 1.0, 1.6, 2.0, 1.0, 1.7, 1.0, 1.5, 1.4,
1.8, 1.0, 1.3, 1.5, 1.6, 1.5, 1.4, 1.7, 1.5, 1.6, 1.3, 1.0, 1.0, 1.3, 1.5, 1.4, 1.4, 1.3, 1.0,
1.6, 1.7, 1.6, 1.2, 1.2, 1.2, 1.3, 1.9, 2.1, 1.2, 1.3, 1.3, 1.3, 2.2, 1.5, 1.3, 1.3, 1.9, 1.0,
1.4, 1.2, 4.0, 1.2, 1.3, 1.3, 1.6, 1.3, 1.0, 3.0
October 1983
1.5, 1.2, 1.9, 1.4, 2.2, 1.0, 1.5, 1.6, 1.3, 1.3, 1.3, 1.0, 1.2, 2.0, 1.0, 1.2, 1.0, 2.3, 1.9,
1.3, 1.5, 1.5, 1.6, 1.3, 2.0, 1.0, 1.5, 1.0, 2.3, 1.2, 1.5, 1.7, 1.8, 1.2, 2.0, 1.0, 1.4, 1.3,
1.3, 1.4, 1.1, 1.4, 1.6, 1.0, 3.0, 2.1, 2.6, 2.3, 1.2, 2.3, 1.0, 2.3, 1.9, 1.6, 2.6, 2.6, 1.0,
2.2, 1.4, 1.2, 1.0, 1.4, 2.2, 1.3, 1.7, 1.9, 1.9, 2.3, 1.4, 1.6, 1.7, 1.2, 1.2, 1.5, 1.0, 1.6,
2.1, 2.2, 1.0, 1.6, 1.5, 1.7, 1.7, 1.4, 1.6, 1.6, 1.0, 2.3, 1.3, 1.6, 1.2, 1.7, 1.2, 1.7, 1.2,
1.8, 1.0, 1.3, 1.2, 1.0, 2.6
November 1983
1.4, 1.3, 2.0, 1.1, 1.2, 1.7, 1.9, 1.7, 1.5, 1.8, 1.6, 1.1, 1.1, 1.1, 1.1, 1.6, 1.4, 1.2, 1.2,
1.3, 1.7, 1.8, 1.4, 2.2, 1.6, 1.6, 1.2, 1.4, 1.8, 1.3, 1.5, 1.7, 2.8, 1.6, 1.4, 1.5, 1.4, 3.3,
1.4, 1.3, 1.4, 1.2, 1.6, 1.1, 1.0, 1.7, 1.5, 1.2, 1.2, 1.3, 2.4, 1.4, 1.0, 1.3, 1.3, 1.2, 1.6,
1.0, 1.2, 3.5, 1.0, 1.4, 1.6, 1.4, 1.2, 1.9, 1.9, 1.0, 1.1, 1.0, 1.6, 1.3, 1.7, 2.4, 1.4, 2.3,
1.0, 1.4, 1.0, 1.0
December 1983
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1.0, 1.9, 1.0, 1.1, 1.0, 1.1, 1.5, 1.5, 1.7, 1.3, 1.1, 1.1, 1.2, 1.4, 1.5, 1.0, 1.2, 2.1, 1.3,
1.2, 2.0, 1.9, 1.2, 1.7, 1.8, 1.8, 1.2, 1.5, 1.3, 1.1, 1.1, 1.5, 1.9, 1.2, 2.2, 1.4, 1.4, 1.5,
1.8, 1.4, 1.1, 2.1, 1.3, 1.3, 1.1, 1.0, 1.1, 1.2, 1.0, 1.0, 2.4, 2.1, 2.5, 2.7, 1.2, 1.3, 1.4,
3.1, 1.2, 2.3, 1.6, 1.6, 1.2, 1.2, 1.6, 1.0, 1.5, 3.8, 1.2, 1.9, 1.5, 1.1, 1.3, 1.3, 1.0, 1.3,
2.5, 3.0, 1.0, 1.2, 1.7, 2.5, 1.3, 1.1, 1.3, 1.0, 1.1, 1.0, 1.3, 1.2, 1.6, 1.0, 1.0, 1.5, 1.0,
1.3, 1.2, 1.1, 1.4, 1.3, 1.6, 1.9, 2.2, 2.7, 3.8, 1.7, 1.6, 2.3, 1.1, 1.1, 1.2, 1.3, 2.3, 2.0,
1.6, 1.3, 2.0, 1.3, 1.5, 1.2, 1.6, 1.0, 1.2, 2.5, 1.0, 1.3, 1.1, 1.3, 1.3, 1.1
January 1984
1.1, 1.5, 1.2, 1.7, 2.5, 1.5, 1.7, 1.5, 1.3, 2.1, 1.9, 1.1, 1.0, 1.9, 1.6, 1.3, 1.3, 1.0, 1.0,
1.1, 1.3, 1.9, 1.3, 1.7, 1.2, 1.1, 2.3, 1.3, 1.3, 1.1, 2.0, 1.4, 1.3, 1.1, 1.1, 1.6, 1.1, 1.1,
1.1, 1.2, 1.8, 1.1, 1.3, 1.3, 1.2, 2.6, 1.6, 1.0, 1.3, 2.4, 1.0, 1.0, 1.4, 1.5, 1.8, 1.6, 1.4,
1.8, 1.2, 3.3, 1.2, 1.2, 1.1, 1.7, 2.0, 1.3, 1.5, 1.4, 1.6, 1.7, 1.3, 1.1, 1.1, 1.8, 1.0, 1.4,
1.2, 1.1, 1.2, 1.0, 1.1, 1.1, 1.0, 1.2, 1.4, 1.3, 1.5, 1.7, 2.8, 2.6, 1.6, 1.3, 1.4, 1.0, 1.3,
1.6, 1.3, 1.8, 1.3, 1.7, 1.9, 1.0, 1.5, 1.3, 1.2, 1.3, 1.2, 1.8, 1.2, 2.1, 1.9, 1.4, 1.5, 1.7,
2.6, 1.1, 1.3, 1.4, 1.8, 2.1, 1.3, 1.3, 1.1, 1.4, 1.5, 1.5, 1.4, 3.4, 1.9, 1.4, 1.8, 1.3, 2.1,
1.6, 2.2, 1.9, 1.2, 2.3, 1.7, 1.6, 1.6, 1.2, 1.2, 1.6, 1.7, 1.3, 2.6, 1.7, 1.0, 1.9, 1.3, 1.4,
1.1, 1.3, 1.7, 1.3, 1.9, 1.1, 1.0, 2.5, 1.7, 1.6, 1.2, 1.7, 1.7, 1.7, 1.2, 1.5, 1.6, 1.8, 1.0,
1.3, 2.3, 1.3, 1.7, 1.6, 1.3, 2.1, 1.2, 1.7, 1.8, 3.6, 1.9, 1.4, 1.2, 1.3, 1.2
February 1984
1.1, 1.4, 1.8, 1.3, 1.0, 1.6, 1.6, 1.5, 1.4, 1.9, 1.7, 1.5, 1.0, 1.1, 1.4, 1.4, 1.0, 1.2, 1.1,
1.1, 1.5, 1.3, 1.7, 1.3, 2.1, 1.4, 1.3, 1.7, 1.3, 1.4, 1.0, 1.3, 1.6, 1.0, 2.4, 1.3, 1.4, 1.3,
1.3, 1.3, 1.2, 1.3, 1.1, 1.3, 1.0, 1.2, 1.3, 1.3, 1.5, 1.9, 1.3, 1.2, 1.8, 1.6, 1.5, 1.2, 1.3,
1.2, 1.5, 1.3, 1.1, 1.3, 2.1, 1.3, 3.2, 1.9, 1.2, 2.1, 1.6, 1.6, 1.8, 1.8, 2.7, 2.5, 2.1, 1.7,
2.3, 2.1, 1.9, 2.1, 1.8, 1.0, 1.1, 1.9, 1.3, 1.7, 1.6, 1.7, 2.0, 2.3, 1.6, 1.2, 1.0, 1.3, 1.6,
1.9, 1.9, 1.3, 1.8, 1.2, 1.7, 1.1, 1.0, 1.9, 1.3, 1.5, 1.5, 1.3, 1.3, 1.2, 1.9, 1.1, 1.9, 1.7,
1.6, 1.7, 1.2, 1.7, 1.8, 1.4, 1.6, 1.4, 2.4, 1.9, 1.6, 1.7, 1.4, 1.3, 2.8, 1.6, 1.5, 1.7, 1.3,
1.2, 1.2, 1.2, 2.0, 1.7, 3.7, 1.3, 1.5, 1.7, 1.0, 1.1, 1.2, 1.1, 1.1, 1.3, 1.5, 1.3, 2.2, 1.9,
1.3, 1.2, 1.5, 1.3, 1.4, 1.6, 2.1, 1.7, 1.0, 1.3, 1.3, 1.0, 3.0, 3.2, 1.0, 1.0, 1.0, 1.0, 1.2,
1.1, 1.2, 1.2, 1.4, 1.3, 2.3, 1.7, 2.0, 1.3, 2.1, 1.1, 1.2, 1.7, 1.6, 1.3, 1.1, 1.7, 2.1, 1.3,
1.7, 1.8, 2.2, 1.0, 2.0, 1.2, 1.2, 1.0, 1.7, 1.2, 1.2, 1.0, 1.5, 1.3, 1.1, 1.3
March 1984
1.8, 2.5, 1.4, 1.0, 1.3, 1.2, 1.3, 1.7, 1.5, 1.0, 1.2, 1.5, 2.5, 1.2, 1.2, 1.2, 2.5, 1.7, 1.8,
1.4, 1.2, 1.5, 1.2, 2.2, 2.1, 1.6, 2.3, 1.4, 1.1, 1.1, 1.3, 1.7, 1.5, 1.6, 1.0, 1.2, 1.0, 1.3,
1.8, 1.5, 1.7, 1.3, 1.8, 1.5, 1.4, 2.2, 1.3, 1.5, 1.1, 2.1, 1.0, 3.9, 1.4, 1.3, 1.4, 1.1, 1.0,
1.1, 1.2, 1.0, 1.8, 1.0, 2.0, 1.0, 1.0, 1.4, 1.0, 1.7, 1.3, 1.2, 1.2, 1.8, 1.0, 2.5, 1.2, 1.5,
1.4, 1.7, 1.2, 2.8, 1.9, 1.6, 2.5, 1.0, 1.8, 2.0, 1.6, 1.0, 1.5, 1.3, 1.3, 2.5, 1.3, 1.9, 1.8,
1.7, 2.1, 4.0, 1.1, 1.3, 1.5, 2.1, 1.0, 1.1, 1.0, 2.4, 2.0, 1.4, 1.6, 1.1, 1.3, 1.2, 1.3, 1.2,
1.3, 3.6, 2.5, 2.2, 1.3, 1.1, 2.1, 1.1, 1.4, 1.3, 1.2, 1.7, 1.0, 1.7, 1.1, 1.3, 1.3, 1.5, 1.4,
2.4, 1.4, 1.0, 1.3, 1.7, 1.2, 2.5, 3.0, 2.4, 1.6, 1.7, 2.1, 1.0, 1.5, 1.5, 1.0, 1.4, 1.3, 1.9,
1.1, 1.0, 2.3, 1.0, 1.1, 1.2, 1.3, 1.4, 2.0, 1.4, 1.3, 1.6, 1.2, 1.3, 1.1, 1.7, 1.5, 2.2, 1.3,
1.7, 1.0, 1.3, 1.3, 1.3, 2.1, 1.6, 1.2
April 1984
1.0, 1.7, 1.0, 1.4, 1.6, 1.3, 1.8, 1.9, 1.3, 1.8, 1.4, 1.0, 1.5, 1.9, 1.4, 1.9, 2.3, 1.5, 1.3,
1.4, 1.9, 1.5, 1.5, 1.6, 2.0, 2.0, 1.4, 2.2, 1.4, 1.8, 1.6, 1.4, 2.0, 1.0, 1.7, 1.8, 2.7, 1.3,
2.5, 1.6, 3.0, 1.4, 1.4, 1.8, 1.8, 1.7, 1.2, 1.7, 1.8, 3.0, 1.1, 1.9, 1.0, 1.8, 2.5, 2.5, 1.4,
1.3, 1.3, 1.9, 1.4, 1.5, 1.5, 1.7, 1.4, 2.5, 2.0, 1.1, 1.5, 1.8, 1.2, 2.2, 1.6, 1.6, 1.3, 1.1,
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1.1, 1.1, 1.0, 2.1, 1.9, 1.8, 1.3, 1.8, 1.5, 1.5, 1.4, 1.4, 1.5, 1.0, 1.5, 1.2, 1.9, 1.0, 1.7,
1.1, 1.7, 1.2, 1.1, 1.2, 1.0, 1.4, 1.8, 1.8, 1.0, 1.1, 1.6, 1.4, 1.0, 1.0, 1.0, 1.0, 1.4, 1.5,
1.3, 1.3, 1.5, 1.7, 1.2, 3.5, 1.3, 1.4, 1.3, 1.3, 2.0, 1.7, 1.4, 1.2, 1.3, 1.3, 2.0, 2.0, 1.2,
1.3, 1.7, 1.3, 2.6, 2.0, 1.2, 1.5, 1.3, 1.4, 1.5, 1.0, 1.1, 1.9, 1.6, 1.9, 1.9, 1.0, 1.7, 1.0,
1.3, 1.5, 2.6, 1.9, 1.4, 1.9, 1.0, 1.0, 1.0, 1.0, 1.1, 1.0, 2.0, 1.4, 1.0, 1.9, 1.0, 1.4, 1.1,
1.0, 1.4, 1.4, 1.0, 1.9, 1.8, 1.3, 1.0, 1.3, 2.8, 1.2, 1.0, 1.5, 1.3, 2.5, 1.6, 1.3, 3.5, 1.4,
1.4, 1.4, 1.0, 1.1, 1.5, 1.2, 1.2, 1.6, 1.7, 1.4, 3.1, 2.4, 3.2, 1.2, 1.7, 1.2, 2.1, 2.2, 1.0,
1.4, 1.3
May 1984
1.7, 1.4, 1.0, 1.4, 1.5, 1.9, 1.2, 1.4, 1.0, 1.8, 1.7, 1.0, 1.3, 1.9, 1.0, 1.5, 1.3, 1.6, 1.9,
1.0, 3.4, 1.2, 1.0, 2.5, 1.7, 1.8, 1.4, 3.4, 1.3, 1.4, 1.1, 1.1, 1.0, 1.3, 1.0, 1.3, 1.3, 1.3,
1.0, 1.5, 1.7, 1.7, 1.4, 1.3, 1.5, 1.1, 1.3, 3.2, 1.2, 1.7, 1.6, 1.7, 1.4, 1.3, 1.0, 1.4, 1.7,
1.3, 1.0, 2.2, 1.1, 1.5, 1.6, 2.0, 1.4, 1.2, 1.1, 1.3, 1.5, 1.7, 1.4, 1.0, 1.7, 1.4, 1.8, 1.8,
1.5, 1.5, 1.6, 1.5, 1.6, 1.6, 1.3, 1.0, 1.2, 1.2, 1.3, 1.5, 1.7, 1.8, 1.8
June 1984
1.5, 3.2, 1.5, 1.3, 3.3, 1.8, 3.0, 1.5, 1.3, 1.8, 1.8, 1.5, 3.0, 1.2, 1.3, 1.2, 1.5, 2.0, 2.1,
1.8, 1.2, 1.8, 1.2, 1.5, 1.3, 1.3, 1.5, 1.7, 1.6, 2.0, 1.3, 1.6, 1.0, 1.4, 1.8, 1.2, 1.8, 1.5,
1.2, 1.5, 1.9, 1.1, 1.5, 1.2, 1.3, 1.3, 1.0, 1.3, 2.4, 2.4, 2.9, 1.4, 1.4, 1.3, 1.5, 1.0, 1.0,
1.1, 1.2, 1.4, 1.6, 1.1, 1.0, 1.0, 1.2, 1.2, 1.0, 1.5, 1.2, 1.5, 1.1, 1.2, 1.0, 1.0, 2.6, 3.3,
1.2, 1.6, 1.3, 1.0, 1.2, 1.3, 1.1, 1.7, 1.0, 3.6, 1.8
July 1984
1.0, 1.5, 1.3, 1.4, 1.3, 1.3, 1.1, 1.5, 1.5, 1.5, 1.0, 1.3, 1.5, 3.6, 2.2, 1.0, 1.5, 1.4, 1.9,
3.5, 1.6, 1.2, 1.8, 1.2, 1.6, 1.7, 1.4, 1.6, 1.5, 1.8, 1.6, 1.4, 1.2, 1.5, 2.4, 1.6, 1.0, 1.3,
1.3, 1.2, 1.2, 1.2, 1.0, 1.0, 1.0, 1.3, 1.5, 1.3, 1.0, 1.3, 1.8, 1.5, 1.0, 1.2, 1.6, 1.0, 1.0,
3.5, 1.0, 1.3, 1.3, 2.0, 1.2, 1.4, 1.4, 1.2, 1.0, 1.8, 1.3, 1.5, 1.0, 1.4, 1.4, 1.2, 1.2, 1.2,
2.0, 2.3, 1.7, 1.2, 1.0, 1.0, 1.2, 1.4, 1.8, 1.0, 2.4, 1.7, 1.3, 2.2, 1.1, 1.3, 1.0, 1.4, 1.1,
1.0, 2.0, 1.6, 2.5, 1.4, 1.0, 1.0, 1.1, 1.2, 1.5, 1.3, 1.2, 1.2, 1.8, 1.3, 1.1
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