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Abstract
The study presented in this article takes a closer look at how French and German high-
school students deal with a mathematical modeling problem, what blockages they
encounter and how differences in the modeling processes between students from both
nations can be explained by differences between the teaching and learning of mathemat-
ical modeling in France and Germany. To better understand these differences, firstly, a
brief overview is provided on the historical development of mathematics education in
both countries, with a focus on mathematical modeling, followed by a qualitative
empirical study in both France and Germany. Two main differences can be identified:
students’ handling of the real-world situation and their striving for accuracy. Possible
reasons for these differences are discussed in relation to national teaching traditions.
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1 Introduction

A discussion on the integration of applications and modeling in mathematics education has
taken place since the beginning of the twentieth century (see, e.g., Klein, 1907, Kühnel, 1916).
Mathematical modeling is now part of many mathematics curricula all over the world (c.f.
KMK, 2003, BOEN, 2015, CCSS-M, 2010). Nevertheless, each country has its own historical
sociocultural background that has shaped their respective mathematics education at school.
Even though the interest in international comparisons of different aspects of mathematics
teaching has grown substantially in the last decades, there are few findings comparing the
effects of different educational traditions in different European countries on specific mathe-
matical activities (for proof, e.g., Knipping, 2003), and even fewer specifically on mathemat-
ical modeling.
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The study presented in this article takes a closer look at how high-school students from two
different countries, Germany and France, deal with a particular mathematical modeling
problem and the difficulties they encounter. As “in-depth, small-scale international comparative
studies can provide unique opportunities for us to understand students’mathematical thinking”
(Cai, Mok, Reddy, & Stacey, 2017, p. 96), comparing of students from two nations with
different traditions in teaching mathematics, and especially mathematics related to everyday
situations, can help in generating hypotheses aimed at enhancing our understanding of why
mathematical modeling is often so difficult for students. Because the study presented in this
article is not based on representative data, but is collected in just one school in each country, the
aim cannot be to make general statements about both countries. Nonetheless, an analysis of the
relationship between students’ strategies and difficulties when working on a modeling problem,
and different national traditions and perspectives on mathematics, can provide insight into the
complex interplay between mathematics education and students’ cognitive processes. It may
also help in questioning the role and value of learning aids, which were constructed in and for a
specific educational context. Germany and France were chosen as examples of different
traditions in teaching mathematics; on the one hand, the German teaching tradition in which
mathematics is often presented and worked on with the help of contextualized problems and on
the other hand the French tradition of valuing highly the strictness and precision of (pure)
mathematics. Of course, these traditions are constantly being reshaped or reformed and are
certainly not valid for every didactical situation in the country, but they do clearly influence how
mathematics and specific mathematical problems are perceived and tackled.

2 Theoretical background

2.1 Mathematical modeling

Mathematical modeling is a topic of growing international interest (Schukajlow, Kaiser &
Stillmann, 2018). Therefore, it is not surprising that there are numerous different approaches to
this field, each of them stressing different aspects (for a classification, see Kaiser & Sriraman,
2006). The term modeling is used in this article in the following sense: “mathematical
modelling always originates from a real-life problem, which is then described by a mathemat-
ical model and solved using this model. The entire process is then called modelling” (Greefrath
& Vorhölter, 2016, p. 8).

The crucial aspect of mathematical modeling is thus the transition between the extra-
mathematical world and mathematics1 in order to solve a real-life problem. From this
perspective, modeling differs from applying mathematics:

“With applications the direction (mathematics → reality) is the focus. ‘Where can I use
this particular piece of mathematical knowledge?’ The model is already learnt and built.
With mathematical modeling the reverse direction (reality→ mathematics) becomes the
focus. ‘Where can I find some mathematics to help me with this problem?’ The model
has to be built through idealising, specifying and mathematising the real-world situa-
tion”. (Stillman, 2012, p. 2)

1 The distinction between mathematics and the rest of the world, sometimes also called the “real world”, dates
back to Pollak’s work in 1977, where he distinguished different kinds of applications.
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In other words, a mathematical modeling problem is not determined by its mathematical
content; rather, the mathematical content must be chosen in accordance with the real-world
problem. This is of course a challenge that requires not only a sound understanding of
mathematical concepts but also metacognition (Stillman, 2012) and common-sense knowledge
of the real world. This contrasts with so-called dressed-up word problems, where a mathe-
matical content is merely embellished by a context:

“Students just have to “undress” the problem by picking out the simplified real model,
which is already provided in the situational description. Hence, there [note: in dressed-
up word problems] is no need to structure and idealize the given information or to
seriously interpret and validate the mathematical results according to the real-world
situation. Further, dressed up word problems do not contain superfluous or missing
information. Hence, learners are not required to separate important from unimportant
information or to make assumptions about missing information, requirements that are
considered to be demanding characteristics of modelling problems”. (Krawitz &
Schukajlow, 2018)

In this present article, modeling is considered from a cognitive perspective (Borromeo Ferri,
2006). Greefrath and Vorhölter (2016) explain that this approach is seen as a kind of meta-
perspective, because it is about analysing and understanding the cognitive procedures that take
place in modeling problems. Not only are the different steps of problem-solving analysed, but
also the students’ cognitive processes. In this perspective, different descriptive models of
modeling processes are developed, such as individual modeling paths that can be contrasted
with the idealized modeling cycle.

In this article, the descriptive model of a modeling process, developed by Blum and
Leiß (2007, see Fig. 1), is used as a basis for characterizing students’ processes. This
modeling cycle summarizes modeling processes in an idealized way as follows: Any
modeling process starts by understanding a real situation and constructing a mental
representation of the problem, the so-called situation model (Leiß, Schukajlow, Blum,
Messner, & Pekrun, 2010). This individual understanding of the situation must then be
structured and simplified. This includes separating relevant from irrelevant data,
searching for missing data and making assumptions. This process leads to the construc-
tion of a real model2 which can be translated into a mathematical one, consisting of
mathematical objects and language. With the help of this model and mathematical
methods, mathematical results can be found, which must be interpreted in the given
real-world context. Before a result can be presented, it must be validated; both the
simplifications and assumptions, as well as the model and the result, must be checked
for their plausibility. If the result does not seem to be satisfactory, the cycle can be run
through a second time. This description of a modeling process is idealized, and research
has shown that students do not strictly follow this cycle (Borromeo Ferri, 2006).
Therefore, it is possible to contrast this idealized modeling process with students’
individual modeling routes (Borromeo Ferri, 2010a, b), which are actual sequences of
steps students undertake when solving a modeling problem. The reconstructed modeling
routes can be visualized against the background of the idealized modelling cycle (ibid).

2 This is called a real model, because it is still linked to the realia, the object of everyday life, whereas a
conventional mathematical model is purely mathematical.
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2.2 Mathematical modeling in German and French mathematics education

Tounderstand the current role ofmodeling inmathematics education in both countries, it is important
to understand how the integration of real-world problems has been shaped historically. InGermany at
the beginning of the twentieth century, mathematics education in the Gymnasium3 was “dominated
by elementary teaching goals, focussing on classical, Euclidean geometry and enhancing the
formation of logical thinking as a key function” (Gispert & Schubring, 2011, p. 75). Klein (1907)
promoted amore utilitarian principle,whichwas intended to “enhance our capability for dealingwith
real life through amathematical way of thinking” (Klein, 1907, p. 209, author translation). In France
at that time, a similar debate about cultural versus utilitarian values of mathematics and science took
place. Borel demanded as follows: “We have to introduce more life and a greater sense of reality to
our mathematics education” (Borel 1904, p. 436 cited as in Gispert & Schubring, 2011). However,
Borel himself posed the question if this introduction would diminish the great educational value of
secondary instruction (Borel 1904, cited as in Gispert & Schubring, 2011). This fear of neglecting
formal mathematics limited the implementation of the new program in France.

In the 1960s, radical changes in mathematics education were made in Germany, following
the structuralist spirit of the epoch (Gispert & Schubring, 2011). Since this “New Maths”
movement was decided on without any consultation with mathematics educators, teachers and
educators were completely unprepared. Hence, it was the textbook industry that promoted the
implementation of reform decisions and “published numerous, but poor textbooks which

3 The development at vocational schools (former Volksschulen) differed significantly from the Gymnasium that
focused strongly on formal mathematics. Volksschulen aimed at student preparation for the upcoming aspects of
their life. However, due to reform pedagogy movements, there were also changes made, for example following
Kühnle’s propositions for making mathematics teaching more objective and interdisciplinary and arithmetics
more useful and realistic. For more information, see Greefrath & Vorhölter (2016). In this article, the Gymnasium
is focused on, as it is comparable to the French lycée.

Fig. 1 Modeling cycle following Blum and Leiß (2007) (illustration as used in the analysis)
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grossly exaggerated the importance of the set language” (Gispert & Schubring, 2011, p. 95).
Greefrath and Vorhölter (2016) stress that practical applications did not completely vanish
during this episode but were strongly influenced by the movement. In 1975, as a consequence
of public resistance against the NewMaths curriculum, syllabi were changed, and the so-called
New Practical Arithmetic evolved at all types of German schools. This approach aimed to
integrateauthentic topics and long-term projects that were supposed to be independent of the
current mathematical topic and to offer a variety of solutions. This was the beginning of the
current modeling debate (Blum, 1985; Kaiser-Meßmer, 1986).

In France, the structuralist movement was not restricted to mathematics but concerned almost
all school subjects. A logical presentation of different mathematical notions was promoted to
eliminate everything that relied on intuition (Gispert & Schubring, 2011). Concerning real-world
applications, students were encouraged “to learn deductive reasoningmethodically and to clearly
differentiate the concrete world from its mathematical model” (ibid., p. 96). Even in 1975, when
a new reform occurred, some orientations and choices of the New Maths movement did not
disappear (ibid.). Remnants of this movement are still evident in current French mathematics
education, for example in the high value placed on rigour, especially in the process of proving
(Gueudet, Bueono-Ravi, Modeste & Trouche, 2017).

At the beginning of the twenty-first century, the German educational system underwent
another reform that aimed to change the scientific orientation of mathematics education, which
had always emphasized rules and algorithms and highly valued formal proofs in German
classrooms (Henn & Kaiser, 2001; Kaiser, 2002). In 2003, Germany introduced national
standards for mathematics education. All German federal states were to orient their school
programmes towards those standards in which general mathematics competences and content-
related fundamental ideas are formulated (KMK, 2003). These competences include mathe-
matical modeling (KMK, 2003) with its different steps.

Despite the intensified interest in applications and modeling since the 1980s, modeling
remains difficult for both German teachers and students (Blum, 2007). Especially the promotion
of modeling competences is at the core of the research debate, showing clearly that modeling
has to be learnt by actually doing it and that the mere inclusion of artificial and arbitrary contexts
is not sufficient for developing modelling competence (Blum, 2011). However, applications in
the classroom still occur mostly in the form of dressed-up word problems (Blum, 2015).

In France, in the 1990s, French mathematics education was characterized by an “encyclo-
paedic” (McLean, 1990), a “traditional, formal didactic style of teaching” and a “passive,
authority-dependent style of learning among pupils” (Broadfoot, 1999). In 2002, a commission
published a report in which they emphasized the need to connect mathematics teaching with
both rigour and imagination (Kahane, 2002). This report stressed the importance of reasoning
and proof and is still very influential regarding the aims and content of mathematical teaching
(Gueudet, Bueno-Ravel, Modeste, & Trouche, 2017). One of the central aims was to bring
school mathematics and “live” mathematics closer, for example in mathematics laboratories,
emphasizing the experimental aspect of mathematics (Kahane, 2002). Pepin (2002) notes that
the traditional cours magistral (lecture type lessons) has indeed been replaced by a more
dynamic view of mathematics and a more active way of constructing mathematical knowledge.

In 2015, a new curriculum was introduced in France which is organized by a set of
knowledge, skills and attitudes that all students should acquire during compulsory education.
Among these competences is mathematical modeling, defined as “translating a real situation
into mathematical language” (BOEN, 2015) and “using mathematics to solve some problems
derived from every day-situations” (BOEN, 2015). However, this curriculum does not refer to
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the different steps of the modeling cycle. This may be due to a different debate in the French
mathematics education community. The French community of mathematics didactics is
grounded on the fundamental idea that “each teaching and learning analysis starts from the
mathematical content of what is to be learnt” (Trouche, 2017, p. 242). This contrasts with the
German modeling perspective, where the mathematical content is more of a tool for solving an
authentic problem than the ultimate aim of an exercise.

The above historical overview has revealed some similarities in the development of
mathematics education in France and Germany. However, especially after the New Math
movement, the role of applications and modeling in both countries began to differ significant-
ly. While in France, values like rigour and precision are still very important, although now
often in combination with inquiry-based learning (Grangeat, 2011). Germany continues to
have a strong debate on the use of realistic applications and modeling problems in everyday
teaching and in examinations (Greefrath, 2011).

3 Research questions

The above explanations have shown that mathematical modeling is now part of mathematics
curricula both in France and Germany. However, both countries have a different tradition of
classroom culture concerning the use of real-world problems. Since student resource choices
for answering questions are influenced by their desire for precision, or contentment with
estimates, arising from what is emphasized, and the teaching approach in the different cultures
(Molyneux-Hodgsons, Rojano, Sutherland, & Ursini, 811,999, p. 175), it is probable that the
different traditions in both countries are related to differences concerning students’ modelling
processes, for example the choice of models, handling of inaccuracy or of superfluous data.
This study attempts to answer the following research questions:

(1) What do the individual modeling routes of German and French students look like, and
what blockages do they encounter?

(2) Are there recurring differences between the modeling routes of the German and French
students or the blockages they encounter?

Additionally, these differences will be discussed against the background of the different
teaching traditions concerning the integration of real-world contexts in the two countries.
Moyer, Robison and Cai (2018) have already shown that students’ attitudes are likely to be
related to the use of different curricula; this could also be valid for students’ blockages in a
modeling process because different curricula and teaching traditions also imply different
opportunities to learn for the students.

4 Methods

To answer these questions, a qualitative study was conducted in France and in Germany, in
which several types of information were gathered. Firstly, regular maths lessons for three
classes of one school in each country (from the French lycée or the German Gymnasium) were
videotaped. Secondly, individual modeling processes of 18 French and 12 German students
from these classes were filmed in a laboratory-like setting, using think-aloud methods, and
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thirdly, the respective teachers were interviewed about their mathematical views and their
knowledge of or attitudes towards mathematical modeling. These studies were accompanied
by an analysis of the respective national curricula and a choice of mathematics textbooks. This
article focuses on a comparison of the individual modeling processes and of the difficulties that
students encountered.

The sample was drawn from grade 10 to 12 students who had already been schooled in the
respective systems for a relatively long period. Students in a higher grade already have a larger
set of mathematical tools at their disposal to activate for their modeling processes than students
of a younger age. The schools that volunteered to participate were both located in a compa-
rable socio-economic surrounding in Nantes (France) and near Münster (Germany).

In both schools, the data were collected similarly. The students who volunteered to
participate were seated in a separate room, alone with the researcher whom they already
knew from previous observations. Students were introduced to the think-aloud method by
watching a short video of the researcher solving a sudoku puzzle where she articulated
every thought. Afterwards, the students were asked to continue the same puzzle, also
thinking out loud in their native language, to practice the methods. Directly after this
exercise, they were given the actual modeling task and asked to work on the problem and
again to express every thought out loud. The researcher was seated next to the respective
student and listened to the propositions without interfering. She only intervened if the
student seemed to be completely at a standstill. In those cases, she gave the student some
prepared hints. Even though these hints were constructed as strategic aids in relation to the
modelling cycle, they made no actual references to it, as the cycle was not known to the
students. When students stated that they had completed their work, they were asked if they
were satisfied with their result, which sometimes led to a continuation of the modelling
process. In the last 5 min of each of the 45-min sessions, a short interview with the
students took place about their own perceptions of their modelling process (e.g., “Do you
find the problem difficult?”, “Why or Why not?” or “Do you know such problems from
school?”).

The French and German transcriptions of these studies were evaluated following the
principles of qualitative content analysis (Mayring & Fenzl, 2014) using the modeling
cycle by Blum and Leiß (2007) as analytical tool to reconstruct the individual modeling
processes. This method had already been successfully used by several scholars (Borromeo
Ferri, 2010a, b; Schukajlow, 2006). Student processes were divided into sequences
corresponding to the phases of the modeling cycle (e.g., understanding as construction
of a situation model, structuring and simplifying as construction of a real model, etc.).
These sequences were coded using the definition of modeling activities by Maaß (2006)
(see Table 1). About 25% of the transcripts were coded by a second, independent rater. The
inter-rater reliability (Cohen’s Kappa) was with κ = 0.82 in a satisfactory range.

These analyses permitted an in-depth-reconstruction of the students’ individual
modeling routes, as well as an identification of students’ blockages and deviations in
comparison to the idealized modeling cycle. According to the framework by Galbraith
and Stillman (2006), a blockage was identified when a student encountered an obstacle
in his solution process, for example when he or she did not know how to proceed, when
he or she did not construct an adequate model/result and thus had to go back to a
previous step of the modeling cycle. This framework was chosen as it had already been
employed in previous studies (Stillman, Brown, & Galbraith, 2010; Schaap, Vos, &
Goedhart, 2011). Nevertheless, it should be kept in mind that it is usual not to follow the
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modeling cycle strictly and that good modelers may also jump back and forth within it.
Therefore, the number of deviations cannot be interpreted as an indicator of student
abilities, but the nature and reasons for such deviations do yield insight into students’
thought processes. To answer the research questions, the modeling processes of students
from one country were compared to each other; frequent blockages were identified and
compared between the two countries.

Students worked on an adapted version of the lighthouse task (Borromeo Ferri, 2010a,
b) (see Fig. 2). Students are asked to find the distance between a ship and a lighthouse,
when the ship observes the light for the first time. The task contains both superfluous
information, like the lighthouse being originally planned to measure 50 m, but also
missing information, like the radius of the earth.

Table 1 Coding categories following Maaß (2006)

Category The student is…

Understanding …reading or repeating the problem; building a mental representation of the situation
without knowingly simplifying it

Structuring and
simplifying

…making assumptions for the problem and simplifying the situation; recognizing
quantities that influence the situation, naming them and identifying key variables;
constructing relations between the variables or looking for available information or
differentiating between relevant and irrelevant information

Mathematizing …mathematizing relevant quantities and their relations; choosing appropriate mathematical
notations and representing situations graphically

Working
mathematically

…using heuristic strategies such as a division of the problem into part problems,
establishing relations to similar or analogous problems, rephrasing the problem, viewing
the problem in a different form, varying the quantities or the available data, etc.; using
mathematical knowledge to solve the problem

Interpreting …interpreting mathematical results in extra-mathematical contexts; viewing solutions to a
problem by using appropriate mathematical language and/or communicating about the
solutions

Validating …critically checking and reflecting on solutions found; reviewing some parts of the model
or again going through the modeling process, if solutions do not fit the situation;
reflecting on other ways of solving the problem or whether solutions can be developed
differently; generally questioning the model

Fig. 2 The Lighthouse Task (an adaptation of the task used in Borromeo Ferri 2010a, b)
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The task can be solved by different means, for example by a simple application of the
Pythagorean theorem, if one neglects the height of the ship and approximates the curved
distance between the ship and the lighthouse by a straight line, or by trigonometric calcula-
tions, if one wants to calculate the length of the curved distance (see the appendix). This task
was chosen, as it had already been tested in empirical studies (Borromeo Ferri, 2006, 2010a,
b), can be solved by a broad range of models and requires considerations both on the real-
world and on the mathematical side of the modeling cycle.

5 Findings

The analysis revealed both similarities and differences between modeling processes by
German and French students. First, it was evident that none of the students were familiar
with this kind of open modeling problem, which required a deep understanding of the
real-world situation. Nevertheless, the different episodes of their working processes
could be categorized according to the modeling cycle of Blum and Leiß (2007)
(see Table 1). For the students, one of the most difficult steps in finding a solution
was to acknowledge the essential role of the earth’s curvature. This blockage could be
observed in both countries. However, some aspects could be found that differed system-
atically between both countries. Table 2 gives an overview of some blockages that
occurred in the students’ modeling processes. Even though these numbers should not
be overinterpreted due to the small, non-representative study, it is noticeable that the
German students in the sample often reflected upon the real-world situation rather
superficially and quickly tried to find a mathematical representation. By contrast, the
French students were hindered more by the underdetermination of the task and
commented on their dissatisfaction with the only approximate result.

As it is necessary for international comparative studies to provide in-depth evidence of
student thinking and reasoning (Cai et al., 2017), the qualitative analysis of modeling
processes from a German and a French student will be presented below. Even though they
are of course just individual examples, these students were chosen because they demonstrate
typical aspects that could be found in several student processes from the same country.

Table 2 Blockages and models in the modeling processes

Blockages in the modeling process Germany
(n = 12)

France
(n = 18)

Difficulties with underdetermination of the task 25% 44%
Difficulties with overdetermination of the task 25% 22%
Dissatisfaction with imprecision 0% 22%
Wrong representation of the situation (top view) 16% 33%
Difficulties with integrating the earth’s curvature in the model 33% 5%
Superficial consideration of the real-world situation 33% 0%
False assumptions 8% 28%
Difficulties in the calculation 33% 16%

Mathematical models used in the modeling process Germany
(n = 12)

France
(n = 18)

Mathematical model: Pythagorean theorem 75% 50%
Mathematical model: sine/cosine 25% 50%
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5.1 Timothé

Timothé is a French student from Seconde (approx. Grade 10). He starts his modeling process by
trying to construct a real model but struggleswith the overdetermination of the task (like 22%of the
French students). He has difficulties understanding the task and is unsure which information might
be helpful. He misunderstands the text, thinking that the lighthouse was originally planned to shine
up to 3 km (which is the distance to the coast), but that now, with only 31m height instead of 50m,
this distance has shortened (see Fig. 3a). When he understands which distance is required, his
spontaneous reaction is that “You can’t know that, because you don’t know the light’s interval.”He
explains that he would like to solve the task with a scale conversion, but that some information is
missing. His blockage no longer originates in the overdetermination of the task but in its
underdetermination. He states several times: “I can’t solve it, because there is informationmissing.”
This reaction could be found in 44% of the French cases. The researcher encourages Timothé to
change perspective and asks, “If you imagine you are standing on top of the lighthouse, how far
can you see the ships?”Timothé answers, “Up to where they pass… for example, here, that’s the
globe, there is the lighthouse, a bit big, and the boat, and here it becomes smaller, here you see it
much smaller and here you don’t see it anymore. But you can’t know it, you don’t know the
horizon!” (see Fig. 3b). At this point, Timothé’s blockages change from understanding the
problem and constructing a real model to finding a mathematical model to calculate the distance
to the horizon. He calculates the earth’s circumference and starts looking for the angle between
the lighthouse and the boat (see Fig. 3c). First, he proposes a sketch to scale but quickly realizes
that the differences in length between the radius and the lighthouse are too big for this approach.
He draws another sketch of the situation (see Fig. 3c) and comes up with the idea of using an
additional triangle in his model. At this point, Timothé is determined to calculate the length of
the arc. However, since he does not remember trigonometric formulas, he contents himself with
calculating the length of the ray of light (x in Fig. 3c). The last phase of his modeling process
focuses on finding and criticizing the result. Timothé finds a length of 19.8 km, but he is, like
22% of the French students, not satisfied with this solution: “Yes, 19,8 km, except that it is not
the solution, it’s an exception, if the ray of light is there and given the fact that it is lower here…
((points at the curvature of the globe)).” Timothé knows he has not found an exact result but just
an approximation. However, Timothé is not able to pursue this approach further.

Figure 4 summarizes Timothé’s individual modeling route. It is evident that most leaps forwards
and backwards occur between the construction of a real and a mathematical model. There are two
massive interventions by the interviewer (arrows 5 and 7) where Timothé is asked to rethink the

Fig. 3 Timothé’s sketches: a the smaller lighthouse does not shine 3 km. b The ship disappears behind the
horizon. c Identification of mathematical objects in the real model
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situation and to revise his situation model. The “X” between arrows 14 and 15 shows his failure in
working with his first mathematical model (calculation of the angle at the centre of the earth).

5.2 Marie

Timothé’s modeling process can be compared to the work of Marie, a German grade 12 student.
After reading the exercise, she begins by drawing a sketch of the situation (Fig. 5a) but quickly
tries to transform the given task into a mathematical problem by reducing the situation to a simple
triangle (Fig. 5b). This approach is rather typical, as it can be found in 33% of the German cases.

Marie proposes to use the Pythagorean theorem but remarks that there are two (unknown)
variables. Consequently, she is not able to use her proposed model. When she is asked what
limits the maximum distance of the light, Marie names the distance between ship and
lighthouse x and concludes: “Theoretically, this could be as big as possible. That would be
the circumference, as big as possible, ‘till it comes back, once around the world.” She
expresses this thought in a formalized way and notes “x→ earth”. She even illustrates the

Fig. 5 Marie’s sketches: a Marie’s real-model. b Marie’s first attempt at a mathematical model

Fig. 4 Timothé’s route through the modeling cycle. [Dotted arrows: Interviewer’s intervention]
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assumption that the light shines around the globe in another sketch (Fig. 6a) and explains
“theoretically, that would be the longest, that will not be the case, because light does not shine
so far, but if you assume that it does… .” Such a false assumption is not typical of the German
students in the sample, occurring only in 8% of the cases. More typically, German students
tried to mathematize the situation overhastily and did not bother to even make assumptions.

Only when Marie is asked if the lighthouse can be seen from the other side of the world, she
answers “No, that is on the other side, if you’ve got a sphere, you don’t see what’s on the other
side, you can’t look through.” When asked what restricts the maximum distance, Marie
explains “That depends… first you have to start from the idea that the weather is good, but
since this is a modeling task and in maths it is always like that, that you start from the idea that
there is clear visibility and everything’s perfect and so on.”

Like 33% of the German students, Marie struggles with integrating the earth’s curvature
into her mathematical model. After she is given the hint to draw a side view and include the
earth’s radius of 6371 km, her first attempt is to blindly use the earth’s radius as the x-value.
When this attempt fails, she starts to look for “a second triangle that can be placed somewhere
in here, to calculate the distance.” After a while, she gets the idea of using a mathematical
model like that in Fig. 6b. After some time, she identifies a right angle in her drawing.
However, she is not able to justify why there must be such an angle, except that this would
allow her to use the Pythagorean theorem. She finds a value for the triangle’s side that she
named “?” (Fig. 6b). She uses this value and again the Pythagorean theorem to find a solution
(x = 19, 87 km). She interprets this result as the distance between the lighthouse and the ship
and concludes, “You have to determine the distance between the ship and the coast [..] you’ve
got to add 3 km.”Marie does not spontaneously see a need to validate her result. When asked,
she states that she is satisfied with her result just because she has found an answer and is able
to retrace her thought process. Like all of the German students, she readily accepts the
imprecision of the result. In response to the question of whether her result seems to be
plausible, she answers, “I would say so, well it’s pretty far, but in our holidays, we are often
at the North Sea and there is a lighthouse as well and if we want to go there by car, we need
almost an hour to get there, but from the beach though, we can see it all the time.”

Figure 7 depicts Marie’s individual modeling route. The similarities to Timothé’s route are
evident. Marie, just like Timothé, works mostly on the first modeling steps, even though her
frequent attempts to mathematize the problem are clear. These attempts fail twice (after arrows
4 and 11). Like Timothé, Marie has to be asked to rethink previous steps of her modeling
process by the interviewer (arrows five and eight).

Fig. 6 Marie’s sketches: a the light going around the globe. b Marie's final mathematical model
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5.3 Comparison of both students

As the descriptions of these cases show, both students follow their own path through the
modeling cycle. Nevertheless, there are some basic differences in their approaches. The
first concerns their handling of the real-world situation. At the beginning, Timothé has
difficulties in understanding the aim of the task. After his modeling process, he explains:
“The most difficult part was to put myself in this place, because I kept thinking that there
was something missing and that I couldn’t find it, but you just had to base your work on
the real facts, there is nothing like this in maths.” He is not used to the need to activate
extra-mathematical knowledge to solve a mathematics problem. His frequent protests that
the task cannot be solved show his difficulties in disengaging himself from a rigid and
formalized view of procedures that can be applied to a mathematical problem. He
struggles both with the over- and the underdetermination of the task. Marie has less
difficulty in identifying what is relevant for her solution, because she seems to be used to
idealized situations. She does not attempt to obtain a deep understanding of the situation
but quickly tries to transform the task into a mathematical problem. This becomes
especially evident when she uses the earth’s circumference as the limit for x (see
Fig. 5b). Only after being asked explicitly to do so, she begins to reflect on the real-
world situation.

Comparing these two cases, both students have difficulties in integrating the real
world into their models. What seems to differ are the possible reasons for these
difficulties. For Timothé, this modeling task does not seem to fit into his usual image
of mathematics problems. As he is neither used to distinguishing relevant from irrelevant
data nor searching for missing information himself, he has difficulties constructing an

Fig. 7 Marie’s route through the modeling cycle. [Dotted arrows: Interviewer’s intervention]

Mathematical modeling in Germany and France: a comparison of students’... 221



adequate mathematical model. This is evident in his many steps forwards and backwards
in Fig. 4, while he tries to construct a real and a mathematical model.

Marie, however, is used to ignoring real-world aspects of a task’s context. She tries to apply
well-known strategies to “unwrap” the problem and explains: “You know, you had to wangle a
bit more… normally, we do integrals all the time, and then you know you’ve got to solve the
problem with integrals”. Her focus is on classifying the problem to a certain mathematical
topic and not on the adequate description of the real situation. Hence, it is mostly the missing
connection to the current topic of her mathematics lessons that make the task so difficult for
her. Instead of analysing the real situation, Marie tries to fit her imperfect understanding of the
situation into a symbolic representation. This is also evident in her modeling route, where she
shows many attempts to mathematize the problem.

Additionally, there seem to be two sorts of real worlds for her: the one in which not
everything is perfect, and the reality of a mathematics task, in which one can even assume that
light shines around the globe. In Marie’s opinion, school mathematics does not produce
solutions to authentic problems, because the problems tackled at school are a priori simplified.

Another difference between both students lies in their attitude towards inaccuracy. For
Timothé, it is a major flaw of his solution that it is not exact. Even though he can construct a
model that fits his mathematical knowledge and gives a close approximation, he values a
solution that estimates the arc much higher. Marie accepts without hesitation her approximated
solution and reflects more on extra-mathematical exactitude, for example on weather condi-
tions or the dispersion of light in the atmosphere. She even compares her result with her
experience with lighthouses, while Timothé reflects more on different mathematical models
that could have been used.

6 Discussion

6.1 Possible connection with national differences

Even though there is a broad variety of modeling processes, the two basic blockages illustrated
in this paper seem to be prototypical for both countries. The French students were not familiar
with the fact that the context played a more important role for their solution processes than
merely to motivate them. The German students seemed to be more used to a real-world context
but often applied strategies to “undress” the mathematical content. They were more willing
than the French students to accept a simplification of the situation and used less complex
mathematical models. For example, the French students often proposed or used trigonometric
functions to calculate the arc, instead of its linear approximation (use of Pythagorean theorem:
50% of the French cases versus 75% of the German cases). This is probably also due to
trigonometry playing a more important role in the French curriculum than in the German. The
tendency to blindly apply mathematics without reflecting on the given situation is no new
thing (see Baruk, 1989). However, the reason for this behaviour seems to differ between both
nations: examples of everyday life are not often used in French mathematics textbooks
(Cabassut, 2007; Stölting, 2008), and inner-mathematical, formal justifications play an impor-
tant role (Knipping, 2003), whereas the German students have accepted socio-mathematical
norms that a deeper understanding of the context is not the focus of a mathematical task and
can sometimes even hinder the solution of a mathematical problem (Gellert & Jablonka, 2009).
This shows that, even though German mathematics teachers might be more familiar with the
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theory of mathematical modeling as explained above, the German students did not have
advantages or fewer problems with the task.

The different approaches to handling the real-world situation are in accordance with the
general image of mathematics in upper secondary school in both nations. Some of the French
students claimed that they did not know such a task from mathematics. This becomes
especially evident in the work from a French student, who judges his mathematical work as
“not very mathematical”. He stated that “it works in physics, but in maths, you try to avoid
arcuscosinus and all that, I do not know, in maths, you are more into exact values or
trigonometric formulas and stuff.” German students in this sample did not comment on the
imprecision but took it as a typical characteristic of an application task. This blockage may also
be due to different styles of teaching. Molyneux-Hodgsons, Rojano, Sutherland, and Ursini
(1999) find that a more presentational style of teaching seems to be linked to an emphasis on
precise answers. Since such a style was quite common in French classrooms a couple of
decades ago (Broadfoot, 1999), the tendency to prefer exact values may be a relic of these
times.

6.2 Methodological discussion

The small-scale study with 30 students presented here cannot provide an exhaustive reflection
on and description of what is happening in mathematics classrooms in both countries. The
question arises as to whether these differences are due to individual preferences (Maaß, 2006,
Borromeo Ferri, 2010a, b) or differ systematically between the two countries. Additionally,
since the sample is not representative, it is possible that the variation between student processes
in one country might be broader than the variety between the two countries. This is especially
valid for Germany, where the educational systems are different in each federal state. Therefore,
students’ blockages cannot be causally attributed to the different historical background.
Nevertheless, it seems reasonable to assume that students’ modeling routes are related to their
national contexts because current styles of mathematics education can be seen as the result of a
historical process where different learning opportunities are prepared in relation to predomi-
nant teaching styles. Since these learning opportunities highlight different aspects, for example
technical competences or mathematical accuracy, it is probable that provably influential factors
for modeling, such as self-efficacy (Krawitz & Schukajlow, 2018) or conceptual knowledge
(Chang, Krawitz, Schukajlow, et al., 2019), differ between students from different countries.
This mediating relationship should be analysed in further studies.

Additionally, the number of observed students could provide a degree of saturation, as
students’ difficulties occurred repeatedly (c.f. Table 2). This study thus did not aim at a general
comparison between two countries but at the comparison between two educational contexts
that are shaped by different traditions and didactical movements. To gain deeper insight into
these contexts, not only were student processes video-taped but also data from their respective
mathematics lessons and from teachers was collected. The combination of all data should
deepen our understanding of how students’ individual modeling processes are influenced by
external factors.

The think-aloud method for this study made it possible to immediately gain insight into
students’ thought processes. Of course, even though students were trained in this method, the
setting is not a natural one and might have influenced students’ processes by encouraging a
more thorough meta-cognition. Nevertheless, this method has the advantage that most thought
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processes can be retraced, even those the students would not report afterwards, for example in
some sort of learning report.

Furthermore, this kind of inter-cultural study makes it necessary to cope with the
different languages. It was possible for students to talk in their mother tongue and to have
the same person conducting the experiment in both countries. Because of the collaboration
of scholars from both countries, it was possible to transcribe and analyse the videos
without having to translate them. This was important for avoiding distortion due to
language issues.

Participation in the study was of course voluntary. Also, both schools came from a
comparable surrounding, and in both the German and the French sample, there were
high-, medium- and low-achievers regarding their mathematics grades. Of course, this
does not mean that students were at the same mathematical level, as no standardized test
was conducted.

In conclusion, we have seen that the conception of mathematics education often
differed throughout history in two neighbouring countries. The study presented in this
article has given an example of how students’ modeling processes differ and which
blockages they encounter. It became evident that students from both nations encountered
various blockages that hindered them from solving the task. This speaks for the integration
of more and complex modeling tasks into everyday teaching in both countries. Inaccuracy
and the question of how to treat missing or superfluous data play a central role in this
debate, which differs from formal and pure mathematics. Furthermore, some assumptions
about the relationship between students’ blockages and the underlying conceptions and
teaching traditions in their nations were made. Even though the presented differences
cannot be causally attributed to the historical differences, this historical background has
certainly shaped how mathematics education is seen and carried out today in both nations
and hence influences what opportunities to learn students encounter.

Being aware of this cultural relationship is especially important when constructing or
adapting learning aids for mathematical modeling. Even if such aids share a common
underlying structure, it might be necessary to adapt them according to the national context
so that they may help effectively in overcoming blockages.

Funding Information Open Access funding provided by Projekt DEAL.

Appendix

Exemplary solution of the lighthouse task

Remark: This solution can be seen as an example of a student’s approach to solving the
task. It is not meant to be an ideal solution, as every assumption, mathematical model or
solution has to be evaluated not only with regard to student abilities, but also with regard
to the extra-mathematical situation. For example, a more complex model does not always
have to be the better one. A solution can be evaluated just as well if the student has a sound
understanding of the given real-world situation and simplifies it in such a way that he or
she is able to construct a sufficiently complex mathematical model, which allows him or
her to find a reasonable answer to the starting question. The necessary exactitude of the
result for it to be reasonable thereby depends on the formulation of the task and
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understanding of the real-world situation by the student, as well as on the mathematical
tools at the student’s disposal.

The task

1. Understanding and simplifying the situation
The task gives information about a lighthouse on the Atlantic coast of France which is

located 3 km away from the coast and measures 31 m. As it is the purpose of such a
lighthouse to warn ships about the possibly dangerous coastal area, it is important for the
ship’s crew to know their distance from the coast when they catch sight of the lighthouse
for the first time.

Since the exact distance depends on various factors, like the weather, the height of the
ship, etc., but no information about the arriving ship is given, it seems reasonable to search
for a rough estimation. Therefore, some simplifying assumptions can be made:

– There are ideal weather conditions;
– The height of the ship can be ignored;
– The light is radiated on top of the lighthouse, thus located 31 m above the sea.
– The maximum distance is limited by the earth’s curvature. To be able to work with this

curvature by applying school mathematics, the earth is assumed to be a perfect sphere with
a radius of 6371 km.

2. Mathematizing the situation and working mathematically
All these assumptions can be converted into the following mathematical model: it is

sufficient to use a two-dimensional representation of the situation, which is a cross-section
of the earth and the lighthouse (see Appendix Fig. 8). In this representation, it becomes
obvious that the maximum distance between the ship (catching sight of the light) and the
lighthouse is equivalent to the distance between the point of tangency of a tangent of the
circle passing through the top of the lighthouse and the foot of the lighthouse.

Since the tangent line and the radius at the tangency point are right-angled, trigono-
metric theorems are applicable.
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The easiest way to approximate the distance HE is to calculate the linear distance by applying
the Pythagorean theorem twice: Since EA=HA= 6371 [km] and GE = 31 [m], it follows that

HG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GA2−HA2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6371:0312−63712
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

395:003
p

≈19:875 km½ �:
Applying the Pythagorean theorem a second time yields

HE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GH2−GE2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

395:003−0; 0312
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

394:972
p

≈19; 874 km½ �:

(Remark: Since the lighthouse is very small in relation to the earth’s radius, the first application
of the Pythagorean theorem already gives a good approximation of the distance.)

Another possibility is to determine the curved distance HE by using the definition of cosine:
If the angle between HA and GA is called α, it is known that

α ¼ arccos
HA
GA

� �

¼ arccos
6371

6371:031
and HE ¼ ∝

360
�2�π�6371≈19; 874 km½ �:

3. Interpreting and validating the result
Both calculations indicate that the ship is approximately 20 km from to the lighthouse,

when it catches sight of its light for the first time. Since the lighthouse is not located on the
coast, but 3 km in front of it, the ship can have a maximal distance of 23 km to the coast,
depending from which side the ship arrives. This distance seems to be reasonable, as it
leaves enough time for the ship’s crew to react accordingly and to adjust their course.

Nevertheless, the assumption that the height of the ship can be ignored may have severe conse-
quences for the distance measurement. The higher the ship, the greater is the maximum distance to
the lighthouse. This information can be integrated into the model as Appendix Fig. 9 shows. With

Fig. 8 Two-dimensional representation of the situation (not to scale). The circle d represents the earth, section
GE represents the lighthouse, the tangent GH represents the ray of light and the point H, the position of the boat.
Thus, the distance HE has to be calculated or approximated to answer the question
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this model, various heights of the ship, represented by section DF, can be tested and the distance FE
can be compared. But these reflexions go far beyond what is expected for the given task.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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