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Abstract
The use of written or graphic representations is essential in mathematics. Graphic
representations are mainly used and researched as instruments for problem solving. There
is a gap in research for interventions that use learner-generated graphic representations as
documents for reflection processes for promoting the development of children’s graphic
representation competences. This is the focus of the study presented here. The study
examines to what extent such an intervention has an effect on how the children take into
account a mathematical structure in their self-generated graphic representations, how they
ensure a mathematical matching with the word problem, and what degree of abstraction
they choose. Additionally, the effect on the solution rates is investigated. The results
show that children in the intervention group more frequently pay attention to a mathe-
matically appropriate structure, compared with children in the control groups. This result
is statistically significant. At the same time, children keep the degree of abstraction
relatively constant. Solution rates improve continuously, but the difference is not
significant.

Keywords Inscriptions . Graphic representations .Word problems . Reflection . Intervention
study

1 Introduction

In the practice of mathematics, the use of inscriptions, i.e., representations that exist in material
form (Roth & McGinn, 1998), is essential. Without such material representations, it is virtually
impossible to acquire a mathematical understanding (Dörfler, 2008; Goldin & Shteingold,
2001). Accordingly, representation is now normatively set as a mathematical competence in
the standards and curricula of many countries (e.g., NCTM, 2000). This competence is often
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associated with problem solving. Furthermore, in research, the flexible and adaptive use of
different representations is considered essential for mathematical problem solving (Heinze,
Star, & Verschaffel, 2009). The generation of a graphic representation is regarded as an
important heuristic (Hembree, 1992). At the same time, it is often reported that many learners
rarely use graphic representations as heuristics (Fagnant & Vlassis, 2013; Lopez Real &
Veloo, 1993). This is particularly evident at the primary school level, where interventions
involving graphic representations for problem solving often have almost no positive effects
(Hembree, 1992).

Thus, a tension between mathematically and didactically motivated ideas on the one hand
and the use by learners at the primary school level on the other hand becomes apparent. In
intervention studies, graphic representations are mostly examined as instruments for problem
solving (e.g., Van Essen & Hamaker, 1990). There is a gap in the research on the question as to
how learner-generated graphic representations develop when they are created as documents for
others and reflected upon in class. The study described here makes a contribution in this
direction.

2 Theoretical background

2.1 Graphic representations for word problems

Various forms of representations can be distinguished (Goldin & Shteingold, 2001). A
distinction between descriptive and depictive representations (Schnotz, 2002) seems to be
useful in the case of graphic representation for word problems. We will see below that word
problems are a particular example of descriptive representations, while graphic representations
form a subset of depictive representations.

Descriptive representations consist of symbols and are associated with the content they
represent by means of a convention. Descriptive representations contain relational characters
for structural mapping (Schnotz, 2001). For example, texts or mathematical equations are
descriptive representations. For describing something in texts, nouns are put by verbs and
prepositions in relation to each other. In contrast, the signs used in depictive representations
“are associated with the content they represent through common structural features” (Schnotz,
2002, p. 103). Depictive representations have structural properties that correspond to proper-
ties of the facts to be presented. In contrast to descriptive representations, information can be
taken directly. Thus, they enable efficient conclusion processes and are particularly well suited
to producing inferences in the observer, which is important for problem solving (Larkin &
Simon, 1987; Schnotz, 2001).

Word problems are forms of descriptive representations. They can be understood as
tasks presented in text form, where the content is largely meaningless and interchange-
able (Schipper, 2009). The focus is on the verbally described mathematical relationships.
Figure 1 shows an example of a word problem. Semantically different word problems
can describe the same mathematical relationships and lead to the same mathematical
operations (Verschaffel, Greer, & De Corte, 2000). Examples used in this study can be
found in Table 6 in the Appendix. A change of the linguistic surface structure can
influence the degree of difficulty. If, for example, the information in the text is men-
tioned in the order necessary for processing, this has a positive effect on the solution
process (Stern, 1998). Word problems are often criticized (Verschaffel et al., 2000): One
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main criticism is that word problems that are used in classroom practices often do not
have any genuine references to reality, but are artificial problems. At the same time, it is
reported that students often “solve these problems in a stereotyped and artificial way”
(Verschaffel et al., 2000, p. 12). However, depending on how they are used in teaching,
word problems also have the potential to develop several mathematical competences
(Verschaffel et al., 2000). For example, they can be used to “develop new mathematical
structures, notations, etc in the course of exploring the modeling of phenomena”
(Verschaffel et al., 2000, p. 173).

Graphic representations are forms of depictive representations. The term graphic refers to
representations consisting of lines and dashes (Cox, 1999). Sketches and drawings can be
understood as graphic representations. In this study, graphic representation refers to paper and
pencil representations. Graphic representations are characterized by aspects of space that are

A spruce grows about 15 cm per year. In the garden there is an 83 cm high spruce. How old is it?

Fig. 1 Graphic representations (with translation) and the associated word problem (Ott, 2016)
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mapped onto content elements (Stern, Aprea, & Ebner, 2003). In graphic representations,
therefore, due to the position of the individual elements, relationships become directly apparent
(Larkin & Simon, 1987).

In a preliminary study (Ott, 2016), three key features of graphic representations for
word problems were identified: mathematical structure, mathematical matching, and
degree of abstraction. A mathematical structure may be defined based on set theory
(Rinkens, 1973): Relationships between amorphous elements of a set can be determined
by defining linkages on the set. A structure is thereby imposed on the set. In word
problems, information is presented with quantities and nouns which are related to each
other by verbs and prepositions. The word problem is thus given a mathematical
structure. For a graphic representation, it is necessary to invent signs for objects, e.g.,
quantities and nouns, that shall be represented. Relationships between these signs are
determined by the arrangement of the signs on the sheet. Since the mathematical
structure is defined on the signs of these objects, they are called structurally relevant
objects. Figure 1 shows six examples of graphic representations. While in a, c, d, e, and
f trees or rulers are structurally relevant object signs, in b, these are circles as elements
of a set. a, b, and c show the mathematical structure of a linear equation in the
arrangement of the signs for the structurally relevant objects. d only shows the
relationship between 15 cm and 1 year. e and f only show structurally relevant objects,
e.g., for the quantity 83 cm, without an arrangement. Graphic representations with a
mathematical structure can be understood as signs with a relational character, whose
perceptible basis is an inscription. Therefore, they take on the character of diagrams
(Dörfler, 2008). There is mathematical matching between a word problem and a graphic
representation if both are “informationally equivalent” (Palmer, 1978). This is the case
if both of the following conditions are satisfied: Firstly, there is a match regarding the
objects. This means there is a match between the quantities that can be split into
measured value (e.g., 83) and measuring unit (e.g., cm) (Kirsch, 1997) on the text side,
and the signs for the structurally relevant objects on the graphic side. Secondly, there is
a match regarding the operations between the verbs and prepositions on the text side
and the arrangement of the signs for the structurally relevant objects on the graphic
side. In a, b, d, and f of Fig. 1, there is a complete matching regarding the measured
values. In these examples, all measured values given in the task (15 cm, 83 cm) can be
identified in the graphic representation. In c and e, this matching is partial, since only
the 15 cm (c) or the 83 cm (e) is visible, while in b the, measuring unit is not
considered; this is the case in the other examples. Regarding operations, there is a
complete matching in a, b, and c, a partial matching in d, and no matching in e and f.
According to Peschek (1988), the degree of abstraction can be characterized as being
the degree of focusing on the representation of the word problem’s mathematical
aspects. Two indicators are identified: a focus on the structurally relevant objects
(indicator 1) and a focus on the mathematically relevant qualities of the structurally
relevant objects (indicator 2). In a, b, c, d, and e of Fig. 1, indicator 1 can be
considered high since no other objects are drawn. In f, it is low, because a fence is
also drawn. Indicator 2 can be considered high in b and low in the other examples,
because detailed trees are drawn. The key features can be analyzed independently of
each other. However, the prerequisite for determining the mathematical matching and
the degree of abstraction is that structurally relevant objects can be identified in the
graphic representation.
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2.2 Types of graphic representations for word problems

In the literature, different types of graphic representations are distinguished. A dis-
tinction is often made between schematic and pictorial representations (Hegarty &
Kozhevnikov, 1999; Presmeg, 1986): In schematic representations, the focus is on the
spatial relations described in a problem; in pictorial representations, the focus is on
the visual appearance of the objects described in a problem (Hegarty & Kozhevnikov
1999). Rellensmann, Schukajlow, and Leopold (2017) make a similar distinction
regarding the process of mathematical modeling by distinguishing between mathemat-
ical drawings and situational drawings: In mathematical drawings, the focus is on the
mathematical model described in the problem; in a situational drawing, the situation
described in the problem is pictorially depicted.

If the learners are responsible for both the process of generation of the graphic
representation and the final product, we speak of learner-generated graphic represen-
tations (Van Meter & Garner, 2005). With regard to learner-generated graphic repre-
sentations, a study by Sherin (2000) indicates that these graphic representations can
differ in even more diverse ways. In a preliminary study (Ott, 2016, 2017), the
following learner-generated graphic representations for word problems can be distin-
guished at the primary school level:

& Off the text: there is no link to the text with regard to the content.
& Illustrative: there is a link to the text, but no structurally relevant objects are represented.
& Object-related: there is a link to the text and structurally relevant objects are represented

although relations between them are not identifiable in the arrangement.
& Diagrammatic: there is a link to the text, structurally relevant objects are represented, and

relations between them are identifiable in the arrangement.

Figure 1 shows four examples of graphic representations that are diagrammatic (a, b, c, d) and
two examples that are object-related (e, f). Figure 2 shows a graphic representation for the
word problem that is off the text (a) and illustrative (b).

Graphic representations that represent parts of the mathematical structure (object-
related, diagrammatic) can differ in their degree of mathematical matching and the
degree of abstraction (Ott, 2016, 2017). The mathematical matching may be complete,
partial, or nonexistent in terms of measured values, measuring units, or operations.
The degree of abstraction can be either high or low with regard to the two indicators.

A spruce grows about 15 cm per year. In the garden there is an 83 cm high spruce. How old is it?

a b

Fig. 2 Graphic representations for the given word problem that are off the text (a) and illustrative (b)
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2.3 Teaching graphic representations for word problems

With regard to studies on generating graphic representations for word problems, two types can
be distinguished (Fagnant & Vlassis, 2013): encouraging students to use specified diagram
types (e.g., Diezmann, 2002) and encouraging students to generate their own graphic repre-
sentations (e.g., Van Dijk, Van Oers, & Terwel, 2003a). The results are inconsistent in terms of
positive benefits. Some studies show that children often find it difficult to use predefined
representations (Fagnant & Vlassis, 2013; Pantziara, Gagatsis, & Elia, 2009). Pantziara et al.
(2009) suggest that the diagrams did not fit the learners’ personal preferences and mental
models and conclude that the interpretation of diagrams is also essential for improving diagram
competence. They report that students often tried to transform the given diagrams into pictorial
representations to interpret them. Van Dijk et al. (2003a) and Van Dijk, Van Oers, Terwel, and
Van den Eeden (2003b) compared the two approaches in the fifth grade and found better
results when learners generated their own graphic representations. They conclude “that
designing models in co-construction may lead to a deeper insight into the meaning and use
of models and consequently make possible a more flexible approach in problem solving” (Van
Dijk et al., 2003b). What is so far unclear is the effect of teaching that combines the generation
of one’s own graphic representation with the interpretation of given graphic representations.

2.4 Learner-generated graphic representations and problem solving

Learner-generated graphic representations can fulfill two functions (Selter, 1993): as instruments,
they function as an aid for problem solving in the sense of a private representation; as documents,
they record the results and the solutions. In the latter function, they are public and related to an
addressee. Such graphic representations are more complete, more richly inscribed, and more
conventional than private representations (Cox, 1999).

The type of graphic representation employed by the student seems to have an influence on
the success of problem solving: While there is a positive connection between schematic
representation and successful problem solving, the generation of pictorial representations is
negatively connected with problem solving success (Hegarty & Kozhevnikov, 1999). These
findings are relativized by results regarding modeling tasks: According to Rellensmann et al.
(2017), both situational and mathematical drawings are related to modeling performance but in
different ways. While the accuracy of mathematical drawings is directly related to modeling
performance, the accuracy of the situational drawing is indirectly related, mediated by the
accuracy of mathematical matching.

Learners hardly use sketches for problem solving (Fagnant & Vlassis, 2013; Lopez Real &
Veloo, 1993; Van Essen & Hamaker, 1990). Lopez Real and Veloo (1993) report that the request
to draw a sketch improves solution rates. In most studies, however, this improvement does not
occur (Hembree, 1992). Hembree’s meta-analysis showed that the use of graphic representations
in problem solving can be trained. Comparing different instructional methods, training in drawing
diagrams offered the largest improvement in problem solving. However, these positive effects do
not yet occur during primary school age (Hembree, 1992). Accordingly, intervention studies by
Van Essen and Hamaker (1990) showed that fifth graders could benefit from training in
generating graphic representations for problem solving, while first and second graders could
not. Similarly, Hembree (1992) concludes “that earlier grades should focus on problem represen-
tation instead of stressing solutions” (p. 269). Studies show that primary school children often find
it difficult to represent mathematical relationships, preferring instead to illustrate the content of the
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task (Hasemann, 2006; Ott, 2016). When learners generate graphic representations that contain a
great deal of mathematically irrelevant information, this can be problematic because it canmake it
difficult for them to recognize mathematical structures (Presmeg, 1986). To improve children’s
representation skills, an as-yet unexplored approach can be seen in generating graphic represen-
tations, not as instruments for problem solving but as documents for later reflection processes in
class.

3 Research questions

The following research questions will be examined:
Does an intervention in the 3rd grade based on reflective discussions about children’s

graphic representations for word problems

1. Have a positive effect on the attention paid to the key features of graphic representations
(mathematical structure, mathematical matching, degree of abstraction) in the learner-
generated graphic representations?

2. Have a positive effect on the solution rates?

The questions focus on measurable changes based on the children’s documents. Studies
show that generating graphic representations in co-construction leads to learners’
representations becoming less realistic and more focused on mathematical relationships
(Van Dijk et al., 2003a). With regard to problem solving, studies show positive effects
of interventions that encourage reflection on different approaches in problem solving
(Sturm, 2018). Since the intervention in the study presented here combines the gener-
ation of one’s own graphic representation with the reflections on graphic representa-
tions, it is deduced that the intervention evaluated here has a positive effect on the
attention paid to the key features of graphic representations by the 3rd graders. It is
therefore assumed that the students generate mathematically correct, abstract graphic
representations that are appropriate to the problem. Since there is a positive connection
between schematic representation and successful problem solving (Hegarty &
Kozhevnikov, 1999), it is deduced that the intervention evaluated here has a positive
effect on the solution rates.

The following hypotheses will be tested:

H1: After the intervention, children in the intervention group pay more attention to the key
features of graphic representations, i.e.,

(a) The mathematical structure
(b) The mathematical matching
(c) A high degree of abstraction

in their documents than children in the control groups.

H2: Children in the intervention group solve word problems more often correctly after the
intervention than children in the control groups.
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4 Method

4.1 Design

The study is designed with three groups (intervention group and two control groups) and three
waves of measurement (pretest, posttest, follow-up test). A total of nine intervention units were
carried out. The teaching in the intervention group was carried out by the author. In the control
groups, the usual mathematics lessons were continued by the class teachers. The teachers in
control group 1 were additionally given the word problems from the intervention to use them
in their lessons. They received no further training.

4.2 Participants

The study was conducted in the 3rd grade. Two classes from each of three primary schools took
part and formed one of the three groups. All schools are from a suburban location. The participants
from the intervention group comprised 35 children (18 boys, 17 girls). The average age at the first
wave of measurement was 8 years and 4 months (youngest child: 7 years and 5 months; oldest
child: 9 years). Control group 1 consisted of a total of 43 children (21 boys, 22 girls). The average
age was 8 years and 4 months (youngest child: 7 years and 8 months; oldest child: 9 years and
10 months). Control group 2 consisted of a total of 46 children (11 male and 35 female). The
average age was 8 years and 4 months (youngest child: 7 years and 6 months; oldest child:
10 years and 2 months). A total of 33 children in each group took part during all six test days.

4.3 Items

Both the intervention items and the test items were developed as word problems based on
schoolbook tasks according to the curriculum. Main criterion for the development was the
extent to which the formulation of the text suggests the graphic representation of the mathe-
matical structure. Three types can be distinguished (see Table 1): Word problems of type A are
characterized by the fact that the structurally relevant objects can be directly drawn, and their
arrangement is described in the text. In contrast, in word problems of type C, the structurally
relevant objects are not directly drawable by their physical properties. For a graphic represen-
tation, signs for these objects and their arrangement must be invented. For type B tasks, some
but not all structurally relevant objects can be drawn directly.

Another criterion was to develop challenging tasks for the learners through the arithmetic or
semantic structures of the tasks. For example, tasks for comparison situations or linear
equations were developed. An overview of all items used in the intervention and the paper
pencil test can be found in Table 6 in the Appendix.

Table 1 Examples for three types of word problems

Type A Type B Type C

A picture is 20 cm wide and 30 cm
high. It is glued onto a large piece
of paper in such a way that a
15-cm-wide margin remains on all
sides. How wide and how high
must the large paper be?

A spruce grows about 15 cm per
year. In the garden there is an
83 cm high spruce. How old is
it?

In a race, Tina takes 74 s. Lara needs
12 s less than Tina. Pia takes 84 s.
How many seconds does Lara
need? How many seconds does
Pia take longer than Lara?
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4.4 Intervention

In the intervention, reflections (Freudenthal, 1991) should enable learners to develop their compe-
tences in graphic representation. The intervention was divided into two phases, each taking place on
a weekly basis (Ott, 2018). In phase 1, both classes of the intervention group received a letter from
the author informing them of the word problem of the week. Each student was asked to generate a
graphic representation for this givenword problem containing everything that is important for himor
her to understand and solve the word problem. In order for the students to make their graphic
representations as complete as possible (Cox, 1999), the instruction was to generate a graphic
representation that is understandable for others. In case the students were able to solve the problem,
they were also required to note the solution. The students generated their graphic representations on
their own without further assistance during the free-work periods, which took place every
morning in the classes. Each student dropped the document with his or her own graphic represen-
tation into a class mailbox, which was emptied by the author at the end of the week. From these
learner-generated graphic representations, amaximumof three graphic representationswere selected
by the author for phase 2 of the intervention. The selectionwasmade so that the examples differed as
much as possible in the way the drawing was done. Depending on which graphic representations
were to be found in the children’s documents, an attemptwasmade to select examples with different
mathematical structure, mathematical matching, or degree of abstraction.

In phase 2, these selected graphic representations formed the basis of the reflection
discussions with the whole class. Enlarged copies of the selected children’s documents were
attached one after the other to the blackboard. The whole class sat down in front of the
blackboard. The aim of the reflection was to collectively explain the shown graphic represen-
tation and thus to try to understand the point of view of the author of the graphic represen-
tation. The author of the graphic representation was allowed, if he or she so wished, to
comment on his or her graphic representation at the end of the reflection. Otherwise, the
representation remained anonymous. Since the interpretation of the graphic representations is a
challenge for the children, each graphic representation was first examined and analyzed
individually. The reflection process was supported and stimulated by the author, in order to
encourage a change in perspective (Freudenthal, 1991; Schülke, 2013): “What was the child
probably thinking while making the math drawing?…What do you particularly like about the
math drawing? Why?…What do you suppose: Why did the child draw the things in the math
drawing, the relationships between things, and the labels like this?” In the course of reflection,
the students also sometimes wished to improve on the graphic representations and discussed
different possibilities. This was the case, for example, if the graphic representations were
mathematically incomplete. Once all the graphic representations on the blackboard had been
individually reflected in this way one after the other, the children were asked to compare them
with each other and work out similarities and differences. The comparison in turn could relate
to the way the drawing was done, how the mathematical structure was depicted, the mathe-
matical matching or the degree of abstraction. The comparison also promotes a change in
perspective and hence initiates a reflection process (Freudenthal, 1991, Schülke, 2013). The
children also discussed why one or the other graphic representation fits the given word
problem particularly well. In the discussions, they referred to both mathematical and content
aspects of the word problem. Furthermore, they discussed the possibility to see the solution of
the word problem in the graphic representation as well as the importance of the content-related
references in the graphic representations. Some children preferred more abstract graphic
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representations and focused on the mathematical aspects. Others preferred more concrete
graphic representations as the content of the word problem was important to them.

4.5 Paper and pencil test

The same paper and pencil test was performed at each test time. The test consisted of
eight word problems. Three of them are shown in Table 1. The mathematical structures
of six test items are similar to those of the intervention items. Two items show another
mathematical structure. Four test items are formulated similarly to intervention items and
differ only in terms of content, and the other four differ in both respects (see Table 6 in
the Appendix). The instruction was the same as in the intervention. Testing took place on
two successive days, with four test items each day. The tests were carried out by trained
test leaders and the author.

4.6 Analysis

In a preliminary study (Ott, 2016, 2017), an analysis tool for graphic representations for
word problems was developed. The analysis tool makes it possible to clearly assign
each learner-generated graphic representation to a category according to mathematical
structure, mathematical matching, and the degree of abstraction (see Section 2.3). The
good interrater reliability of K = 0.81 (mathematical structure), K = 0.99 (mathematical
matching with regard to the measured values), K = 0.96 (mathematical matching with
regard to the measuring units), K = 0.99 (mathematical matching with regard to the
operations), and K = 0.90 (degree of abstraction) allows this analysis tool to be used in
the study presented here. The objectivity of the evaluation is guaranteed by the
standardized procedure specified in an analysis guideline (Ott, 2016, 2017).

5 Results

The 2780 documents produced by the children were encoded by two raters. The
interrater reliabilities at the three test times varied between K = 0.95 and K = 0.98
and are thus to be regarded as very good. Three graphic representations in Fig. 1
show the development of the graphic representations of a particular student from
pretest (e) via posttest (d) to follow-up test (a). Different qualitative developments
can be seen in Ott (2016, 2020). The focus here is on the quantitative part of the
study. In order to stay conservative, all statistical hypotheses were tested against an
alpha level of 5% (two-tailed). Therefore, the reduced sample (N = 33 in each group)
is used. The criterion of a sample size > 30 in each group, as a prerequisite for
performing a two-way analysis of variance (ANOVA), is thus fulfilled (Bortz &
Schuster, 2010). A factorial ANOVA was conducted for each of the three key features
of graphic representations and for the solution rates to compare the main effects of
time of testing and group and the interaction effect between time of testing and group.
The characteristic values of interest are, if present, coded with 1, or 0 if they are not
present; total values are formed for all eight items in a test time. Table 2 shows the
main and interaction effects.
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5.1 Mathematical structure

In a first step, the representation of the signs for structurally relevant objects and their arrangement is
tested. In a second step, only the representation of the relationships is examined more specifically.
Table 3 shows the development of the mean values of the groups in comparison. Since theMauchly
test proves that sphericity is violated, the Greenhouse-Geisser correction was utilized.

5.1.1 Representation of structurally relevant objects and their relationships

The main effects of time of testing and group are statistically significant at the .05 significance level
(see Table 2). The interaction effect is significant (p< .001) too. The effect size of the interaction
(ηp2= .195) is classified as strong (Cohen, 1988). The pairwise comparisons with the Bonferroni

Table 2 Main effects of time of testing (TZP) and group (G) and interaction effects (TZP × G)

Key feature Factor F-value df p value Partial
eta-squared
(ηp2)

Mathematical structure Structurally relevant objects
and their relationships

TZP 30.020 1.845 < .001 .238
G 6.059 2 .003 .112
TZP × G 11.591 3.690 < .001 .195

Relationships only TZP 94.364 2 < .001 .496
G 11.805 2 < .001 .197
TZP × G 14.870 4 < .001 .237

Mathematical matching Measured value TZP 57.400 2 < .001 .374
G 2.433 2 .093 .048
TZP × G 12.267 4 < .001 .204

Measuring unit TZP 79.441 2 < .001 .453
G 4.423 2 .015 .084
TZP × G 24.353 4 < .001 .337

Operations TZP 82.114 2 < .001 .461
G 11.102 2 < .001 .188
TZP × G 14.556 4 < .001 .233

Degree of abstraction Indicator 1 TZP 28.168 1.779 < .001 .227
G 1.886 2 .157 .038
TZP × G 3.060 3.559 .023 .060

Indicator 2 TZP 13.119 2 < .001 .120
G 0.392 2 .677 .008
TZP × G 0.309 4 .872 .006

Solution rates TZP 41.41 2 < .001 .301
G 1.46 2 .237 .030
TZP × G 1.47 4 .213 .030

Table 3 Mean values and standard deviations with regard to the mathematical structure (N = 33 in each group)

Pretest Posttest Follow-up test

Structurally relevant objects
and their relationships

Intervention group M 4.27 (SD 1.91) M 6.58 (SD 1.09) M 7.39 (SD 0.79)
Control group 1 M 4.85 (SD 2.12) M 4.61 (SD 2.28) M 4.97 (SD 2.37)
Control group 2 M 4.58 (SD 2.02) M 4.88 (SD 2.19) M 6.00 (SD 1.90)

Relationships only Intervention group M 2.58 (SD 1.58) M 5.03 (SD 1.53) M 6.55 (SD 1.06)
Control group 1 M 2.39 (SD 1.52) M 3.36 (SD 1.71) M 3.33 (SD 1.96)
Control group 2 M 2.61 (SD 2.03) M 3.21 (SD 2.06) M 5.00 (SD 2.11)
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correction show no significant differences (ps> .05) at the pretest time. At the posttest time, there
were significant differences between the intervention group and control group 1 (p< .001) and
between the intervention group and control group 2 (p= .002). Significant differences between the
intervention group and control group 1 (p< .001), as well as between the intervention group and
control group 2 (p= .007), are also observed in the follow-up test. The remaining pair comparisons
show no significant differences (ps> .05) (see Fig. 3a).

Conclusively, hypothesis H1(a) can be confirmed. After the intervention, the intervention group
more frequently represents structurally relevant objects and relationships in the documents than the
control groups.

Fig. 3 Group interaction with regard to the structurally relevant objects and their relationships (a) and with
regard to the relationships only (b) (N = 33 each group; **p < .01, ***p < .001)
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5.1.2 Representation of relationships only

Both main effects are statistically significant at the .05 significance level too (see Table 2). The
interaction effect is also significant (p< .001). The effect size of the interaction (ηp2 = .237) is
classified as strong (Cohen, 1988). At the pretest time, pairwise comparisons with the Bonferroni
correction reveal no significant differences (ps > .05). At the posttest time, there are significant
differences between the intervention group and control group 1 (p = .001) and between the
intervention group and control group 2 (p< .001). Significant differences between the intervention
group and control group 1 (p< .001), as well as the intervention group and control group 2
(p= .002), are also found in the follow-up test. At the follow-up test time, a significant difference
occurs between control group 2 and control group 1 (p= .001). The remaining pair comparisons
show no significant differences (ps> .05) (see Fig. 3b). Hypothesis H1(a) can also be confirmed for
the specification on relationships. After the intervention, the intervention group more frequently
represents relationships in the documents than the control groups.

5.2 Mathematical matching

The mathematical matching is tested separately for measured values, measuring units, and
operations. Table 4 shows the development of the mean values of the groups in comparison.
The Mauchly test proves that sphericity is fulfilled.

5.2.1 Measured values

The main effect of time of testing is significant (p < .001) and the main effect of group is not
significant (p = .093) (see Table 2). The interaction effect is significant (p < .001). The effect
size of the interaction (ηp2 = .204) is to be classified as strong (Cohen, 1988). The pairwise
comparisons with the Bonferroni correction do not show significant differences (ps > .05) at
the pretest and posttest time. The follow-up test shows a significant difference between the
intervention group and control group 1 (p < .001) and between the intervention group and
control group 2 (p = .009). There is no significant difference between the two control groups
(p > .05) (see Fig. 4a).

Hypothesis H1(b) can be confirmed for the follow-up test time. Three months after the
intervention, the intervention group more frequently observes the mathematical matching of
the measured values in the documents than the control groups.

Table 4 Mean values and standard deviations with regard to the mathematical matching (N = 33 in each group)

Pretest Posttest Follow-up test

Measured values Intervention group M 1.00 (SD .79) M 2.79 (SD 1.64) M 3.97 (SD 1.38)
Control group 1 M 1.64 (SD 1.48) M 2.00 (SD 1.82) M 2.15 (SD 1.86)
Control group 2 M 1.45 (SD 1.25) M 2.03 (SD 1.61) M 2.73 (SD 1.68)

Measuring units Intervention group M 1.18 (SD 1.21) M 4.00 (SD 2.11) M 6.03 (SD 1.51)
Control group 1 M 2.42 (SD 2.05) M 2.73 (SD 2.28) M 2.82 (SD 2.44)
Control group 2 M 1.82 (SD 1.38) M 2.88 (SD 1.95) M 3.67 (SD 2.16)

Operations Intervention group M 1.52 (SD 1.35) M 3.79 (SD 1.19) M 4.91 (SD 1.63)
Control group 1 M 1.67 (SD 1.45) M 2.12 (SD 1.22) M 2.39 (SD 1.50)
Control group 2 M 1.58 (SD 1.44) M 2.12 (SD 1.75) M 3.39 (SD 1.89)
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Fig. 4 Group interaction with regard to the appropriate measured values (a), the appropriate measuring units (b)
and the appropriate operations (c) (N = 33 each group; *p < .05, **p < .01, ***p < .001)
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5.2.2 Measuring units

Both main effects are statistically significant at the .05 significance level (see Table 2). The
interaction effect is significant (p< .001) too. The effect size of the interaction (ηp2 = .337) is to be
classified as strong (Cohen, 1988). The pairwise comparisons with the Bonferroni correction reveal
a significant difference between the intervention group and control group 1 at the pretest time
(p= .006). The documents of the children in the intervention group have the lowest values for the
matching of measuring units. There is also a significant difference between the intervention group
and control group 1 at the posttest time (p= .049). The disadvantage for the intervention group
observed during the pretest turns into an advantage at the posttest time. The follow-up test reveals
significant differences between the intervention group and control group 1 (p < .001) and between
the intervention group and control group 2 (p< .001). The remaining pair comparisons show no
significant differences (ps> .05) (see Fig. 4b). Hypothesis H1(b) can be confirmed for the follow-up
test time. Three months after the intervention, the intervention group more frequently observes the
mathematical matching of the measuring units in the documents than the control groups.

5.2.3 Operations

Regarding the operations, bothmain effects are statistically significant at the .05 significance level (see
Table 2). The interaction effect is significant (p< .001) too. The effect size of the interaction (ηp2=
.233) is classified as strong (Cohen, 1988). The pairwise comparisons with the Bonferroni correction
reveal significant differences for the posttest time between the intervention group and both control
groups (ps< .001). There are also significant differences between the intervention group and control
group 1 (p< .001) and between the intervention group and control group 2 (p= .001) at the follow-up
test time. The remaining pair comparisons show no significant differences (ps> .05) (see Fig. 4c).
Hypothesis H1(b) can be confirmed. After the intervention, the intervention group more frequently
observes the mathematical matching of the operations in the documents than the control groups.

5.3 Degree of abstraction

The two indicators of the degree of abstraction are tested individually. Table 5 shows the develop-
ment of the means of the groups in comparison. Since the Mauchly test proves that sphericity is
violated, the Greenhouse-Geisser correction was utilized.

5.3.1 Indicator 1

Themain effect of testing time is significant (p< .001) and themain effect of group is not significant
(p= .157). The interaction effect is significant (p= .023) (see Table 2). The effect size of the
interaction (ηp2= .060) is to be classified as moderate (Cohen, 1988). The pairwise comparisons

Table 5 Mean values and standard deviations with regard to the degree of abstraction (N = 33 in each group)

Pretest Posttest Follow-up test

Indicator 1
(Focus on the structurally

relevant objects)

Intervention group M 2.85 (SD 1.66) M 4.39 (SD 1.30) M 4.88 (SD 1.08)
Control group 1 M 3.03 (SD 1.74) M 3.39 (SD 1.98) M 3.82 (SD 1.98)
Control group 2 M 3.21 (SD 1.64) M 3.58 (SD 1.82) M 4.58 (SD 1.86)

Indicator 2
(Focus on their mathematically

relevant qualities)

Intervention group M 2.00 (SD 1.54) M 2.73 (SD 1.46) M 2.94 (SD 1.17)
Control group 1 M 1.91 (SD 1.42) M 2.30 (SD 1.49) M 2.64 (SD 1.56)
Control group 2 M 1.88 (SD 1.58) M 2.67 (SD 1.95) M 2.70 (SD 1.94)

Learner-generated graphic representations for word problems: an... 105



with the Bonferroni correction do not show significant differences (ps> .05) at the pretest and
posttest times. The follow-up test time shows a significant difference between the intervention group
and control group 1 (p= .036). The remaining pair comparisons at the follow-up point show no
significant differences (ps> .05). Hypothesis H1(c) has to be partially rejected for indicator 1. After
the intervention, the intervention group does not more frequently focus on the structurally objects in
the graphic representations compared with the control groups, with the exception of control group
1 at the follow-up test.

5.3.2 Indicator 2

All effects are not statistically significant at the 0.5 significance level, except for the main effect of
testingtime(seeTable2).HypothesisH1(c)has toberejectedfor indicator2.After theintervention, the
intervention group does not more frequently focus on the mathematically relevant qualities of the
structurally relevant objects comparedwith the control groups.Descriptive results suggest that it is the
items that are decisive for the degree of abstraction, but not themathematical structure (Ott, 2016).

5.4 Solution rates

The Mauchly test proves that sphericity is fulfilled. All effects are not statistically significant at
the .05 significance level, except for the main effect of testing time (see Table 2). Hypothesis
H2 has to be rejected. The intervention group does not correctly solve word problems more
often after the intervention than the control groups.

Descriptive results (Ott, 2016) show that in the intervention group, the continuous increase in
correct solutions is accompanied by a decrease in the proportion of false solutions and in the
proportion of documents inwhich no solution is specified. This picture does not appear in the control
groups.

6 Discussion

6.1 Summary of the results

The results show a differentiated picture with regard to the key features of graphic represen-
tations. Since the intervention group did not experience any other support in problem solving
or graphic representation than the intervention itself during the period of the study, the results
likely suggest that the findings are a result of the intervention.

6.1.1 Mathematical structure and mathematical matching

At the time of the pretest, the mean values for the representation of mathematical relationships in all
threegroupsarelow.Thisfindingconfirmsearlierobservations(Hasemann,2006;Ott,2016).Afterthe
intervention, the interventiongroupmoreoftengeneratesobject-relatedand, aboveall,morediagram-
matic graphic representations. The findings on mathematical matching with regard to the operations
show that the interventiongroup after the interventionnot onlymore frequently representsmathemat-
ical relationships to a noteworthy extent than the control groups but also pays significantly more
attention to mathematical matching concerning the operations given in the word problems. The
learners also pay more attention to the depiction of the given measured values and measuring units.
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Here, too, they differ significantly from the control groups. Since the interaction effect is significant,
thesedevelopments canbeattributed to the intervention.Thewordproblemsalonecannotbe regarded
as decisive for the development, due to the significant difference to control group 1. The level of the
interaction effect shows that the differences between the groups are also practically significant. Since
the development does not stop after the intervention, it can be regarded as sustainable.

These findings are in line with those of Van Essen and Hamaker (1990), who report that learner-
generated drawings are richer and more oriented towards mathematical relationships after a short
period of training. In the study presented here, the richness is reflected in an increased representation
of the measured values and measuring units. These results also complement findings by Van Dijk
et al. (2003b): a combination of the self-generation of graphic representations and processes of
reflection on them in class may promote the graphic representation of mathematical structures with
mathematical matching to the given word problem.

6.1.2 Degree of abstraction

Regarding the degree of abstraction, the findings do not meet expectations. The intervention group
does not pay attention to a higher level of abstraction after the intervention than the control groups. A
low degree of abstraction is a typical way of drawing among children (Sherin, 2000). However, the
result is in contrast with the findings of other studies (Lopez Real & Veloo, 1993; Van Dijk et al.,
2003a; Van Essen&Hamaker, 1990) in which the graphic representations becomemore formalized
and schematic. The results must be interpreted against the background of the intervention: the
children were asked to record everything of importance to them for solving the word problem. The
graphic representation should be understandable for someone else. When representations are made
for others, they tend to be richer (Cox, 1999). The children seem to consider realistic drawings to be
more understandable for others. This complements the findings of Pantziara et al. (2009) who found
that learners tried to transform schematic representations into pictorial representations to interpret
them. No statement can be made concerning the degree of abstraction if the graphic representations
had been created as heuristics.

However, with a relatively constant degree of abstraction, the children in the intervention group
paid more attention to the mathematical structure and matching after the intervention. It can be
interpreted in such a way that children do not neglect the content of a word problem but establish
more flexible mathematical relationships. The results suggest that the development of the degree of
abstraction is independent of the representation of the mathematical structure and matching. This
should be examined in further investigations. Nevertheless, it must be taken into account that
mathematically irrelevant information canmake it difficult to recognize mathematical structures and
therefore poses an obstacle for problem solving (Presmeg, 1986). This could provide an explanation
of the results with regard to the solution rates.

6.1.3 Solution rates

The intervention group does not correctly solve the word problems significantly more often than the
control groups. This is in contrast with the results of VanDijk et al. (2003a), in whose study designing
models using a co-construction approach had a positive effect. However, in the study presented here,
the graphic representationswere generated as documents for others and not as instruments. In addition,
in the test processing and in the intervention, the focus was not on problem solving. This study shows
that generating a mathematically matching diagrammatic representation does not guarantee that the
problem will be solved correctly. This is in line with results of Van Essen and Hamaker (1990) and
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could be interpreted in that the children regard the graphic representation and the task solution as
independent from each other. One reason for this can be seen in the instruction, which does not use
graphic representations as a heuristic. A further cause can be seen in the intervention, in which the
focuswas not on the connection between graphic representation and correct solutions. Further research
with a modified instruction, which includes problem solving to a greater extent, is needed. According
to Hembree (1992), another reason could be the children’s age: positive effects on problem solving
through interventions in graphic representation do not yet occur at primary school age.

6.2 Limitations

No study comes without limitations. First, the sample of the study is not globally representative, but
can be regarded as characteristically representative with regard to graphic representations in
mathematics lessons (Bortz & Döring, 2006). Second, for the development of representation skills,
the time frame set for practical reasons with nine intervention units is relatively short. The multi-
group design makes it possible to attribute effects to the intervention and to control for possible
disturbance variables, such as age-related development, habituation to the test, the influence of the
intervention tasks themselves, and class composition. Nevertheless, the possibility of interference
cannot be avoided in a study under almost real conditions. The development of control group 1
could be influenced by such effects. To minimize external influences, the intervention group was
taught by the author. It is known that studies of this kind show slightly higher effects (De Boer,
Donker, & Van der Werf, 2014). In the future, an independent replication should show whether the
same effects occur when teachers carry out the intervention themselves. Here, a follow-up test was
carried out to analyze long-term effects. In addition, it would make sense to examine the children’s
class discussions more closely for gaining a better understanding of the development processes. The
qualitative part of the study presented here provides some information in this regard (Ott, 2016,
2020). Furthermore, in the results, ceiling effects are partly observable, as also expressed in the
change to the scatter over time. This is due to the fact that the test does not differentiate any further at
the upper end. Finally, no statement can be made as to the extent to which the children use graphic
representations as heuristics for problem solving.

7 Conclusion

In the intervention presented here, learners of the 3rd grade first generated their own graphic
representations for a given word problem as documents for others and then reflected on some
of these learner-generated graphic representations in class. The aim of the reflection was to
collectively explain the shown graphic representation and thus to try to understand the point
of view of the author of the graphic representation. The results suggest that learners are
enabled by this intervention to more frequently pay attention to a mathematically appropriate
structure in their graphic representations for word problems. The results show that this effect
is also sustainable. Even if the solution rates did not improve to a statistically significant
extent, the basis for the use of graphic representations as an instrument for problem solving
can still be laid. All in all, teaching that combines the self-generation of graphic representa-
tions and reflection processes on them in class seems to be positive for the development of
graphic representation competences.

Funding Open access funding provided by St.Gallen University of Teacher Education.
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