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Abstract In this paper we report the results of an experiment designed to test the hypothesis
that when faced with a question involving the inverse direction of a reversible mathemati-
cal process, students solve a multiple-choice version by verifying the answers presented to
them by the direct method, not by undertaking the actual inverse calculation. Participants
responded to an online test containing equivalent multiple-choice and constructed-response
items in two reversible algebraic techniques: factor/expand and solve/verify. The findings
supported this hypothesis: Overall scores were higher in the multiple-choice condition com-
pared to the constructed-response condition, but this advantage was significantly greater for
items concerning the inverse direction of reversible processes compared to those involving
direct processes.
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1 Introduction

Summative assessment of students is a key part of education. In mathematics, assessments
typically attempt to measure one or both of procedural knowledge and conceptual under-
standing (Rittle-Johnson & Siegler, 1999). Our focus here is on procedural knowledge,
which has been defined as “the ability to execute action sequences to solve problems”
(Rittle-Johnson, Siegler, & Alibali, 2001). High-stakes examinations around the world
have been criticised for privileging procedural over conceptual items (e.g., Berube, 2004;
Iannone & Simpson, 2012; Noyes, Wake, Drake, & Murphy, 2011). Part of the reason for
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this emphasis on procedural items is that they are relatively easy to produce and can be
scored objectively (Swan & Burkhardt, 2012). As such, scoring reliabilities tend to be very
high in mathematics compared to other subjects (Brooks, 2004).

This can tempt us to conclude that assessing procedural knowledge is straightforward
and unproblematic, and perhaps compared to assessing conceptual understanding that is
indeed the case (Bisson, Gilmore, Inglis, & Jones, 2016). However, high reliability scores
do not necessarily indicate that items are valid (Wiliam, 2001). For example, ostensibly
the same question presented in different formats (e.g., multiple choice versus constructed
response) can produce different patterns of results across a sample of students (Martinez,
1999; Shepard, 2008). Moreover, the reversibility of many mathematical operations (e.g.,
‘expand the brackets’ versus ‘factorise’) can result in examiners failing to assess what they
intended to assess (Friedman, Bennett, Katz, & Berger, 1996), and not being aware that they
have failed. This latter threat to validity is the focus of the research reported here.

We begin by considering and comparing two common question formats for procedural
items, multiple choice (MC) and constructed response (CR). Our review of the literature
leads to the hypothesis that the validity of MC items, but not CR items, is likely to be
undermined by the reversible nature of common mathematical operations. We then define
reversibility and provide examples of ‘direct’ and ‘inverse’ processes involved in many
mathematical operations. Following this we present a study in which undergraduate students
(N = 116) were administered procedural items involving reversible operations in both MC
and CR formats. The pattern of results strongly indicates that what we define below as
‘inverse’ items did not perform validly when presented in a MC format. We conclude that
presenting such items to students using a CR format would significantly improve validity.

1.1 Multiple choice (MC) and constructed response (CR) formats

Procedural MC items typically present a mathematical object, such as an equation, and an
instruction to transform the object into a specified form. Here is an example of an item used
in the study reported below.

Factorise: 64m3 − 125

1. (8m − 5)(8m + 25)
2. (4m − 5)(16m2 − 20m + 25)
3. (4m − 5)(4m2 + 20m − 25)
4. (4m − 5)(16m2 + 20m + 25)

The equivalent CR item would contain the same question stem, ‘Factorise: 64m3 − 125’,
but the answer options would be removed and replaced with a space to write the answer, or
a text box if administered as a computer-based assessment. Removing the options from MC
items in this way creates what are called stem-equivalent CR items (Friedman et al., 1996).

Shepard (2008) reviewed 16 studies that compared CR and MC item formats in a variety
of disciplines, and reported that question format appears to have little effect on assessment
outcomes for stem-equivalent items. She argued that such study designs add little useful
information because authors

carefully controlled for everything else, including content, cognitive process, and
construct. The finding is essentially a tautology. Yes, if you strictly constrain multiple-
choice and constructed response (sic.) items to be identical, predictably they measure
the same thing. (Shepard, 2008, p. 605).
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An instrument used by Friedman et al. (1996) consisted of algebra story problems of a clas-
sical type and, consistent with Shepard’s review, they found no evidence of format effects
between MC and CR problems. To look for proposed mechanisms they used a think aloud
protocol to gather qualitative data.

Similarities between formats occurred because subjects solved some CR and MC
items using similar methods. A typical MC approach is to plug in the response options,
looking for one that satisfies the constraints of the item stem. Surprisingly, subjects
used this strategy with CR items as frequently as with MC items. Subjects appeared
adept at estimating plausible answers to CR items and checking those answers against
the demands of the item stem. In other words, subjects frequently generated their own
values to plug in. (Friedman et al., 1996, p. 1).

One reason they found no format effect is that subjects were using a verification strategy
for both CR and MC items. That is, and perhaps unexpectedly, subjects used a strategy
commonly associated with the MC format to answer CR items with equal frequency.

A further review of comparisons between CR and MC formats was reported by
Martinez (1999), who suggested that “The similarity in what is measured by counterpart
items of multiple-choice and CR formats is a mixed picture”. For example, Bridgeman
(1992) considered the extent to which CR versions of stem-equivalent MC items led to
similar outcomes. The study involved items requiring numerical answers, allowing them to
be machine scored in CR format. Bridgeman reported some differences between formats,
“when the multiple-choice options were not an accurate reflection of the errors actually
made by students”. Similarly, Kamps and van Lint (1975) undertook a controlled compar-
ison of equivalent CR and MC tests in university mathematics and found a format effect.
All students sat both tests, but the order in which they were administered (MC then CR,
or CR then MC) was randomly allocated. The authors reported a moderate correlation
(r = .57) between scores on the CR/MC formats, suggesting the CR and MC formats were
not equivalent.

Other researchers have reported a gender effect on question format. For example,
Hassmén and Hunt (1994), Mazzeo, Schmitt, and Bleistein (1993) and Livingston and Rupp
(2004) found that achievement for males is higher than achievement for females when MC
items are used. Goodwin, Ostrom, and Scott (2009) considered possible gender differences
in the frequency of employing ‘back substitution’ as an informed guessing strategy on MC
test items. However, they found no gender difference in performance on MC items that
allow for back substitution strategies, even when controlling for possible confounds such as
prior achievement in mathematics.

1.2 Reversible processes in mathematics

Goodwin et al. (2009) used the phrase ‘back substitution’ for the process of verifying
whether a value is a solution to an equation. For example, values such as x = −5 and x = 2,
are substituted into the equation x2 + 3x = 10 to verify whether they are solutions. While
Goodwin et al. used the term ‘back substitution’, they did not define it in detail. In this sec-
tion we consider how ‘back substitution’, might be defined and operationalised. To do this
we introduce the notion of ‘reversible processes’.

Mathematics involves many symbolic manipulations that are reversible. The construct
we wish to discuss is the more general notion of reversible symbolic processes in formal
mathematics methods. For example, multiplying brackets is accompanied by the reverse
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Table 1 Reversible symbolic processes in elementary mathematics

Direct Inverse

Multiplication of numbers Prime factoring of integers

Laws of exponents Laws of logarithms

Expanding brackets Algebraic factoring

Single fraction Partial fraction

Differentiation Symbolic integration

Verify a solution Solve an equation

process of factoring, as in (x − 1)(x + 1) = x2 − 1, and the two written forms are said
to be algebraically equivalent. We therefore consider factor/expand to be a reversible pro-
cess. Examples of reversible processes from elementary algebra and calculus are listed in
Table 1.

There are mathematical and educational aspects to the processes we have chosen to
describe as reversible. The educational aspects are situated historically and culturally medi-
ated, and we return to this below. First, we propose four hallmarks with which we can
distinguish two directions, which we call ‘direct’ and ‘inverse’.

1.2.1 Mathematical aspects of reversibility

Hallmark 1: Complexity Added complexity does not qualitatively change direct pro-
cesses, but can qualitatively change inverse processes. For example, when multiplying two
polynomial terms the process does not significantly change in nature when the complex-
ity of the terms changes, and multiplying many brackets is an inductive process. However,
trying to find a factored form is qualitatively different. Factoring multi-variable polynomi-
als is, in general, only taught in special cases, such as taking out a common factor or the
difference of two squares or cubes.

Because of this added complexity, the inverse process is often taught as a number of
separate methods for dealing with different cases. This is particularly marked in the case of
the last reversible process in Table 1: verify/solve. One of the purposes of manipulating an
equation into a standard form is to recognise which type of equation (e.g., linear, quadratic)
we have and so guide which technique is needed to solve it. Hence, solve includes a very
wide range of different techniques. Verifying and evaluating only requires the substitution
of variables for values, and subsequent numerical computations. Techniques for solving
equations can be mechanical, but identifying which algebraic moves are needed to solve
even simple linear equations involves more decision making than verifying that a particular
value is a solution.

Hallmark 2: Guess and check Students are sometimes taught the inverse process by a
“guess and check” method to reduce the inverse process back to the previously learned direct
process. For example, when factoring a quadratic the integer factors of the constant term
can be used to guide the guess and check. Symbolic integration often relies on an informed
guess and check procedure.

When factoring a cubic, p(x), one common contemporary approach is to guess a root
a and verify that p(a) = 0. This information enables one factor to be taken, resulting in a
quadratic problem remaining. Part of the didactic contract (Brousseau, 1997) with students
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is that examples encountered in tutorial problems (and high-stakes examinations) will be
amenable to such techniques. In this case the integer factors of the constant term in the
polynomial guide which values of a to choose in the first instance.

Hallmark 3: Confirmation We would expect students to confirm their result when
undertaking the inverse process by performing the direct process. We would not expect
students to do the reverse. This is a natural consequence of Hallmark 2.

Hallmark 4: Computer algebra systems (CAS) CAS implement the student’s algo-
rithm (or something very close to it) for direct processes. However, CAS do not implement
the inverse processes in the same way students are typically taught. Most inverse processes
rely on techniques which were only developed from mathematical research undertaken
in the late twentieth century specifically for CAS. For example, given an elementary
expression,1 differentiation is a mechanical procedure with definite rules. These rules are
extensible in the sense that while new functions require new rules, they extend what has
already been learned. Integration is rather different. Indeed, constructing a definite algo-
rithm for deciding whether a symbolic anti-derivative exists as an elementary expression,
and if so computing it (i.e., symbolic integration), was only resolved comparatively recently,
(e.g., Risch, 1969). This technique for integration is not taught, even to most university
mathematics students. This is also true of factoring, see Davenport, Siret, and Tournier
(1993). Therefore, for the inverse direction there is a significant disconnect between what
is actually taught and the general methods used by CAS, and we believe good educational
reasons persist for this disconnect.

1.2.2 Educational aspects of reversibility

Despite these four hallmarks, students might be taught processes for performing particu-
lar inverse methods directly. For example, to factor a quadratic expression we could first
complete the square and then take the difference of two squares as exemplified by the
following.

x2 − 6x + 5 = (x − 3)2 − 22 = (x − 3 − 2)(x − 3 + 2) = (x − 5)(x − 1).

This method could be described as direct, and always leads to the factored form even where
the roots are complex numbers. However, this method does not generalise in the way that
expanding out brackets generalises to a much wider range of situations. In particular, it does
not generalise to higher order polynomials, or to polynomials in many variables.

Finding the factored form as an intermediate step in solving polynomial equations has
become established as the primary contemporary method. This has not always been the case
(see Heller, 1940). Indeed, past generations solved equations by seeking direct methods in
different cases, e.g., the method of completing the square both solves a quadratic equation
and leads to the quadratic formula without the need for factoring. In the past, some students
would have been taught to solve cubic equations using the formula, not by guessing a sin-
gle root and then factoring. The methods taught to students are historically and culturally
situated and alternatives exist.

Despite these important differences, a student with an understanding of the relative dif-
ficulties of these reversible processes might be tempted to undertake the direct process to

1An expression built up from addition, multiplication, and substitution from numbers, variables and the basic
exponential, logarithmic and trigonometric functions. E.g., sin(x2) or e−x2 .
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verify whether the options for a MC item match the question stem. Such a student might not
actually perform the inverse direction, regardless of which method they have been taught.
Return again to the example MC item given in the previous section. The reversibility of the
factor/expand process can be exploited by testwise students, perhaps as follows. The coeffi-
cient of m3 in the original expression, i.e., 64, can arise only as the product of the first term
from each bracket. This immediately eliminates option (1) which does not have a term with
m3, and option (3) where the coefficient is wrong. In this MC item the same reasoning with
the constant term (−125) does not eliminate further options. The coefficient of m2 equals
zero in the item stem. Expand option (2) to get the coefficient ofm2 as−5×16−4×20 �= 0,
so option (2) is eliminated. In the absence of a MC option “none of the other options” it is
not even necessary to expand out fully to verify that the answer to the factorisation problem
is option (4).

Our instrument was administered in an authentic teaching setting, and so we only
included two processes: expand/factor and verify/solve, both in limited extent. We only
asked students to solve equations of two types, (a) linear equations in a single variable, (b)
exponential equations in which the student needed to take logarithms on both sides to reduce
the problem to one of class (a). Therefore, the full potential complexity of “solve” was not
tested by our study. The full instrument is described below.

1.3 Research focus

When asked to undertake a reversible mathematical process in multiple choice format
do students appear to favour the direct process in both directions?

The specific hypothesis we set out to test was that when faced with a task involving the
inverse direction of a reversible mathematical process, students solve a multiple choice
(MC) version by verifying the answers by the direct method, not by undertaking the actual
inverse calculation. Therefore we expected an asymmetry in the achievement outcomes by
item format and process direction. Our study was designed to find out whether there is an
item format (MC/CR) and process direction (direct/inverse) interaction for data on students’
attempts at undertaking reversible mathematical processes.

Evidence in support of this hypothesis would be the pattern of data shown in Fig. 1.
Students would be expected to perform better on MC than CR due to the opportunity to
select a random response, i.e., guess. It is possible to guess in CR situations but the success
rates are likely to be much lower. That said, once we take account of guessing, we might
expect students’ performance to be about the same on direct MC and CR items. Students
would be expected to perform about the same on MC, regardless of direct or inverse process
direction. This is because the direct method is available for both and is potentially combined
with elimination. (A slightly lower performance might be expected on inverse items as this
involves applying direct processes to up to four answers rather than just the question stem).

Fig. 1 The expected success
rates by format (MC/CR) and
direction (direct/inverse) MC

CR
Direct Inverse

Success rates
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Students would be expected to perform significantly worse on inverse CR items com-
pared to inverse MC items. This is because in a CR item there is no longer a direct option.
They have to actually perform the (more difficult) inverse task. Therefore, the analysis
sought to find a relationship between the percentages of students’ correct answers on the
multiple-choice format and correct answers on the equivalent constructed responses items.

2 Method

2.1 Participants

129 students enrolled on a foundation programme at a United Kingdom university were
invited to participate in the research. The foundation programme helps a variety of students
who want to study a science or engineering degree but who have taken an unconventional
route through education and find themselves without the subject-specific requirements at
the appropriate grades. Consequently, while the cohort did contain some students who have
achieved highly in mathematics, it did not contain the normal proportion of high achievers
that is typical at university level. However, all students had achieved some success in school
mathematics in order to be admitted on to the programme, and most would be expected to
go on to attend and complete bachelor degree courses.

Participation in the online test was a compulsory component of the course and con-
tributed to students’ final grades, but inclusion in the study was optional. Thirteen students
opted out of the study, and a further one student, who opted in, attempted only three items
and was omitted from the analysis. This left a total of 116 participants who are included in
this report. Although gender differences have been noted in previous research into the effect
of question format, our sample included too few women (N = 26) for meaningful analysis
and this issue is not addressed further.

2.2 Instrument

The instrument was a specially-designed online test suitable for the cohort of foundation
programme students. The online test comprised 47 MC and CR items, of which 40 items
were included in the analysis. (The additional seven items covered topics that were part of
the foundation programme but not relevant to the present study.) We use the term instrument
to refer to this subset of 40 items in the remainder of the article. The instrument included just
two processes from Table 1 as these were the only ones appropriate for this group at the time
the study was conducted: expansion/factorisation of simple quadratic/cubic expressions
over the integers, and the evaluation of expressions/solving equations in simple cases. The
items involved only reversible mathematical process without the problem solving aspects of
classical algebra story problems.

For both reversible processes we included items testing the two possible directions in
both MC and CR formats. Therefore for every MC item there was an equivalent CR item.
The number of items of each type is summarised in Table 2, and the full list of items is in
the Appendix A.

Writing effective MC items is a non-trivial task, one reason being that all the listed
potential answers should be plausible (Friedman et al., 1996). As such, we started with items
from http://mathquest.carroll.edu/, a publicly available collection of tried and tested items.
Each MC item had four options together with the response “none of the other options”. For
one item “none of the other options” was the correct response.

http://mathquest.carroll.edu/
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Table 2 The number of items included in the instrument by process and direct (direction/inverse) for each
format (MC/CR). A total of 40 items were included in the analysis

Experimental items Other

Process Direct Inverse

Expand/factor 5 5

Evaluate/solve 4 6

Other 4 MC, 3 CR.

MC items were converted into CR items by deleting the response options to create paired
versions of the items. Two versions are considered equivalent if and only if the worked
solution, written at a level appropriate for the intended student, is invariant. Conversely,
different cases in the worked solution requiring different steps indicate the two versions are
not equivalent to that student. The precise expressions within steps must vary, of course, but
the purpose of the step and the level of detail does not. For example, both x2 − 5x + 6 = 0
and x2−8x +7 = 0 can be solved by factoring, and involve only small integers. The task to
solve these two equations would be considered equivalent. The quadratic x2 − 6x + 7 = 0
looks, superficially at least, very similar. While it also has two real solutions it does not
factor over the rational numbers, and so a different method of solving it would be needed.
In a context in which solving by factoring is the default method, x2 − 5x + 6 = 0 and
x2 − 6x + 7 = 0 are not considered equivalent problems. The number of decimal digits in
an integer was taken as a proxy for the difficulty of numerical calculations. Numbers of the
same order of magnitude were used in corresponding CR and MC items.

In some cases minor changes in the wording of the item were necessary to make explicit
what the item was asking. For example, a MC item asking

What does(5x4)2 equal?

could have many correct answers, including (5x4)2. The MC version does not suffer from
this problem as only one of the answers is equivalent to the given expression. Others, such as
25x6, arise from a particular mistake. In this case the CR version of the item was as follows.

Write(5x4)2 in the form axn.

Where necessary, MC items were similarly reworded for consistency. All the items are in
the Appendix A.

2.3 Administration

To recruit students to the study the first author attended a lecture and made a short announce-
ment explaining that we would like their permission to use results from a forthcoming test
as part of a study to improve the quality of assessment resources in mathematics. Students
were informed that

The online test is a compulsory part of your course. Whether your results are included
in the data analysis is up to you. Your decision about this has no impact on your
grade for this module, or what you are being asked to do. All data will be completely
anonymised prior to analysis. We may link results to background data such as gender
and qualifications to help us better understand how to design better online tests.
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The online test was administered using the Moodle virtual learning environment as is
standard practice at the university. The MC items were implemented directly in Moodle’s
quiz facility. The CR items were implemented using the STACK system which uses com-
puter algebra to support the assessment process (Sangwin, 2013). The STACK system
accepts answers from students in the form of an inputted mathematical expression and then
establishes objective mathematical properties of the expression. To do this, tests establish
that the student’s answer is (i) algebraically equivalent to the correct answer and (ii) in the
appropriate form, (e.g., factored). These are independent objective properties and typically
a range of different syntactic expressions satisfy both and hence are considered correct.
For further details on the STACK system see Sangwin and Ramsden (2007) and Sangwin
(2013).

The participants were familiar with STACK from previous practice assignments. In order
to obtain access to the online test, which was compulsory, students had to opt in to or opt
out of having their results included in the study. Gender and mathematics achievement data
were already available and were matched to students before identifying information was
removed, thereby creating an anonymised dataset for the analysis.

Students could sit the online test at any time over the duration of a week, and once logged
on were allocated a total of 90 minutes to complete it. (One student was allocated 180
minutes and three students were allocated 112.5 minutes due to specific individual require-
ments). The items were presented to students in random order, and students could move
between items at will during the test. The STACK system is able to create random versions
of a particular item, however this facility was only used on one of the direct items included
in the instrument and two of the inverse items. No feedback regarding correctness was avail-
able during the test, but students’ typed CR expressions were confirmed immediately to
them as syntactically valid or invalid. Typed CR expressions were displayed in traditional
two dimensional notation and could be modified at any time during the test, e.g., to correct
invalidity.

Each question was scored 1 if correct and 0 if incorrect and the results for the 40 items
in the instrument were then converted to a percentage for each respondent.

3 Analysis and results

There were three parts to the data analysis. First was ensuring that syntax difficulties had
not resulted in unfair automated marking of students’ CR responses. Second, reliability
and validity checks were undertaken to ensure that the instrument performed as expected.
Finally, hypothesis testing was undertaken to explore the differences in accuracy between
direct and inverse items in both formats.

3.1 Manual checking of CR input

To ensure the syntax of entering answers did not skew the results we reviewed expressions
typed in by students for each of the CR items. Typing in polynomials was unproblematic,
although students routinely omitted the star symbol * for multiplication. E.g., students type
64m3 − 125 rather than 64 ∗ m3 − 125. We chose to accept expressions with missing
stars. Floating point numbers were rejected immediately as invalid (i.e., not wrong) with
very specific feedback, giving students the opportunity to enter an exact answer, e.g., a ratio-
nal number or surd, instead. Case sensitivity was a problem in some responses: responses
in which variables had been entered in the wrong case were marked as wrong.
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By reviewing responses for each of the CR items after administration of the instrument
we were able to check for any unanticipated responses and decide how these should be
scored. Although the criteria need to be specified in advance, criteria can be changed and
the students’ answers reassessed at a later time. This procedure corresponds to reviewing
MC options to see if a particular item is functioning well in a test.

3.2 Reliability and validity

The coefficient of internal consistency (Cronbach’s alpha) was high, α = .91, suggesting
the instrument performed reliably. We also considered the internal consistency of subsets of
items. For the direct MC items (N = 9) the coefficient was α = .71, for the inverse MC
items (N = 11) it was α = .69, for the direct CR items (N = 9) it was α = .80, and for
the inverse CR items (N = 11) it was α = .77. The internal consistency coefficients are
lower for the subsets than for all items taken together, which is to be expected given that
the value of Cronbach’s α is dependent on the number of items in a test, but nonetheless
provide support for the performance of the instrument.

We also investigated the consistency of the items in terms of the CR and MC formats.
Above we noted Kamps and van Lint’s (1975) reported correlation coefficient between CR
and MC formats of r = .57. This coefficient does not demonstrate a lack of notable item
effect as 68 % of the variance is left unexplained. In the present study we obtained a much
higher correlation coefficient, r = .84. This accounts for 71 % of the variance and provides
reasonable support that overall format effect was not large.

Exploratory factor analysis resulted in all items loading on a single component, support-
ing the unidimensionality of the instrument. As such, a composite score was calculated for
each student across the 40 dichotomous items included in the study, which was expressed
as a percentage. The mean overall score was 68.8 % with a standard deviation of 19.1 %.

To investigate criterion validity, the students’ composite scores were correlated with their
scores for other assessments administered on the module. These were a second computer-
based test on the topic of differentiation, a paper-based test sampling a wide range of
mathematical topics from across the module, and a synoptic examination also sampling
a wide range of topics. Complete results across the three assessments were available for
110 of the students who participated in the research. The correlation matrix is shown in
Table 3. The highest correlation coefficient, r = .81, is between a paper-based test and
synoptic exam, both of which sampled widely across mathematical topics. The correlations
between the computer-based tests and other assessments are lower, ranging from r = .50
to r = .59, which is to be expected because each focussed on specific topics (algebraic
manipulation and differentiation respectively). Nevertheless, taken together these corre-
lation coefficients support the overall validity of the composite scores as a measure of
students’ mathematical achievement.

Table 3 Correlation matrix of Pearson product-moment coefficients between student scores across four
module assessments. Composite score is the mean score across the 40 items used in the study

Online test 2 Paper test Exam

Composite score .58 .58 .59

Online test 2 .50 .53

Paper test .81
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Table 4 Success data as percentage achievement by format and direction

Format Direction Mean Sd

CR Direct 69.1 24.2

CR Inverse 60.4 23.0

MC Direct 77.5 22.1

MC Inverse 73.8 19.1

3.3 Effect of direction and format

The mean scores by item format and direction are summarised in Table 4 and Fig. 2. Mean
scores were higher for MC than CR items overall in line with our prediction. In addition, for
each format, mean scores were higher for direct than inverse items which is also in line with
our prediction. To test whether these differences were significant the data were subjected to
a 2 (format: MC, CR) by 2 (direction: direct, inverse) Analysis of Variance (ANOVA), where
both factors were within subjects. As expected, this revealed a main effect of format, with
MC items being answered significantly more accurately (75.7 %) than CR items (64.7 %),
F(1, 115) = 102.371, p < .001, η2p = .471.

The difference in overall success rates between CR and MC of 11 % is somewhat smaller
than the 20 %, which might be attributed to pure guessing between 5 equally likely options.
However, the higher overall success rates reduce the potential effect of guessing. To better
estimate the effect of guessing, assume a student has a 65 % chance of knowing how to
complete an item correctly. This is a realistic scenario given the CR data. We assume that
in 35 % of cases a student will not know how to proceed, and will therefore guess, with a
1/5= 20 % chance of success, giving an overall guessing advantage of 35 % × 20 % ≈ 7 %
for MC over CR. If a student ignores the “none of the others” option and strategically
eliminates one further option (or eliminates two options), then guesses from the remaining
three, their expected overall guessing advantage would be 35 % × 33 % ≈ 12 %. We
therefore consider the difference of 11 % between CR and MC to be consistent with partial
guessing in cases where students do not otherwise know how to solve a CR question.

There was also a significant format by direction interaction, F(1, 115) = 6.892, p =
.010, η2p = .057. This interaction was investigated with a series of planned comparisons.
For CR items, accuracy was significantly higher on direct compared to inverse items, 69.1 %
versus 60.4 %, t (115) = 4.861, p < .001, d = 0.451. A smaller, but still significant,
effect was also observed for MC items, 77.5 % versus 73.8 %, t (115) = 2.125, p = .036,
d = 0.197. To investigate whether the effect of direction was significantly different across
the two formats we calculated the differences between scores for MC and CR by direction.
For direct items the mean difference was 8.4 % and for inverse items the mean difference
was 13.5 %, and this difference was significant, t (115) = −2.666, p = .009. Therefore

Fig. 2 Success rates. Error bars
represent ±1 SE of the mean
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Table 5 Correlation matrix of Pearson product-moment coefficients between student scores across the four
question types (format × direction)

CR Direct MC Inverse CR Inverse

MC Direct .744 .600 .595

CR Direct .636 .673

MC Inverse .786

Within-direction coefficients are shown in bold, within-format coefficients are shown in italics

students’ relative performance across direct and inverse items was significantly different
across the two formats, with the relative performance lower for CR items.

A consideration of the correlation matrix of scores for the four types of question (format
× direction) provides further insight, as shown in Table 5. The correlations within direction
(shown in bold in Table 5) are stronger than the correlations within format (shown in italics
in Table 5). This is consistent with the hypothesis that the items are equivalent across for-
mats, and that direction is driving the differences in achievement across the question types.

We also considered the performance of students on direct and inverse items across the
two formats at the individual level. For direct items, 54.3 % of participants scored more
highly on MC than CR items, 32.0 % scored the same across both formats, and only 13.8 %
scored more highly on CR thanMC items. For inverse items the figures were 74.1 %, 16.4 %
and 9.5 % respectively.

We also considered the items in our instrument individually, as shown in Fig. 3. Only
one question, ALG 46.2, performed anomalously compared to the overall trend. This ques-
tion asks students “What is the solution set: 2(x − 3) = 5x − 3(x + 2)?”. Gathering like
terms gives 0 = 0 indicating that any value of x satisfies the equation. In the MC condi-
tion students were given the choice between three sets each containing one specified real
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Fig. 4 Mean differences across formats for low- and high-achievers. Error bars represent ±1 SE of the mean

number, the option “{ all real numbers }” and “No solutions”. In the CR condition stu-
dents were expected to give a set of numbers representing the solutions. Students were also
instructed to “Type in {R} if there is more than one solution, and {} if there are no solutions”.
Only 27.5 % of students answered this question correctly in MC format, but 71.6 % of stu-
dents answered this correctly as a CR question. Without this question our trend showing an
asymmetry of achievement would be more pronounced.

These analyses support our hypothesis of an asymmetry of achievement. The mechanism
we propose for this asymmetry is that students carry out direct processes on the provided
answers to inverse MC items.

3.4 Role of mathematical achievement

Finally, we undertook an unplanned analysis to explore whether students’ overall perfor-
mance on the instrument interacted with their performance on direct and inverse items
across the two formats. Recall that the mean overall score was 68.8 % with a standard
deviation of 19.1 %. Students who scored below the mean (N = 51) were assigned to a
low-achieving group and those who scored above the mean (N = 65) were assigned to a
high-achieving group. As for the main analysis, we calculated differences between scores
for MC and CR by direction for each group. For the low-achieving and high-achieving
groups the mean difference of direct items between formats was 12.2 % and 5.4 % respec-
tively; the mean difference of inverse items between formats was 18.2 % and 9.7 %
respectively, as shown in Fig. 4.

To investigate group differences we conducted a mixed between-within subjects
ANOVA, with mean difference between MC and CR scores for each direction (direct,
inverse) as the within-subjects factor, and achievement (low, high) as the between-subjects
factor. There was a significant main effect for mean differences between MC and CR by
direction F(1, 114) = 7.243, p = .008, η2p = .060. However the interaction was not sig-

nificant, F(1, 114) = .199.p = .657, η2p = .002, suggesting the main effect was due to
better performance of both groups on direct over inverse, as shown in Fig. 4. Therefore there
was no evidence to support a difference between the low- and high-achievers in terms of
performance on direct and inverse items across both formats.

4 Discussion

We compared students’ performance on MC and CR items used in an online test as part of
a compulsory summative assessment. We found that, overall, students performed better on
MC than on CR items. Some of this difference is likely to be accounted for by the use of
guessing in MC items. Critically, however, the improved performance for MC items was
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greater for items intended to test competence with inverse processes compared to items
intended to test direct processes. Finding this asymmetry supports the hypothesis that when
faced with an item involving the inverse direction of a reversible mathematical process,
students commonly solve a MC version by verifying the options using a direct method, and
not by undertaking the actual inverse calculation. Moreover, this finding is robust across
low- and high-achievers: item format and direction did not appear to affect these two groups
of learners differently. These results present a serious challenge to the use of MC items for
assessing reversible mathematical processes because it cannot be determined by the item
writer exactly what is being assessed. The study reported here focussed on the processes
of expansion/factorisation and evaluation/solving but the principle can be extended to other
processes such as those listed in Table 1.

It is likely in practice that students will often, quite understandably and rationally, take
the easiest path when faced with a MC item that involves reversible processes. This has
worrying implications not just for valid assessment of students’ knowledge and skills, but
for the impact such assessment has on their learning and future mathematical development.
It is likely that a student who has succeeded only on MC items at an earlier stage via direct
verification would be at a serious disadvantage when confronted with a CR item at a later
date. On this hypothesis, a mathematics educator who relies on the MC format for assess-
ing reversible processes may be performing a serious disservice to his or her students in
the longer term. Designers of online materials which rely on MC face the same dilemma
between the technical simplicity of MC and the educational validity of CR.

It is therefore recommended that MC formats are to be avoided for the assessment
of reversible mathematical processes. One option is to use CR formats, which are rela-
tively easy to score reliably (Newton, 1996), or can be implemented online and scored
automatically (Sangwin, 2013), as was the case here.

4.1 Limitations

While the study yielded a clear and predicted result, caution must be exercised when
interpreting the generality of the finding. We highlight three main limitations.

First, our findings apply exclusively and explicitly to reversible processes only. MC items
are not generally invalid for assessing mathematics, and both the authors use them in their
teaching and assessing of mathematics at university level. Indeed, there are many contexts in
which well designed MC items are more appropriate than other question formats. For exam-
ple, the popular Calculus Conceptual Inventory (Epstein, 2013) has appealing face validity
and that would be lost if converted into a CR format. This is because items in the Cal-
culus Conceptual Inventory tend to avoid calculation, and therefore the issue of reversible
processes, focussing instead on underlying principles.

Second, the study used a modest sample of students (N = 116) from a single cohort at
a single university. We are confident, due to the theoretical reasons stated earlier, as well as
discovering that our main result was robust across low- and high-achievers, that the same
methods applied to different cohorts in different universities would lead to the same broad
finding. Nevertheless, we cannot claim that our sample is representative of the broader pop-
ulation of students undertaking mathematics modules at universities around the world. In
particular, the cohort was taking a foundational course as a prerequisite for embarking on
bachelor degrees, mainly in engineering and the sciences. Therefore we would expect a
broader variation and lower mean achievement in mathematics than for other samples of
undergraduates. Moreover, most of the participants were male (78 %), which may have
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slightly inflated the MC scores (Hassmén and Hunt, 1994; Livingston & Rupp, 2004;
Mazzeo et al., 1993), and this also barred us from investigating hypothesised gender effects.

Third, CR items that require an online response, such as the STACK system used here,
raise the difficulty of students needing to learn specialised syntax to enter their answers.
Further discussion of this issue can be found in Sangwin and Ramsden (2007). We reported
that students’ performance was worse on the CR than the MC items, and this was despite our
manual checking of student responses as described in the methods section above. Without
such checking the disparity is likely to have been greater still. The extent to which syn-
tax gets in the way of students providing mathematical answers presents a validity threat to
online CR assessment systems. We chose to use an online system to gather the data for our
study because our students were already using this system, making it an authentic assess-
ment experience. In addition, it offers an efficient, reliable and convenient way to gather the
data from a large cohort of students. However, we cannot be certain whether the effect is
confounded with the use of technology as opposed to working on paper.

These limitations are readily overcome in future work. The same methods can be applied
to different reversible processes, using different samples of the student population, and
implementing the CR items using different online systems or pencil and paper. (However
we acknowledge that since online assessment is becoming more common conducting this
study using pencil and paper may limit future relevance.)

5 Conclusion

Our research found evidence for an item format (MC/CR) and process direction
(direct/inverse) interaction for reversible mathematical processes. This evidence supports
the hypothesis that when faced with a task involving the inverse direction of a reversible
mathematical process, students solve a multiple choice (MC) version by verifying the
answers by the direct method, not by undertaking the actual inverse calculation. It might
be that MC items could provide an advantage to lower achievers in particular, however we
found no evidence to support this hypothesis.

Should mathematics be assessed using MC items? If the focus of assessment is on
reversible processes then the answer is no. Presented with this format students will take
the easiest path, performing inverse processes on answers rather than a direct process on
the item stem. Such a strategy allows examinees to perform above chance by side-stepping
what the item writer intends to assess. Instead, reversible mathematical processes should be
assessed using CR or other open-ended item formats.
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Appendix A: Items used in the instrument

Items used in the test are shown below. In the case of expand/factor and solve/evaluate
equivalent versions of each item were used for both CR and MC items. We have used items,
with permission, from http://mathquest.carroll.edu/, and the tags such as ALG 144 indicate
which items we have taken. Responses have been omitted here, but are available in the
document online. The tags CJS and IJ indicate the author of additional items where this
catalogue did not contain sufficient, particularly in the evaluate class.

Expand/factor

ALG 144 (direct): Expand and simplify: (2x + 5)(3x + 2).
ALG 145 (direct): Expand and simplify: (7x + 2)(x2 + 8x − 3).
ALG 146 (direct): Expand and simplify (3x − 5)2.
ALG 150 (direct): Expand and simplify (3x − 4)(3x + 4).
ALG 282 (direct): Multiply and simplify: (5 + √

3)(5 − √
3).

ALG 174 (inverse): What is the greatest common factor of the terms of 20x2 + 28x?
ALG 181 (inverse): Factor x2 − 7x + 12.
ALG 183 (inverse): Factor x2 + 10x − 11.
ALG 188 (inverse): Factorise: 45m2 − 20.
ALG 189 (inverse): Factorise: 64m3 − 125.

Evaluate/solve

ALG 17 (direct): Evaluate: 3x2 − 7xy + 4y2 when x = −2 and y = 3.

ALG 18 (direct): Evaluate: 5ab2

2a2−3b
when a = 5 and b = −1.

CJS 2 (direct): Evaluate log10(x
400)

70 when x = 1070.
CJS 3 (direct): Substitute x = −1, y = 2 and z = −3 into

y − z

yz
+ z − x

zx
+ x − y

xy

and calculate the result.
ALG 155 (inverse): What is x if 2x + 5 = 0?
ALG 42 (inverse): Solve for x: x + 7 = 8.
ALG 46(1) (inverse): What is the solution set: 2(x − 3) = 4x − 3(x + 2)?
ALG 46(2) (inverse): What is the solution set: 2(x − 3) = 5x − 3(x + 2)?
ALG 300 (inverse): Solve: 2x = 5.
ALG 301 (inverse): Solve 3x−2 = 54x .

Other

These questions were included in the test but not in the analysis for the study.

http://mathquest.carroll.edu/
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ALG 117: Which of the following is equivalent to

x−2y3z−4

x−3y5z5

when written in the form xaybzc?
ALG 160: If x = − 5

10 is a zero, then the corresponding factor is: ...
ALG 192: If (x − 2)(x + 1) = 10 then find x.
Note: this item was not included in the study as a correct solution requires both expand
and factor.
ALG 4: Which inequalitycorresponds to this graph? [MCQ choices given]

CJS 1: A university has 6 times as many students as professors. If S represents the number
of students and P represents the number of professors, which of the following equations
expresses the relationship between S and P?
IJ 1: Suppose that ln(2) = a and ln(5) = b. How might ln(10) be written?
IJ 2: Express (log(x) − log(y)) + 3 log(z) as a single logarithm.

Comparison of MC and CR questions

As examples of our question rewriting, the following is the MC version of ALG 188

Factor: 45m2 − 20.

(a) (7m − 5)(7m + 5)
(b) 5(9m − 4)(9m + 4)
(c) 5(3m − 4)(3m + 4)
(d) 5(3m − 2)(3m + 2)

The CR response version is

Factor: 45m2 − 20.

This is typical: to create the CR versions we took an existing MC question and replaced the
options with an answer box into which the student is expected to type their answer.
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