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Abstract
Large volumes of conventional crude oil continue to be shipped by sea from production to consumption areas across the globe.
In addition, unconventional petroleum products also transverse pelagic habitats; for example, diluted bitumen from Canada’s
oilsands which is shipped along the Pacific coast to the United States and Asia. Therefore, there is a continuing need to assess the
toxicological consequences of chronic and catastrophic petroleum spillage on marine wildlife. Peer-reviewed literature on the
toxicity of unconventional petroleum such as diluted bitumen exists for teleost fish, but not for fauna such as marine mammals.
In order to inform research needs for unconventional petroleum toxicity we conducted a comprehensive literature review of
conventional petroleum toxicity on marine mammals. The common endpoints observed in conventional crude oil exposures and
oil spills include hematological injury, modulation of immune function and organ weight, genotoxicity, eye irritation,
neurotoxicity, lung disease, adrenal dysfunction, metabolic and clinical abnormalities related to oiling of the pelage, behavioural
impacts, decreased reproductive success, mortality, and population-level declines. Based on our findings and the body of literature
we accessed, our recommendations for future research include: 1) improved baseline data on PAH and metals exposure in marine
mammals, 2) improved pre- and post-spill data on marine mammal populations, 3) the use of surrogate mammalian models for
petroleum toxicity testing, and 4) the need for empirical data on the toxicity of unconventional petroleum to marine mammals.
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Oil spill

Introduction

Conventional crude oil is a complex mixture of thousands
of organic compounds, primarily hydrocarbons, along
with trace elements (Kennedy 2015; Ylitalo et al. 2017).
Of those, the aliphatic hydrocarbons, naphthenic acids,
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monoaromatic hydrocarbons, and polycyclic aromatic
hydrocarbons (PAHs) are considered contaminants of tox-
icological concern (Kennedy 2015). As PAHs are one of the
most toxic components of crude oil, they are commonly
used as a predictor of toxicity (Kennedy 2015). Low
molecular weight PAHs partition to and tend to remain in
water, whereby they may be ingested or respired by marine
mammals (Marsili et al. 2001). Consequently, those are
considered to be more toxic to marine fauna than high
molecular weight PAHs (Neff 1979) which partition to both
organic and inorganic particles in the water column (Marsili
et al. 2001). Moreover, the solubility of PAHs will increase
with temperature, becoming more bioavailable for uptake
by marine organisms during hotter months (Marsili et al.
2001). Global fossil fuel use and associated spillages have
caused concern regarding the impacts of petroleum hydro-
carbons to marine fauna (Neff 1990; Ylitalo et al. 2017).
While the majority of petroleum released into the environ-
ment is through infrequent but catastrophic spills, small
spills are more common and prevalent globally (Anderson
and LaBelle 1994) but the effects of these small chronic
spills are rarely studied (Murphy et al. 2016).

While little is known regarding the toxicity of uncon-
ventional crude oils such as diluted bitumen (dilbit) some
effects can be inferred as dilbit spills have occurred, for
example, the Kalamazoo River dilbit spill in 2010 (Murphy
et al. 2016). Dilbit has many similar properties to conven-
tional crude oil (Dew et al. 2015; Madison et al. 2015;
Philibert et al. 2016). Although the aromatic fraction of both
bitumen and conventional heavy crude oil is roughly
25–32% (Woods et al. 2008) the type and concentration of
aromatic compounds will vary. For example, of the 16 US
EPA Priority PAHs known to exert toxicity, when com-
pared to samples of light, medium, and heavy conventional
crude oils, dilbit contains a greater concentration of chry-
sene, fluorene, pyrene, fluoranthene, benzo[b]fluoranthene,
benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[ah]anthra-
cene, and benzo[ghi]perylene (National Academies of Sci-
ences, Engineering, and Medicine 2016). Consequently the
PAH content of dilbit alone could predict toxicity to wild-
life. In addition, bitumen contains approximately 10% more
saturates, 6.5% more asphaltenes, and 6% more resins than
conventional heavy crude oil (Woods et al. 2008; Dew et al.
2015). Of note, the toxic heavy metals vanadium and nickel
are present in those saturate, asphaltene, and resin fractions
(National Academies of Sciences, Engineering, and Medi-
cine 2016). Finally, naphthenic acids are present in bitumen
and are of concern due to their cytotoxicity and potential to
disrupt the endocrine system (Headley and McMartin
2004). Because dilbit is a complex mixture of chemicals of
which some are known to be toxic, the potential for addi-
tive, synergistic, or antagonistic toxicity exists. In parti-
cular, studies in fish have demonstrated that mixtures of

PAHs and metals elicit more-than-additive toxicity (Gau-
thier et al. 2014).

If spilled into a water body, transport of dilbit initially
will be similar to other commonly transported conventional
crude oils (National Academies of Sciences, Engineering,
and Medicine 2016). Similar to conventional crude, it is
expected that the toxic volatiles benzene, toluene, ethyl
benzene and xylenes (BTEX) in diluted bitumen, would
quickly evaporate. Small cetaceans for example, could
readily inhale those toxic compounds as their blowhole is at
the surface of the water (Venn-Watson et al. 2015a). Once
weathering of dilbit is complete, a larger proportion of
crude is expected to sink and adhere to sediments as com-
pared to other commonly transported conventional crudes
due to bitumen’s high density and viscosity. Sinking dilbit
can become incorporated in the bedload of coastal envir-
onments with the potential to be remobilized during a storm
(National Academies of Sciences, Engineering, and Medi-
cine 2016) or remobilized by benthic feeders when foraging
(Esler et al. 2018).

Research has focused on highly publicized oil spill dis-
asters (Philibert et al. 2016), termed ‘hyper-spills’, such as
the 1989 Exxon Valdez oil spill (EVOS) and the 2010
Deepwater Horizon (DWH) oil spill (Murphy et al. 2016).
Both of these spills dramatically impacted marine mam-
mals: the EVOS resulted in mortality of several thousand
sea otters (Enhydra lutris) (Ballachey et al. 1994; Esler et al.
2018) and significantly impacted one pod and one transient
population of killer whales (Orcinus orca) (Matkin et al.
2008). Furthermore, recovery of sea otter abundance
required over 20 years, and both the affected killer whale
pod and transient population have yet to recover to pre-spill
numbers (Esler et al. 2018). Following the DWH oil spill in
the Gulf of Mexico at least 160 marine mammals died (U.S.
Fish and Wildlife Service 2011) and bottlenose dolphin
(Tursiops truncates) reproductive rates were significantly
decreased in a heavily contaminated bay for nearly four
years afterward (Lane et al. 2015). The DWH spill was also
linked to prolonging an unusual cetacean mortality event in
the northern Gulf of Mexico that had begun prior to the spill
(Venn-Watson et al. 2015a).

Within Canada, increased oil sands development in
Northern Alberta and transport of dilbit (Philibert et al.
2016) by tanker on the coastal waters of British Columbia
pose a risk of dilbit exposure to marine wildlife. Fauna at
risk of exposure to marine petroleum spillage include the
endangered southern resident killer whale population that
resides year-round in British Columbia’s coastal waters
(Ford et al. 2010, 2017) particularly because shipping traffic
transects this population’s critical habitat (Lacy et al. 2015).
Additionally humpback whales (Megaptera novaeangliae)
are found along British Columbia’s coast from spring to fall
(Dalla Rosa et al. 2012). In total, twenty-four marine
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mammal species (Harvey et al. 2017) are found in these
coastal waters, including the commonly observed harbor
porpoise (Phocoena phocoena), Dall’s porpoise (Phocoe-
noides dalli), Pacific white-sided dolphin (Lagenorhynchus
obliquidens), minke whale (Balaenoptera acutorostrata),
fin whale (Balaenoptera physalus), sea otter, northern ele-
phant seal (Mirounga angustirostris), Steller sea lion
(Eumetopias jubatus), and harbor seal (Phoca vitulina)
(Williams et al. 2011a).

By reviewing the impacts of conventional crude oil to
marine mammals and identifying common toxicity end-
points, this review will inform planned research on
unconventional crude oil toxicity such as dilbit.

Methods

A literature search was completed in Web of Science™.
All years from 1900 to 2020 were included with no filters
used. Search terms included a petroleum derivative, ver-
tebrate class, and any words including toxic. Petroleum
derivatives used in the search were “petroleum” OR “fuel”
OR “hydrocarbon” OR “oil spill” OR “bitumen” OR
“crude oil.” Vertebrate search terms included “mammal.”
Search terms by topic were specifically “((petroleum OR
fuel OR hydrocarbon OR “oil spill” OR bitumen OR
“crude oil”) AND (mammal) AND (*toxic*))”. Resulting
retrieved paper titles were categorized based on relevance.
Few (24) relevant marine mammal papers were found
through the Web of Science™ search, consequently select
references within retrieved papers were also included in

this review. As there were numerous references to two
books Marine Mammals and the Exxon Valdez (Loughlin
1994) and Sea Mammals and Oil; Confronting the Risks
(Geraci and St. Aubin 1990), relevant chapters from each
book were included. Lastly, information from a Canadian
Department of Fisheries and Oceans report (Dupuis and
Ucan-Marin, 2015) and book chapter (Frasier et al. 2020)
were added. In this way, we have tried to represent oil spill
research on marine mammals as accurately and objectively
as possible. Therefore, this review is based on information
from 68 research papers or book chapters related to con-
ventional petroleum impacts on marine mammals. Impacts
of toxicity are summarized in Table 1.

Risk of petroleum toxicity to marine mammals

Marine mammals are at risk of contact to petroleum through
all routes of exposure (Neff 1990). For example, following
the DWH oil spill, dolphins were observed swimming in oil
contaminated waters. Consequently, the routes of exposure
to petroleum for those dolphins included direct contact to
oil both at the surface of the water and within the water
column, inhalation of PAH volatiles at the air-water inter-
face, incidental ingestion of contaminated water and sedi-
ment when foraging, and ingestion of contaminated prey
(Schwacke et al. 2014). Inhalation of the toxic aromatic
hydrocarbon vapours (BTEX), most concentrated above oil
slicks, can readily be inhaled by those marine mammals
with blowholes (Venn-Watson et al. 2015a). In particular,
for those species that lack air-filtering cilia and nasal tur-
binates, such as dolphins, exposure to PAH volatiles upon
inhalation would likely be exacerbated (Venn-Watson et al.
2015a). Inhalation of PAH volatiles caused brain lesions
and resulted in the deaths of numerous harbor seals
(Peterson 2001), as well as eye irritation and lacrimation in
ringed (Phoca hispida) and grey seals (Halichoerus grypus)
(Geraci and Smith 1976; Hall et al. 1996). For species with
fur, such as fur seals, sea otters, and polar bears (Ursus
maritimus) oiling of the pelage will decrease thermo-
regulation and result in hypothermia and death (Neff 1990).
Additionally, oiling of the dermis of pinnipeds can reduce
locomotion and in severe cases can cause drowning when
the flippers are adhered to the body (Davis and Anderson
1976). Oil that has been washed ashore specifically in haul-
out and nursery sites can foul pinnipeds and will eventually
return to subtidal sediments whereby it may be ingested by
grey whales (Eschrichtius robustus), walruses (Odobenus
rosmarus) and seals that prey on benthic fauna (Neff 1990).

When oil compounds and hydrocarbons are absorbed
into the circulation of marine mammals they attack the liver,
nervous system, and blood-forming tissues (Geraci and St.
Aubin 1990). However, marine mammals and their surro-
gate test species have the ability to metabolize petroleum

Table 1 Percentage of papers or book chapters retrieved from the
literature as categorized by type of petroleum or petroleum-related
PAH impact

Impact Percentage (%)

Acute mortality 20.8

Impacts associated with fouling of the pelage 13.9

Alteration of behaviour 12.5

Modulation of the HPA axis 6.9

Reduction of reproductive success 6.9

Chronic mortality 6.9

Hematological injury 5.6

Genotoxicity 5.6

Lung disease 5.6

Immune function 4.2

Eye irritation 4.2

Neurotoxicity 2.8

Liver lesions 2.8

Long-term population decline 2.8

Change in organ mass 1.4
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hydrocarbons through the mixed function oxidase system
(MFO) as quantified in the harbor seal, bottlenose dolphin,
white-sided dolphin, harbor porpoise, minke whale, pinni-
peds, and American mink (Mustela vison) (Engelhardt
1982; Geraci and St. Aubin 1982; Goksoyr et al. 1986;
Watanabe et al. 1989; Frost et al. 1994b; Schwartz et al.
2004a; Lee and Anderson 2005). This metabolism has also
been measured indirectly through elevated ethoxyresorufin-
o-deethylase (EROD) activity in common minke whale liver
microsomes incubated in the PAH phenanthrene (Goksoyr
et al. 1986). EROD activity has also been measured in polar
bears (Letcher et al. 1996; Mckinney et al. 2011), ringed
seals (Mckinney et al. 2011), and beluga whales (Delphi-
napterus leucas) (Mckinney et al. 2011). The aryl hydro-
carbon receptor, a common inducer of the transcription of
MFO enzymes was likewise identified in beluga whales
(Hahn et al. 1992).

However, the extent to which marine mammals can
metabolize and eliminate hydrocarbons is unclear. Ceta-
ceans as a group do not have sweat glands, sebaceous
glands, or gills; consequently the routes cetaceans use to
eliminate petroleum hydrocarbons may be limited and
lipophilic contaminants such as PAHs may accumulate in
blubber (Engelhardt 1983; Marsili et al. 2001). Addition-
ally, marine mammals that have ingested hydrocarbons and
then undergo a deep dive experience increased exposure to
petroleum hydrocarbons. During deep dives hydrocarbons
bypass the liver and its detoxifying activity, instead directly
entering the brain and other tissues, which may result in
death (Geraci et al. 1989). Moreover, breath holds allow for
prolonged contact and exchange between inhaled PAH
vapors and blood (Irving et al. 1941; Ridgway et al. 1969).

The specific habitats in which marine mammals live
also have the potential to increase risk of exposure to oil.
In North America over half of pinniped species reproduce
on pack ice which can concentrate oil between ice floes or
accumualte in flotsam (LeFèvre 1986) whereby it could be
ingested (McLaren 1990). Oil may also persist at ice
edges, leads, and breathing holes frequently visited by
polar bears, narwhals (Monodon monoceros), belugas,
ringed seals, and walruses (Neff 1990). Toxic volatiles
from oil will evaporate slower in low Arctic temperatures,
enhancing the toxicity of particularly light crudes (Ottway
1971). Moreover, oil can concentrate in bays and estuaries
along the coastline frequently used by pinnipeds and
cetaceans (McLaren 1990). Likewise diet influences
exposure to oil hydrocarbons. Because bivalves such as
molluscs are limited in their detoxifying capacity, they
bioconcentrate hydrocarbons, frequently consumed by sea
otters and walruses (Geraci and St. Aubin 1990). Similarly
plankton, commonly consumed by baleen whales, can
engulf oil droplets for up to ten days (Geraci and St.
Aubin 1990).

Sediments may harbour lingering petroleum following an
oil spill, increasing petroleum exposure to fauna that com-
monly forage there (Esler et al. 2018). For example,
ingestion of PAH-contaminated sediment was proposed as a
possible cause of digestive tract cancers found in an isolated
population of beluga whales of the St. Lawrence Estuary
(Lair et al. 2016). An estimated14% of 222 beluga carcasses
from the St. Lawrence Estuary in Quebec, Canada necrop-
sied from 1983–2012 had malignant neoplasms in their
digestive tracts, the highest occurence of cancer reported for
any population of cetaceans (Lair et al. 2016). Sediments in
the Saguenay River contained high amounts of PAHs spe-
cifically during 1956–1976 due to waste contamination
from nearby aluminum smelters. Because the specific
foraging strategy employed by belugas involves ingestion
of sediment when suction-feeding on benthic prey, it is
likely these individuals directly ingested the PAHs bound to
sediment (Lair et al. 2016). Digestive tract neoplasms
occurred possibly due to chronic exposure to those highly
carcinogenous PAHs (Lair et al. 2016).

Most knowledge of marine mammal oil toxicity data
comes from the aftermath of oil spills as marine mammals
are protected under legislation such as the Marine Mammal
Protection Act (MMPA) and the Endangered Species Act
(Takeshita et al. 2017). Laboratory toxicity studies on
marine mammals in the 1970’s and 1980’s included tests
species such as sea otters (Costa and Kooyman 1982),
ringed seals (Geraci and Smith 1976), bottlenose dolphins
(Geraci and St. Aubin 1982, 1985; Engelhardt 1983; Geraci
et al. 1983; Smith et al. 1983; St. Aubin et al. 1985; Harvey
and Dahlheim 1994), and a rare study involving three polar
bears (Øritsland et al. 1981). More recently, however, pet-
roleum toxicity studies are limited to use of surrogates such
as mink in place of sea otters (Bickham et al. 1998; Mazet
et al. 2001; Schwartz et al. 2004a, 2004b) and in vitro
studies (Carvan et al. 1995; Reichert et al. 1999; Frouin
et al. 2010; Wise et al. 2014; White et al. 2017; Wise et al.
2018a). The following sections review common impacts of
petroleum exposure to marine mammals from both labora-
tory studies and oil spills.

Hematological injury, immune function, and
changes in organ weight

Exposure to crude oil can induce hematological injury and
modulate both immune function and organ weight. For
example, American mink exposed to 500 ppm bunker C
fuel oil mixed in their feed over 113–118 days experienced
changes in hematology and organ weight (Schwartz et al.
2004a, 2004b). Chronic ingestion of fuel oil was associated
with a decrease in erythrocyte count, hemoglobin, and
hematocrit, and an increase in mean corpuscular volume.
Liver and adrenal weight increased (adrenal hypertrophy),

540 E. J. Ruberg et al.



mesenteric lymph node weight decreased, and hepatic
cytochrome P4501A1 (CYP1A1) mRNA was elevated
(Schwartz et al. 2004a). Additionally, chronic ingestion of
fuel oil elicited multiple immune responses in American
mink including elevation of various white blood cells, a
significant increase in the absolute numbers of specific
peripheral blood lymphocyte subsets, and increases in
expression of both functionally significant cell surface
proteins and mitogen-induced mononuclear cell pro-
liferative responses (Schwartz et al. 2004b). Modulation of
immune function also occurred in bottlenose dolphin lym-
phocytes following in vitro exposure to environmentally
relevant concentrations of Louisiana sweet crude oil (1 liter/
1 gram media/oil) causing both B- and T-cell proliferation
of white blood cells to increase (White et al. 2017). Health
assessments on bottlenose dolphins from DWH oil con-
taminated regions likewise revealed an increase in B and T
lymphocyte proliferation as compared to conspecifics from
unoiled regions (De Guise et al. 2017). Lastly, anemia was
present in 4 of 32 individual dolphins exposed to DWH oil
(Schwacke et al. 2014) and in polar bears after ingestion of
Midale crude oil (Øritsland et al. 1981). Anemia was also
reported in about half of the sea otter mortalities docu-
mented in rehabilitation centers following the EVOS (Rebar
et al. 1995).

Genotoxicity

Crude oil or its components have been reported to modify
DNA in sea otters and their surrogate test species, American
mink. Genome size increased in kidney samples from mink
kits exposed to crude oil through diet and their mother’s
milk for a duration of about four months (Bickham et al.
1998). A subsequent dosing study with either crude oil or
bunker C fuel oil applied through the diet or externally to
yearling female mink resulted in clastogenetic damage in
spleen tissues (Bickham et al. 1998). Consequently, petro-
leum exposure in mink can cause somatic chromosomal
damage and alteration of genome size (Bickham et al.
1998). Clastogenetic damage can also result from petroleum
exposure in the field. Nearly two years following the EVOS,
30% of blood samples taken from sea otters living in pet-
roleum contaminated areas of Prince William Sound
revealed clastogenetic damage (Bickham et al. 1998).
Additionally, necropsies of beluga whales native to the
highly polluted St. Lawrence Estuary revealed benzo[a]
pyrene adducts were present in liver and brain tissues in 10
of 11 individuals (Martineau et al. 1994).

In vitro studies with PAHs such as benzo(a)pyrene also
report DNA damage. In bottlenose dolphin kidney cell lines,
benzo[a]pyrene CYP1A1-mediated metabolites formed DNA
adducts and inhibited mitosis in a dose dependant manner
(Carvan et al. 1995). Genotoxic effects were also detected in a

harbor seal cell line exposed to benzo[a]pyrene (Frouin et al.
2010). Lastly, DNA adducts were detected in hepatic tissue
from harbor seal carcasses obtained from petroleum con-
taminated EVOS sites via the 32-P-postlabeling technique
(Reichert et al. 1999). PAHs from petroleum were considered
the cause of DNA damage due to the chromatographic pro-
files of the adducts (Reichert et al. 1999).

Eye Irritation

Eye irritation is common in petroleum exposed seals.
Following the Braer oil spill in 1993, upon inhalation of
volatiles, grey seals had redness in the whites of the eyes,
and eye infections (Hall et al. 1996). Additionally a twenty-
four hour exposure to a 1 cm thick slick of Norman Wells
crude oil in ringed seals resulted in temporary eye irritation
including lacrimation, reddening and inflammation of the
conjunctiva, and squinting (Geraci and Smith 1976).
Necropsies of oiled harbor seals revealed higher incidence
of conjunctivitis and skin irritation along with liver lesions
in oiled seals as compared to those that were unexposed
(Spraker et al. 1994).

Neurotoxicity

Brain lesions, stress, disorientation, and acute mortality of at
least 302 harbor seals following the EVOS were attributed
to inhalation of short-chain petroleum volatiles (Peterson
2001). In the spring and summer of 1989, harbor seals were
exposed to high concentrations of volatile petroleum
hydrocarbons (up to 9 ppm) over oil slicks in Prince Wil-
liam Sound (Frost et al. 1994b). Elevation of the aliphatic
hydrocarbon phytane (>1000 ppb) was found in the brains
of seals from contaminated sites following the spill in 1989,
but by 1990 levels of PAHs in the brain had decreased
(Frost et al. 1994b). Four types of brain lesions, intramye-
linic edema, axonal degeneration, neuronal swelling, and
neuronal necrosis were present in oiled harbor seals as
compared to unoiled seals (P < 0.01), characteristic of
hydrocarbon toxicity. The brain lesions primarily occurred
in the thalamus, likely explaining the disorientation and
lethargy that was observed in harbor seals immediately
following the spill and could have also contributed to dif-
ficulty swimming, feeding, or diving (Spraker et al. 1994).

Lung disease

Cetaceans exposed to crude oil may have an increased inci-
dence of lung disease. For example, in Louisiana, Mississippi,
and Alabama, increased dolphin strandings were associated
with significantly elevated PAHs in the water following the
DWH oil spill (Venn-Watson et al. 2015a). Based on analysis
of tissues from bottlenose dolphins that stranded in these

Review of petroleum toxicity and identifying common endpoints for future research on diluted bitumen. . . 541



states, stranded dolphins were more likely to have primary
bacterial pneumonia (P= 0.003) as compared to dolphins
from reference sites and primary bacterial pneumonia caused
or contributed significantly to death in 70% of the strandings.
Additionally, health assessments on bottlenose dolphins in the
heavily oiled Barataria Bay, Louisiana, revealed pulmonary
disease and lung lesions attributed to DWH oil; specifically,
pulmonary abnormalities lingered (Schwacke et al. 2014) up
to four years following the spill (Smith et al. 2017). Dolphins
in Barataria Bay had a five-fold greater chance of having lung
disease (moderate to severe) as compared to dolphins at a
reference site. Lung disease was characterized by significant
alveolar interstitial syndrome, lung masses, and pulmonary
consolidation. 17% of those dolphins assessed in Barataria
Bay were not expected to survive (Schwacke et al. 2014).

Exposure to crude oil may also cause lung disease in
pinnipeds. Based on necropsy data of oiled harbor seals,
inhalation of vapours from the EVOS may have casued
interstitial pulmonary emphysema, leading to mortality of
those seals that were even lightly oiled (Lipscomb et al.
1994). Additionally, of the oiled otters that died both in
rehabilitation and in oil-contaminated sites of Prince William
Sound, 41% and 66% had interstitial pulmonary emphysema.
In contrast, only 21% of unoiled carcasses from the wild had
interstitial pulmonary edema. Pulmonary emphysema
occurred along with other abnormalities such as gastric ero-
sions and hepatic lipidosis (Lipscomb et al. 1994).

Impacts on the endocrine system and reproductive
success

Petroleum can affect the hypothalamic-pituitary-adrenal
(HPA) axis, specifically the adrenal gland, possibly
because this gland can be a significant site for metabolism
of PAHs (Venn-Watson et al. 2015a). Based on analysis of
tissues from bottlenose dolphins that stranded in Louisiana,
Mississippi, and Alabama following the DWH oil spill,
stranded dolphins were more likely to have thin adrenal
cortices (P= 0.003) as compared to dolphins from refer-
ence sites and petroleum exposure likely resulted in chronic
adrenal insufficiency, increasing susceptibility to adrenal
crises (Venn-Watson et al. 2015a). Additionally, health
assessments on bottlenose dolphins in the heavily oiled
Barataria Bay, Louisiana, revealed compromised stress
response and adrenal lesions including hypoadrenocorti-
cism; specifically, impaired stress response lingered
(Schwacke et al. 2014) up to four years following the spill
(Smith et al. 2017). These impacts were attributed to
chronic petroleum exposure because the dolphin population
in Barataria Bay exhibits strong site fidelity (Wells et al.
2017). In other studies, exposure to petroleum caused
adrenal hypertrophy in mink (Schwartz et al. 2004a) and
adrenal insufficiency was named as a possible cause of

death in ringed seals following a twenty-four hour immer-
sion in a one centimeter thick slick of Norman Wells crude
oil (Geraci and Smith 1976).

Chronic exposure to crude oil may also impact the
hypothalamic-pituitary-gonadal (HPG) axis. For example, a
chronic study on mink (Mustela vison) used as surrogates
for protected sea otters linked petroleum exposure to sig-
nificantly reduced reproductive success (Mazet et al. 2001).
Mink were exposed to either 0.065 g/kg body weight/day
Alaskan North Slope crude or bunker C fuel oil and
exposures began 60 days prior to breeding continuing until
kits were weaned (Mazet et al. 2001). Result highlights
include fewer births in the fuel oil dietary group (P < 0.05),
a decreased average number of liveborn kits in dietary
exposed groups as compared to controls (P < 0.05), and
poor survival to weaning in dietary exposed groups (Mazet
et al. 2001). The reproductive success of kits whose mothers
were exposed to dietary fuel oil was also significantly
reduced (P < 0.05) even though the kits themselves were
exposed to fuel oil only through nursing or when in utero
(Mazet et al. 2001). These results indicate that if sea otters
in the wild were chronically exposed to petroleum through
their diet, they may experience reduced reproductive suc-
cess (Mazet et al. 2001).

Bottlenose dolphins from Barataria Bay, Louisiana,
similarly had decreased reproductive success following the
DWH oil spill. After monitoring 10 pregnant dolphins in a
heavily oiled area for 47 months 20% of mothers in the
heavily oiled bay produced viable calves, a significant drop
from the reproductive success rate of 83% in a reference
population (Lane et al. 2015). Moreover, the Barataria bay
dolphin population had an increased annual mortality rate
by up to 9%, above baseline rates. Those dolphins sustained
reduced reproduction and survival rates following the spill
indicating the effects of the oil spill were long-lasting;
exposure to oil hydrocarbons was associated with poor
maternal health which resulted in perinatal losses (Lane
et al. 2015). Bottlenose dolphins from another DWH oil
contaminated region of the Gulf of Mexico, Misssissippi
Sound, had a similarly low reproductive success rate
(19.4%) following the spill (Kellar et al. 2017).

Lastly, following large oil spills fewer offspring were
produced by harp seals (Pagophilus groenlandicus) (Frost
et al. 1994a) and sea otters (Tuomi and Williams 1995)
while unusually high abortion rates and premature births
were thought to occur in harbor seals (Spraker et al. 1994).

Fouling of pelage: metabolic and clinical
abnormalities

Petroleum reduces the fur’s insulative properties by
removing the natural oils that waterproof it. For example,
fouling of one third of the fur can result in 50% greater heat
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loss in fur seals (Kooyman et al. 1977). The marine
mammal possibly most adversely affected by pelage foul-
ing is the sea otter (Geraci and Williams 1990; Rebar et al.
1995; Williams et al. 1995; Schwartz et al. 2004a). While
otters will avoid oil when given a choice, once con-
taminated they will obsessively groom (Geraci and Wil-
liams 1990) for hours, displacing other activities such as
feeding (Ralls and Siniff 1990). Because their high meta-
bolisms cannot tolerate interruptions in feeding, the inten-
sive grooming, compromised insulation of fur, and oral
ingestion of oil compound metabolic stess, resulting in
death. This also directly affect metabolic rate; for example,
when 18% of the body surface of an otter was coated in oil
and, after swimming for 30 minutes, metabolic rate
increased by 40% (Costa and Kooyman 1982). Similarly,
fouling of 20% pelage of otters was linked to a twofold
increase in metabolic rate. Grooming, while intensive,
spreads petroleum deeper into pelage, displacing other
behaviours. Once otters coated with oil, time spent
grooming increases from 35% to 61%, time spent swim-
ming increased by 7%, and time spent resting decreased by
37% (Davis et al. 1988). In particular, because of the high
density of their fur, otter pups are at greatest risk of mor-
tality when oiled (Geraci and Williams 1990). Moreover,
the life histories of otters predispose them to oil exposure;
they are coastal, have stong site fidelity, eat bivales that
concentrate oil hydrocarbons, spend much of their time at
the surface of the ocean in kelp beds which commonly
concentrate oil, and group together in rafts, allowing for
simultaneous contamination (Ralls and Siniff 1990).

Following the EVOS, the common symptoms of rescued
oiled sea otters included hypothermia, lethargy, hemor-
rhagic diarrhea, seizures, hypoglycemia, and anorexia as
well as clinical chemistry abnormalities (Lipscomb et al.
1994). Clinical abnormalities associated with otter deaths in
rehabilitation centers within the first 10 days of intake were
most common in those otters that were heavily oiled (Rebar
et al. 1995). Mortality was commonly preceded by shock
and development of shock was dependant on the degree of
oiling on pelage (Rebar et al. 1995).

The European otter (Lutra lutra L.) while not strictly
marine, is a coastal mustelid and largely piscivorous (Pierce
and Boyle 1991). After the Sullom Voe oil spill in Shetland,
Scotland, 13 European otters were confirmed dead (Baker
et al. 1981). Cause of death was haemorrhagic gastro-
enteropathy thought to be due to ingestion of oil during
grooming of the pelage. It was estimated that the proportion
of local mortalities was between 15–50% (Baker et al.
1981). The same was true for harp seals when 4000 gallons
of Bunker C oil spilled into the Gulf of St. Lawrence (St.
Aubin 1990a). Up to 15,000 harp seals were coated in
Bunker C oil and this was linked to an increase in mortality
rates, as return rates of tagged harp seals were 25% lower;

however, other factors may have contributed, such as
reduced availability of habitat for birthing pups (Sergeant
1991). In contrast, coating the pelage of nine whitecoat harp
seal pups with petroleum had no toxicological effect. While
young whitecoat harp seals were completely coated with
Norman Wells crude oil (100% coverage) for two con-
secutive days surprisingly the study did not report any
adverse effects including no changes in behaviour, core
temperature, or pathology (Geraci and Smith 1976).

An experimental dermal exposure with three polar bears
placed in an oil covered pool, specifically in a slick of
Midale crude oil (Øritsland et al. 1981) for 15–50 min,
resulted in abnormal metabolic rate, clinical abnormalities,
and mortality. One day after oiling metabolic rate increased
by 27–86% (Hurst et al. 1982). Initially intensive grooming
occurred but subsided after five days. Grooming resulted in
oral ingestion of oil and skin irritation. The ingested oil
caused vomiting and diarrhea while absorbed hydrocarbons
were excreted by bile and urine. Twenty-nine days after the
exposure two of the three bears had died. Clinical
abnormalities included peripheral hemolysis, erythropoietic
dysfunction, renal abnormalities, anemia, blood chemistry
abnormalities and decreased thyroid hormone levels.
Necropsies indicated degeneration of the kidney tubules,
low-grade liver lesions, depressed lymphocyte activity, and
fungus containing ulcers. However, death might also have
been related to the stressful experimental protocol imposed
on the bears as it was due to oil toxicity: the three bears
were given an inadequate diet, limited drinking water, and
sustained infected surgical incisions and injection sites (St.
Aubin 1990b). Even so, these metabolic and clinical
abnormalities may occur in oil exposed polar bears in the
wild if overlaid on other stressors like food reduction and
extreme temperatures (St. Aubin 1990b).

While spills are rare within the polar bear’s habitat,
and fouling of these bears has not been reported in the
wild (St. Aubin 1990b), polar bears can detect and avoid
surface slicks of crude oil (Øritsland et al. 1981). Polar
bears spend much time on ice floes, which concentrate
surface oil and, along with freezing temperatures, slow oil
degeneration and elimination (Stirling 1990). Addition-
ally, polar bears could be oiled when hunting for seals in
leads and breathing holes, where they submerge their
head (Stirling 1990). Lastly, ingestion of oil is possible as
polar bears clean themselves while feeding on carcasses
and cubs and females will groom one another (Stirling
1990), showing no aversion to the taste of petroleum (St.
Aubin 1990b).

In contrast, for non-fur bearing marine mammals, such as
the bottlenose dolphin, the epidermis is a very effective
barrier to petroleum compounds. Even when oil was mas-
saged into superficial wounds for 30 minutes, healing time
was not hindered (Geraci and St. Aubin 1982, 1985).
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Behavioural impacts

Altered behaviour or lack thereof, following petroleum
exposure is varied. In captivity for example, petroleum
exposure elicited abnormal behaviour in ringed seals (Geraci
and Smith 1976), and unusual tameness, lethargy, and dis-
orientation in Exxon Valdez oil exposed harbor seals in the
field (Lowry et al. 1994; Spraker et al. 1994). Abnormal
behaviour also occurred in oil fouled sea otters which
groomed themselves obsessively for hours (Geraci and
Williams 1990; Ralls and Siniff 1990). In contrast, following
the EVOS, approximately 474 harbor seals in various loca-
tions within Prince William Sound were oiled (81% of
585 seals) but made no attempt to change behaviour: they did
not avoid oiled haulout sites or oily water, and continued to
use oiled habitats, giving birth to and caring for pups which
also became oiled through nursing (Lowry et al. 1994).

Based on laboratory study results, bottlenose dolphins do
display avoidance behaviour after contacting petroleum oil
slicks and can detect and avoid a variety of oils in the light
and dark by using both vision and echolocation (Geraci
et al. 1983; Smith et al. 1983; St. Aubin et al. 1985). In
contrast, following the 1990 Mega Borg oil spill, bottlenose
dolphins were observed to swim through oil sheens and
slicks (Smultea and Würsig 1995). Furthermore, following
the the EVOS, killer whales were seen to swim through
surface oil (Matkin et al. 2008). Others observed swimming
and behaving normally in oiled waters include fin and
humpback whales (Geraci 1990) and sea lions (Calkins
et al. 1994). Aerial surveys of cetaceans indicated indivi-
duals swam near surface oil but rarely in the slicks (Sor-
ensen et al. 1984). Following the DWH oil spill 13 species
of cetaceans were observed to swim through petroleum
contaminated waters, causing petroleum to be adhered to
the epidermis (Dias et al. 2017). These included Atlantic
spotted dolphin (Stenella frontalis), bottlenose dolphin,
Cuvier’s beaked whale (Ziphius cavirostris), pantropical
spotted dolphin (Stenella attenuata), pygmy sperm whale
(Kogia breviceps), Risso’s dolphin (Grampus griseus),
rough-toothed dolphin (Steno bredanensis), sperm whale
(Physeter macrocephalus), spinner dolphin (Stenella long-
irostris), striped dolphin (Stenella coeruleoalba), and cly-
mene dolphin (Stenella clymene) (Dias et al. 2017).

Ingestion of crude oil may also modify activity and
sleep-like behaviours. DWH marine mammal response
teams reported lethargy in oil-exposed live stranded dol-
phins they encountered (Wilkin et al. 2017). In addition,
oral ingestion of a single dose of 75 ml Norman Wells crude
did not result in any adverse toxicological effects in ringed
seals; however, sleep-like behaviour in dosed ringed seals
was modified, specifically dosed seals were active for four
hours longer than controls before sleeping (Geraci and
Smith 1976).

Potential effects on gut bacteria and feeding

Petroleum could impact the digestive processes of certain
marine mammals that rely on symbiotic bacteria to break
down cellulose and obtain nutrients. As manatees consume
sea grasses, retained for a long period of time in the gut,
they have unique gastric glands and gut flora and fauna
specialized for hindgut fermentation. Ingested oil may
interfere with these processess and increased uptake of
hydrocarbons may occur due to the long retention time of
food in the gut (St. Aubin and Lounsbury 1990). Ingested
oil may eradicate digestive flora, resulting in an inability to
obtain nutrients which may result in starvation (Wikelski
et al. 2001, 2002; Romero and Wikelski 2002). Petroleum
may also indirectly impact the feeding of large cetaceans
such as the baleen whale. Heavy oil was found to foul
baleen plates and caused obstruction of the flow of water
between plates in laboratory studies (Geraci and St. Aubin
1982, 1985; St. Aubin et al. 1984).

Mortality and long term population impacts

Mortality in the field is difficult to accurately ascertain.
Estimates are often based on carcass recovery such as those
reported following the EVOS and DWH oil spills. Car-
casses found following the EVOS included: 1011 sea otters,
19 harbor seals, 12 Stellar sea lions, (St. Aubin and Geraci
1994) and 37 cetacean species including: 26 gray whales, 5
harbor porpoise, 2 minke whales, 1 fin whale, and 3 whales
that could not be identified to species (Loughlin 1994). The
EVOS carcass recovery search effort coincided with the
grey whale northern migration which may have contributed
to the large number of grey whale carcasses found in
addition, cause of death for the 37 cetaceans recovered
could not be definitively determined (Loughlin 1994).
According to a 2011 report, around 160 marine mammal
deaths were attributed to the DWH oil spill. 13 live and 157
dead mammals were collected; additionally of the live
mammals only 5 were released (U.S. Fish and Wildlife
Service 2011). Hundreds of dolphin strandings were also
reported. A 2017 paper describing the DWH marine
mammal response effort reported 13 live and 178 dead
stranded cetaceans collected from April 2010 to May 2011:
live stranded cetaceans included 10 bottlenose dolphins,
2 spinner dolphins, and 1 clyme dolphin (Wilkin et al.
2017). However, based on historical carcass-detection rates
of cetaceans in the Gulf of Mexico, it was estimated that
only 2% cetacean carcasses are recovered in the Gulf of
Mexico, consequently, following the DWH oil spill ceta-
cean mortalities were likely underestimated (Williams et al.
2011b). Conversely, frequency of carcass detection search
efforts may result in an overestimate of spill-related mor-
talities. Increased search effort following the DWH oil spill
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for stranded bottlenose dolphins had the capacity to increase
rates of documented strandings to abnormal numbers
(Pitchford et al. 2018). Further, carcass recovery cannot be
used to estimate lasting population level impacts as it fails
to address loss of reproductive potential and chronic
impacts that would reduce both fecundity and survival
(Schwacke et al. 2017). One solution is to address chronic
population level impacts through use of age, sex, and class-
structured population modelling (Schwacke et al. 2017).

The DWH spill was attributed to prolonging the duration
of a multi-year unusual cetacean mortality event that had
begun in February 2010 in the northern Gulf of Mexico
prior to the spill (Venn-Watson et al. 2015a). 87% of
cetaceans affected by the unusual mortality event were
bottlenose dolphins (Litz et al. 2014). Following the spill,
from April 30 to November 2 there were 121 strandings,
and 1060 strandings from November 3 to December 14
(NOAA 2014). Dolphin strandings including perinatal
dolphins increased by 3.5 to 4 times the upper limit of
baseline strandings in the oil-contaminated waters of Ala-
bama, Louisiana, and Mississippi from 2010–2011 (Venn-
Watson et al. 2015b). In 2011 increased incidence of peri-
natal dolphin strandings was attributed to exposure to DWH
oil, colder than usual temperatures, and freshwater runoff
(Carmichael et al. 2012). In the heavily oiled Barataria Bay
estimated annual dolphin survival rate was lower than
reference site averages, ranging from 0.80–0.85 (95% CI:
0.77–0.90) for three years following the DWH oil spill
(survival at reference sites averaged 0.95); however, abun-
dance increased from 1300 individuals to an estimated 3100
conspecifics (McDonald et al. 2017). Additionally, low
annual survival for bottlenose dolphins in Mississippi
Sound the year following the DWH spill averaged 0.73
(95% CI: 0.67–0.78) (Mullin et al. 2017). Unfortunately,
baseline data for Barataria Bay bottlenose dolphin abun-
dance was unknown and consequently could not be com-
pared to post-spill data (McDonald et al. 2017).

One year following the EVOS, 13 individuals from a
single killer whale pod died, of which the majority were
reproductive females and juveniles. The mortality rate for
this pod during 1989 and 1990 was 19.4% and 20.7%
respectively, significantly higher than historical rates
(Matkin et al. 1994). The EVOS also had chronic effects on
this species (Matkin et al. 2008). Analysis of killer whale
census data in Prince William Sound from 1984–2005
indicated one resident pod (AB pod) and one transient
population (AT1 population) were adversely affected; only
18 months following the spill mortality rate increased to
33% and 41% respectively (Matkin et al. 2008), as com-
pared to the normal pod mortality rate, which is about 2.5%
annually. Neither the resident pod nor the transient popu-
lation had recovered to their pre-spill numbers 20 years later
(Matkin et al. 2008). The acute mortalities of the spill had

long-lasting implications; the small AB pod lost a dis-
proportionate number of adult and juvenile females, thereby
slowing its reproductive rate (Esler et al. 2018). Addition-
ally, the loss of females following the spill from the already
threatened AT1 population contributes to its likelihood of
eventual extinction (Esler et al. 2018). In contrast humpback
whales near the vicinity of the EVOS appeared to not be
affected; particularly abundance, calving rates, and mortal-
ity did not change following the spill (von Ziegesar et al.
1994). However, pre-spill humpback whale estimates were
based on searches in a small geographic range while post
spill estimates and abundance was likely higher due to both
increased search effort and wider geographic coverage of
surveys (von Ziegesar et al. 1994).

Harbor seals and sea otters sustained the highest mor-
tality rates of any marine mammal (Loughlin et al. 1996)
following the EVOS. Sea otter carcasses from contaminated
areas contained much higher concentrations of aliphatic and
aromatic hydrocarbons (>8 x) than otters from unoiled sites
(Mulcahy and Ballachey 1994). Of the 364 oiled otters that
were rescued 53% were rehabilitated and returned to the
wild, 32% died at the centers, while the remaining were
distributed to marine aquaria (Geraci and Williams 1990).
Of those returned to the wild, 45 adult sea otters were
surgically implanted with radio transmitters to track sub-
sequent survival (Hofman 1994). Eight months later over
25% of those adults had died (Hofman 1994). Additionally,
six months following the spill, of the at least 4500 otters in
the affected area, 886 carcasses were found (Irons et al.
1988); this number increased to 994 when including car-
casses in Prince William Sound and deaths in rehabilitation
centers (Lipscomb et al. 1994).

Of the sea otter casualties attributed to the EVOS, many
were maternal, fetal, or neonate (Tuomi and Williams
1995). While reproduction rates from late 1989 to summer
1991 did not significantly diminish, long term survival of
otter pups was impacted (Ballachey et al. 1994). Three
years following the spill, survival of pups was lower in
oiled regions of Prince William Sound when compared to
pups in unoiled regions (Monnett and Rotterman 1992;
Ballachey et al. 1994; Mazet et al. 2001). Of the approxi-
mately 30,000 sea otters in the Gulf of Alaska and Prince
William Sound, it was estimated 3500–5500 otters died
following the EVOS, reducing the population by about 18%
(Hofman 1994). Similarly, harbor seal pups were especially
impacted following the EVOS. Of 19 harbor seal carcasses
collected, 15 were oiled and 13 of these were pups (Spraker
et al. 1994). Petroleum toxicity and related stress was
thought to be associated with an unusually high rate of
abortions and premature births, as well as deaths of both
pups and adults in heavily oiled areas (Spraker et al. 1994).
Additionally, based on mortality estimates from haulout
sites, at least 302 harbor seals died (Frost et al. 1994a) and
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26% fewer pups were produced at oiled sites in 1989 (Frost
et al. 1994a). Sea otter abundance recovered to pre-spill
estimates nearly 25 years following the EVOS (Esler et al.
2018). Delayed recovery for those sea otters was attributed
to exposure to lingering petroleum; exposure was exacer-
bated by life history traits and species specific behaviours
such as high site fidelity and foraging habits (Esler et al.
2018).

Summary

Routes of exposure and toxicological impacts of petroleum
to marine mammals are summarized in Fig. 1. On a taxo-
nomic basis:

1. Effects on pinnipeds as a group include: behavioural
abnormalities, eye irritation, liver and brain lesions,
neurotoxicity, pulmonary emphysema, DNA damage,
haemorrhagic gastroenteropathy, decreased reproduc-
tive success and mortality (Geraci and Smith 1976;
Frost et al. 1994a; Lipscomb et al. 1994; Spraker et al.
1994; Hall et al. 1996; Loughlin et al. 1996; Reichert
et al. 1999; Peterson 2001).

2. Cetaceans experience immune responses (De Guise
et al. 2017; White et al. 2017) and DNA damage
(Carvan et al. 1995). Of the cetaceans, petroleum
exposure in bottlenose dolphins was linked to lung
diseases, bacterial pneumonia, adrenal dysfunction,
impaired stress response, lethargy, reduced reproductive

success, and mortality (Schwacke et al. 2014; Lane
et al. 2015; Venn-Watson et al. 2015a; Kellar et al.
2017; Smith et al. 2017; Wilkin et al. 2017).

3. Marine fissipeds such as sea otters succomb to
hypothermia upon fouling of fur due to compromised
insulation and metabolic stress, commonly resulting in
death (Costa and Kooyman 1982; Geraci and Williams
1990; Ralls and Siniff 1990; Hofman 1994; Rebar et al.
1995).

4. Little toxicity data exists for polar bears (Øritsland et al.
1981) and no data exist for walruses and sirenians.
While manatee habitat overlapped with the DWH oil
footprint, none were observed while the spill was
ongoing (Beyer et al. 2016); however, manatee
populations in Florida are likely exposed regularly to
hydrocarbons (Engelhardt 1983).

Recommendations

1. Improved baseline data on PAH and metals exposure
Measurement of PAHs, CYP upregulation, and

metal concentrations in marine mammals through
noninvasive methods such as use of biopsy darts
would be useful for ongoing, long term monitoring of
populations and contribute greatly to pre-spill data,
especially for those marine mammals that share their
coastal habitat with petroleum exploration and

Fig. 1 Common routes of petroleum exposure to marine mammals and consequent impacts of toxicity
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transport. Noninvasive methods would likewise assist
in the monitoring of marine mammal species whereby
there is little to no petroleum toxicity data available
such as the manatee. Background levels of PAHs have
been quantified in cetacean subcutaneous blubber
using deploy of biopsy darts to free living cetaceans
(Marsili et al. 2001) and CYP upregulation has been
quantified in seven species of free living cetaceans
through use of skin biopsy (Fossi et al. 2014). In
addition, after the DWH spill, skin biopsies were
collected from three cetacean species in the Gulf of
Mexico to monitor metal concentrations in the skin,
specifically those that are found in DWH petroleum
(Wise et al. 2018b).

2. Improved pre- and post-spill data on marine mammal
populations

Although this may be challenging in some
jurisdictions, baseline data regarding species abun-
dance and demography is necessary to effectively
assess the negative impacts of an oil spill to marine
fauna and when insufficient, as in the case of both the
EVOS and DWH oil spills, post-spill population
assessment results are obfuscated (Bjorndal et al.
2011). For example, except for the ample baseline
data for the bottlenose dolphins near Sarasota Bay,
Florida (Wells 2014), data on marine mammal
presence in the Gulf of Mexico was scarce prior to
the 2010 DWH oil spill and abundance estimates were
lacking, resulting in limited assessments of post-spill
impacts to marine mammals (Frasier et al. 2020). A
comparison of pre-and post-spill data is needed to
effectively quantify the toxicological effects of
petroleum (Frasier et al. 2020).

Passive acoustic sensors represent an additional
noninvasive tool for biomonitoring, specifically for
those marine mammal species that use echolocation.
With the ability to pick up individual echolocation
clicking and pulses, passive acoustic sensors deployed
during the DWH oil spill captured individual and
species specific cetacean activity, part of a long term
study (GOM High-frequency Acoustic Recording
Package program) (Hildebrand et al. 2015; Frasier
et al. 2017, 2020). However, because the sensors were
not deployed prior to the spill, only post-spill data was
obtained. While the passive acoustic sensor data
implicated declines in some species specific activity,
data was obfuscated by a lack of background knowl-
edge regarding the various migratory ranges, seasonal
patterns, and long term activity of cetaceans in the
Gulf of Mexico (Frasier et al. 2020). Research is
consequently needed, specifically on the long term
activity of cetaceans to disentangle any potential
impact of catastrophic petroleum spillage from the

natural variability of populations (Aderhold et al.
2018). This includes long term research at the
ecosystem level. For example, the herring population
crash in Prince William Sound following the EVOS
and subsequent lack of recovery may still be
influencing predators at upper trophic levels such as
marine mammals. Conversely, recovering marine
mammal populations in Prince William Sound that
feed on herring may be exerting top-down pressure on
the herring population (Aderhold et al. 2018).

3. Use of surrogate mammalian models for petroleum
toxicity testing

Many knowledge gaps related to petroleum toxicity
in marine mammals still exist and the protected status
of marine mammals limit investigation to in vitro
studies and noninvasive techniques. In light of both
the limitations of field studies and current toxicity data
available, we recommend that researchers continue to
use species such as American mink as surrogates for
marine mammals in petroleum toxicity dosing studies.
It is crucial these toxicity tests be standardized
according to dosage, duration of exposure, and test
species. Comprehensive conventional petroleum toxi-
city data on marine mammal surrogates is especially
needed in light of increasing transportation of
unconventional petroleum with unknown toxicity
such as diluted bitumen, which poses new risk to
aquatic mammals.

4. Need for empirical data on toxicity of unconventional
petroleum to marine mammals

A dosing study of dilbit and two conventional crude oils
in zebrafish (Danio rerio) embryos determined that dilbit
toxicity is equal to or less than conventional crude (Philibert
et al. 2016). Extrapolating from that fish study, dilbit would
pose a risk to marine mammals if spilled into the marine
environment. In the event of a major spill, for example into
Vancouver harbour, from a major proposed pipeline
expansion, models estimate a greater than 50% probability
that the Southern resident killer whale population would
decrease dramatically (Lacy et al. 2015). Additionally, for
the sea otter, one of the most vulnerable marine mammal
species to oiling, a major spill of crude oil such as dilbit
could greatly impact remaining endemic populations of sea
otters already experiencing population pressures in British
Columbia (Harris et al. 2011). While few dilbit dosing
studies are available for aquatic fauna, this review high-
lights the common endpoints observed in conventional
crude oil spills and exposures to marine mammals. These
common endpoints inform planned research on unconven-
tional crude oils such as dilbit toxicity and can assist in
quantification of marine mammal health following spillage
into the marine environment.
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