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Abstract Copper (Cu)-based fungicides have been used in
viticulture to prevent downy mildew since the end of the
19th century, and are still used today to reduce fungal
diseases. Consequently, Cu has built up in many vineyard
soils, and it is still unclear how this affects soil functioning.
The present study aimed to assess the short and medium-
term effects of Cu contamination on the soil fungal com-
munity. Two contrasting agricultural soils, an acidic sandy
loam and an alkaline silt loam, were used for an eco-
toxicological greenhouse pot experiment. The soils were
spiked with a Cu-based fungicide in seven concentrations
(0–5000 mg Cu kg−1 soil) and alfalfa was grown in the pots
for 3 months. Sampling was conducted at the beginning and
at the end of the study period to test Cu toxicity effects on
total microbial biomass, basal respiration and enzyme
activities. Fungal abundance was analysed by ergosterol at
both samplings, and for the second sampling, fungal com-
munity structure was evaluated via ITS amplicon sequen-
ces. Soil microbial biomass C as well as microbial

respiration rate decreased with increasing Cu concentra-
tions, with EC50 ranging from 76 to 187 mg EDTA-
extractable Cu kg−1 soil. Oxidative enzymes showed a trend
of increasing activity at the first sampling, but a decline in
peroxidase activity was observed for the second sampling.
We found remarkable Cu-induced changes in fungal com-
munity abundance (EC50 ranging from 9.2 to 94 mg EDTA-
extractable Cu kg−1 soil) and composition, but not in
diversity. A large number of diverse fungi were able to
thrive under elevated Cu concentrations, though within the
order of Hypocreales several species declined. A remark-
able Cu-induced change in the community composition was
found, which depended on the soil properties and, hence, on
Cu availability.
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Introduction

The infestation with foliar diseases such as downy mildew
(Plasmopara viticola) and anthracnose (Elisinoe ampelina)
can cause severe losses in grapevine (Vitis vinifera L.)
production (Merrington et al. 2002). Copper (Cu)-based
fungicides such as the Bordeaux mixture have been used to
control these plant diseases since the end of the 19th cen-
tury, and Cu compounds including Cu-oxychloride and Cu-
hydroxide are still applied today in both, conventional and
organic viticulture as well as in horticulture (Brun et al.
1998). As a consequence of the regular and frequent long-
term foliar application of Cu-based fungicides, Cu has
accumulated in many agricultural and viticultural soils.
Especially in surface horizons through direct application,
drift, or dripping of excess sprays from leaf surfaces

Martin Schneider and Markus Gorfer contributed equally to this work.

* Katharina M. Keiblinger
katharina.keiblinger@boku.ac.at

1 Institute of Soil Research, University of Natural Resources and
Life Sciences, Vienna, Austria

2 AIT Austrian Institute of Technology, Center for Energy, Business
Unit Environmental Resources & Technologies, Tulln, Austria

3 AIT Austrian Institute of Technology, Center for Health and
Bioresources, Business Unit Bioresources, Tulln, Austria

4 Symbiocyte Berger, Tulln, Austria

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10646-017-1888-y) contains supplementary
material, which is available to authorized users.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-017-1888-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-017-1888-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-017-1888-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-017-1888-y&domain=pdf
http://orcid.org/0000-0003-4668-3866
http://orcid.org/0000-0003-4668-3866
http://orcid.org/0000-0003-4668-3866
http://orcid.org/0000-0003-4668-3866
http://orcid.org/0000-0003-4668-3866
mailto:katharina.keiblinger@boku.ac.at
https://doi.org/10.1007/s10646-017-1888-y


(Chaignon et al. 2003) and because of its limited mobility,
which is related to soil clay content and organic matter
(Kabala and Singh 2001). High total Cu concentrations
have been found in vineyards in France (up to 1,500 mg Cu
per kg of dry soil), Australia (320 mg Cu kg−1), India (131
mg Cu kg−1), Italy and other countries (320 mg Cu kg−1)
(Deluisa et al. 1996; Pietrzak and McPhail 2004). In typical
Austrian viticultural regions, highest Cu concentrations
have been reported for the Weinviertel and Wagram, with
up to 831 mg Cu kg−1 and 888 mg Cu kg−1, respectively
(Berger et al. 2012).

Plant protection against fungal diseases not only harms
the target pathogens, but can potentially cause detrimental
effects on a range of beneficial soil organisms, such as
saprotrophic microbes (Peèiulytë 2001), and may lower
terrestrial biodiversity. As a result, soil-borne plant patho-
gens might benefit from an impaired soil microbial com-
munity due to unspecific and non-target effects of
fungicides.

Among the soil organisms, fungi and bacteria are gen-
erally the most studied. Although bacteria are predominant
in quantity, fungal mass in the soil is of similar magnitude
owing to their cell size (Blume et al. 2009). So far, the
majority of metal contamination studies has focused on soil
bacterial communities. Soil fungi, however, play a major
role in the decomposition of complex plant or animal-
derived compounds and thereby on soil biogeochemical
cycling (Aguilar-Trigueros et al. 2015). Moreover, some
soil-borne fungi show biocontrol activity against pests and
diseases by antagonistic strategies (Pal and Gardener 2006).
However, it is not entirely understood how Cu influences the
fungal community structure and ecosystem functions in soil.

Copper is not only a toxic heavy metal but also an
essential redox active transition metal, necessary for
organism functions, e.g. the catalysis of oxidation by a
number of enzymes (de Boer et al. 2012). As Cu2+, it is
present in the cytochrome oxidase, the nitrite reductase of
denitrifying bacteria and fungi as well as in oxygenases
(Kandeler 2015). However, excessive Cu concentrations are
potentially toxic through the catalytic formation of reactive
oxygen species and the subsequent oxidative stress as well
as by the oxidation of proteins, DNA, and lipids, and
thereby causing cell death (Li et al. 2014) of organisms
(MacKie et al. 2012).

As Cu pollution also exerts a potential risk to soil fertility
and microbially driven soil ecosystem services such as
nutrient cycling processes (Komárek et al. 2010; Wightwick
et al. 2008), it is essential to evaluate Cu toxicity to soil
biota. A dilemma in this context is that there are little
alternatives for Cu fungicides in organic viticulture, while
these systems heavily rely on beneficial microbes that
develop and interact at soil–plant interfaces. It has been
shown that Cu contamination can exert a strong effect on

the soil microbial community, causing a decline of micro-
bial biomass carbon (Li et al. 2015), basal respiration
(Romero-Freire et al. 2016) as well as changes in metabolic
quotient (Merrington et al. 2002), microbial activities and
shifts in the microbial community structure (Li et al. 2014;
Wang et al. 2007).

On the other hand, microbes have evolved resistance
mechanisms in response to heavy metal stress (Vig et al.
2003; Zapotoczny et al. 2007), e.g. some fungi are resistant
to Cu and have the ability to grow at concentrations that are
toxic to other organisms (Gadd and Griffiths 1980; Peèiu-
lytë 2001). This might be attributed to the fact that they are
able to mobilize, sequester, or transform various ions (Gadd
2013; Gadd and Sayer 2000) thereby affecting the metals’
biogeochemical mobility.

As non-target effects of Cu-based fungicides the soil
microbial processes and the soil fungal community are still
not well understood, the present study aimed at quantifying
the responses of selected microbial parameters with
emphasis on the soil fungal community structure. A main
objective was to identify fungal groups that show resistance
and those that suffer from non-target effects.

Materials and methods

Experimental setup

Two contrasting agricultural soils both used for organic
farming and exhibiting low background Cu concentrations,
were sampled in spring 2015. The upper 20 cm were taken
from the soils located in Lasberg (soil L, Upper Austria) and
Deutsch Jahrndorf (soil D, Burgenland), which mainly
varied in soil texture and pH (Table 1). A greenhouse pot
experiment was set up using field moist, well homogenized
soil. The pots (Ø 21 cm, height 20 cm) were filled with 4 L
of soil and compacted to a soil bulk density of 1.2 g cm−3.
The pots were rinsed twice (one week in between) with an
amount of water equivalent to 200 % of the water holding
capacity (WHC) to flush nitrogen that may have mineralized
through the disturbance during the experimental set up. Two
weeks later, six different concentrations (0, 50, 100, 200,
500, 1500, 5000 mg Cu kg−1) of a commercially available
fungicide based on Cu(OH)2 (53.7% according to the pro-
duct label; with a set of formulation agents that are not
aimed to target activity and microbial community according
to the manufacturer’s information) were applied as a sus-
pension in water to both soils in five replicate pots each.
The purity of the commercial fungicide was evaluated by
measuring the Cu concentration and a set of other elements
(Mn, Fe, Ni, Zn, Sr, Pb) after acid digestion of the fungicide
powder. An open digestion of 0.2 g fungicide was per-
formed with 65 % nitric- and 70 % perchloric acid (6:1, v/v,
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suprapur, Merck) according to ÖNORM L 1085 (2009),
filtered (Whatman. 589/2, white ribbon) and analyzed by an
inductively coupled plasma - mass spectrometer (ICP-MS,
ELAN DRL-e SIEX, Perkin Elmer, Waltham, MA, US).
The data are given in Supplementary Table S1. In addition,
basic characterization of the fungicide was conducted, the
pH was measured as outlined below. The electrical con-
ductivity, organic carbon and total nitrogen were evaluated
with standard methods as described elsewhere (Liu et al.
2017). The data are given in Supplementary Table S2. X-
ray diffraction was used to obtain more information on the
composition of the applied fungicide. The results are shown
in Supplementary Fig. S1.

For the sake of simplicity, we will further refer to the
soils and treatments by indicating site and Cu amount
applied as D0-D5000 and L0-L5000.

Each pot received ten seeds of the legume alfalfa
(Medicago sativa L. cultivar. Plato) and no further fertili-
sation. Alfalfa (Medicago sativa L. cultivar. Plato) was
chosen as a test plant, as legumes are essential cover crops
in organic viticulture to improve soil N levels. For passive
watering of the pots glass fibre wicks connected the soil in
the pots with a 5-L bucket beneath containing artificial rain
water (3 mg L−1 Ca; 50 % CaCl2 and 50 % CaSO4).

Pot sampling

Each replicate of the greenhouse pots was sampled on May
21st 2015 (28 days after Cu application) and a second time
during plant growth on August 7th (106 days after Cu
appplication). Bulk soil samples were taken with a 1 cm
stainless steel auger over the whole pot height and were
homogenized by sieving (o2 mm) to remove most of the
fine roots and stored at 4 or −20 °C before analyses.

Laboratory analyses

Soil properties

Soil Cu was extracted with EDTA and CaCl2, respectively.
Five g dry soil was extracted with 50 mM EDTA in a 1:10
ratio shaking for 2 h followed by filtration (Schleicher &

Schuell, Dassel, Germany) according to the Austrian Stan-
dard OENorm-L1089 (2005). 10 mM CaCl2 extracts were
prepared from 2.5 g air dried soil, which equilibrated in 50
ml solution overnight before shaking for 3 h, filtration
(Munktell, 14/N) (Houba et al. 2000). In both extracts, Cu
was measured with flame atomic absorption spectroscopy
(AAS, AAnalyst 400, Perkin Elmer, MA, US).

The pH value was measured with 2 g air-dried soil in 25
mL of a 0.01M CaCl2 solution (OENorm-L1083 2006).
Cation exchange capacity (CEC) was extracted with 0.1 M
BaCl2 at a 1:20 w/v ratio of a according to OENorm-L1086
(2001), and the exchangeable cations (Ca, Mg, K, Na, Al,
Fe, Mn) were determined via inductively coupled plasma
optical emission spectrometry (ICP-OES). Plant available
potassium (KCAL) and phosphorus (PCAL) were extracted
with calcium acetate lactate (CAL) according to OENorm-
L1087 (2004). KCAL was analysed by AAS (Perkin Elmer
2100), and PCAL was measured photometrically based on
the phosphomolybdate blue reaction (Schinner et al. 1996).

Microbial biomass

Chloroform fumigation of soil for 24 h kills microbial cells
with the release of cytoplasm (Alessi et al. 2011). The soil
samples were treated with the chloroform fumigation
extraction (CFE) method as described by Schinner et al.
(1996) to determine dissolved organic carbon (DOC),
microbial biomass carbon (SMBC) and nitrogen (SMBN).
Fumigated and non-fumigated samples were measured with
an automated TOC/TN analyser (TOC-V CPHE200V,
linked with a TN-unit TNM−1 220 V, Shimadzu Corpora-
tion, Kyoto, Japan) according to Brandstätter et al. (2013).

Ergosterol

Two g of freeze dried soil sample was used for extraction of
lipids according to Frostegård (1993). Lipids were extracted
and fractionated by solid phase extraction using Silica gel
columns (Isolute® SI 500 mg of 3 mL, Biotage, Sweden),
and the neutral lipids were recovered to measure ergosterol.
The neutral lipids were eluted in 1M methanol, and trans-
ferred into brown vials for measurement with high

Table 1 Basic characteristics of the two studied soils

Location Province Texturea pH (CaCl2) Sand Silt Clay Corg Ntotal C:N eCEC Cub Pc Kc

% % % % % cmolc kg
−1 mg kg−1 mg kg−1 mg kg−1

Soil D Deutsch Jahrndorf Burgenland silt loam 7.5 29 55 17 1.76 0.18 9.8 22.03 8 122 402

Soil L Lasberg Upper Austria sandy loam 5 66 26 8 1.64 0.17 9.9 5.91 2.3 87 129

a FAO classification
b in EDTA - Ethylenediaminetetraacetic acid
c in CAL - calcium acetate lactate
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performance liquid chromatography (HPLC, 1290 Infinity,
Agilent Technologies Inc., Santa Clara, CA, US) coupled
with a UV detector (λ= 282 nm). The C18 column was an
Eclipse (Agilent Technologies Inc.) with a size of 2.1× 50
mm.

Basal respiration

For basal respiration measurement, 2 g of moist soil was
weighed into headspace vials and moistened with distilled
water to 40 % WHC. The CO2 in the headspace was
measured with a gas chromatograph (GC, Agilent 7890 A)
connected with a headspace sampler (Agilent 7697 A) and a
flame ionization detector (FID Ni-cat) at an oven tempera-
ture of 300 °C with the following settings: 35 mLmin−1 He
and 350 mLmin−1 synthetic air, 11.9 mLmin−1 makeup
flow, carrier gas He. An amount of 200 µL gas was injected
and separated on a GS-carbonplot column (30 m widebore,
inner diameter 0.32 mm, film 3 µm, JW, Santa Barbara, CA,
USA). Extraction conditions of the headspace sampler: 3
min at 25 °C. Calibration was conducted with externally
certified gas standards (CO2: 251 ppm, 501 ppm, 990 ppm).
Samples were analysed twice, before and after incubation
(8 h at 22°C) and CO2 concentration was calculated with
Chemstation 32 quantitative mode. Basal respiration rate
was calculated according to Creamer et al. (2014).

Potential oxidative enzyme activity

The activity of phenoloxidase and peroxidase was measured
photometrically in microplates based on standard methods
(Sinsabaugh et al. 1999), using L-3,4-dihydrox-
yphenylalanin (L-DOPA, Sigma-Aldrich, Vienna, Austria).
One g of soil was suspended in 100 mL 100 mM sodium
acetate buffer (pH 5.5) and homogenized with an ultrasonic
probe in continuous mode at 10 % energy for 1 min
(HD2200 with 200W, Bandelin electronics, Berlin, Ger-
many). An aliquot of 900 µL was mixed with a 20 mM L-
DOPA solution in a 1:1 ratio, by shaking for 10 min on a
horizontal shaker. Then the mixtures were centrifuged and
250 µL of the supernatant pipetted into microplates in 3
replicates. For peroxidase measurement, wells additionally
received 10 μL of a 0.3% H2O2 solution (see also Kei-
blinger et al. 2012). Absorption was read at the beginning
and after incubation at a wavelength of 450 nm, and
potential phenoloxidase and peroxidase activities calculated
according to German et al. (2011).

DNA extraction

For DNA extraction, 0.5 g of sieved soil was added to 1.5
mL of LifeGuard Soil Preservation Solution (MO BIO,
Carlsbad, CA, US) and stored at 4 °C until further

processing. Half of the suspension was added to the wells of
a PowerSoil-htp 96 Well Soil DNA Isolation Kit (MO BIO).
After centrifugation and removal of the supernatant, the
centrifugation protocol was followed according to the
manufacturer’s instructions. The DNA was quantified with
the Quant-iTTM dsDNA Assay Kit (ThermoFisher Scien-
tific, Waltham, MA, US).

Library preparation and Illumina MiSeq sequencing

For profiling of the fungal communities, the ITS2 region
was amplified with primer pair ITS3 and ITS4 as recom-
mended by Tedersoo et al. (2015). For both primers, equi-
molar mixes were used to increase coverage of the fungal
kingdom: the ITS3Mix containing five different primers
(Tedersoo et al. 2014) and the ITS4Mix containing the
original ITS4 (White et al. 1990) and a degenerate version
thereof (for primer details see Supplementary Material
Table S2). All primers contained the universal 5’ tails as
specified in the Nextera library protocol from Illumina. The
PCR reactions in a 20 µL mixture contained 4 µL 5 x
Phusion HF, 1 µL of each primer (10 µM), 0.4 µL dNTP mix
(10 mM), 0.2 µL Phusion Polymerase, 1 µL of tenfold
diluted DNA and 12.4 µL PCR-grade water. Thermal-
cycling conditions were as follows: an initial denaturation
of 3 min at 95 °C, 35 cycles of 30 s at 95 °C, 30 s at 55 °C
and 30 s at 72 °C with a final elongation of 72 °C for 5 min.
All reactions were carried out in duplicate and pooled after
amplification. The AMPure XP beads (Beckman Coulter,
Brea, CA, US) were used to purify the ITS2 amplicon away
from free primers and primer dimer species. Afterwards the
Nextera XT Index Kit (Illumina, San Diego, CA, US) was
used to attach dual indices and Illumina sequencing adap-
ters. The Index PCR reaction in a 50 µL mixture contained
0.5 µL Phusion, 5 µL of each primer (10 µM), 10 µL HF
Buffer, 1 µL dNTP mix (10 mM), 5 µL of DNA and 23.5 µL
PCR-grade water. Thermal-cycling conditions were as fol-
lows: an initial denaturation of 3 min at 95 °C, 8 cycles of
30 s at 95 °C, 30 s at 55 °C and 30 s at 72 °C with a final
elongation of 72 °C for 5 min. Again AMPure XP beads
were used to clean up the final library before quantification
by Quant-iT dsDNA Assay Kit, high sensitivity (Thermo-
Fisher Scientific). Before being sequenced on the Miseq
platform (Illumina), all samples were pooled in equimolar
quantities. Samples were sent for sequencing to the
sequencing core facility at the Vienna Biocenter (VBCF-
NGS, Vienna, Austria).

Data evaluation and statistical analysis

Sequence data files were received from the sequencing core
facility as two fastq files for each sample from the forward
and reverse reads based on the given barcodes. Only
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forward reads were considered in the downstream analysis.
USEARCH program suite (Edgar 2010) was used for fil-
tering short sequences with minimal length of 280 bp.
FASTX toolkit script fastx_barcode_splitter.pl was used to
sort out project specific fungal sequences and USEARCH
scripts were used for chimera detection, filtering under-
represented sequences ( o 10), clustering and counting
sequences per cluster given a 97% sequence similarity. The
results were a sequence file of Operational Taxonomic Units
(OTU) holding one representative sequence per cluster and
a table with counts of each OTU per sample. The OTU
sequences were aligned using Clustal Omega and a PhyML
tree (Guindon and Gascuel 2003) was calculated and
imported into R (R-Development-Core-Team 2008).
Taxonomic affiliation of OTUs was done with the UTAX
script against the UNITE database (Kõljalg et al. 2013),
while manual editing of the data increased phylogenetic
information. Non-fungal sequences and samples containing
less than 3500 fungal sequences were removed from further
analyses.

Shannon indexes were calculated using R-package
‘vegan’ and summarized by Cu treatment for each soil.
For Principal Coordinate Analysis, the distances between
fungal communities in respect to copper treatment in each
soil were calculated as generalized UniFrac distances using
R package ‘GUniFrac’ (Chen et al. 2012) with an alpha
value of 0.5 to avoid domination by overabundant species.
Classical multidimensional scaling of the resulting data
matrix was performed to obtain a 2-dimensional repre-
sentation of these distances (Gower 1966). High throughput
sequencing files have been deposited at NCBI SRA under
the accession number: SRP092758

Dose response relationships were evaluated for the data
with a standard Hill model (by a four parametric logistic

(4PL) curve using Sigma Plot 12.0 with the equation (Eq. 1)
to calculate the half maximum effective concentration
(EC50) (Dawson et al. 2012).

y ¼ minþ ðmax� minÞ
1þ x

EC50

� ��Hillslope ð1Þ

Where y is the dependent variable or microbial parameter
that is affected by Cu, x is the independent variable, the
different doses/concentrations of Cu. Minimum asymptote
is indicated as “min” (response at no added Cu), whereas
maximum asymptote is indicated by “max”(response value
at infinite Cu doses). EC50 is the inflection point, where the
half effect dose is reached for the soil microbial parameter
of interest. The Hillslope refers to the steepness of the
curve.

Results

Variations in physico-chemical and microbial soil
characteristics across treatments

The two soils used in our experiment were similar in
organic C, total N and C:N ratio (Table 1). Soil D had
higher pH, effective cation exchange capacity, calcium-
acetate-lactate-extractable K and P, and finer texture com-
pared to soil L. Four and fifteen weeks after addition of Cu
in form of Funguran, EDTA-extractable Cu was similar in
the two soils (Table 2); however, CaCl2-Cu was different in
the two soils with higher concentrations for soil L, as
indicated by higher CaCl2-Cu / EDTA-Cu ratios in Table 2.

SMBC was sensitive to increasing Cu concentrations at
both sampling times and for both soils. A clear dose
response relationship for Cu and SMBC was seen at lower

Table 2 EDTA-extractable Cu and the ratio of CaCl2-Cu to EDTA-Cu of the two investigated soils for both samplings

1st sampling 2nd sampling

soil Cu spiked EDTA-Cu CaCl2–Cu / EDTA-Cu EDTA-Cu CaCl2–Cu / EDTA-Cu

mg kg−1 mg kg−1 10−3 mg kg−1 10−3

L 0 1.86± 0.10 45.7 2.84± 0.22 64.5

50 39.55± 12.83 10.3 29.89± 5.46 5.10

100 81.98± 10.46 12.7 57.06± 3.63 2.67

200 215.5± 33.54 14.4 100.4± 7.76 4.17

500 605.8± 117.4 56.0 274.4± 37.91 17.9

1500 2229± 413.0 24.3 973.2± 104.7 18.0

5000 7082± 1043 10.4 3437± 92.13 15.1

D 0 7.516± 0.09 23.7 13.33± 1.60 7.71

50 48.35± 10.76 0.835 54.14± 3.08 1.01

100 77.48± 7.97 0.569 91.00± 7.82 0.599

200 171.36± 37.71 0.503 132.4± 19.71 0.517

500 632.0± 34.46 0.491 397.2± 42.85 0.553

1500 1663± 216.4 0.439 1752± 122. 9 0.312

5000 2742± 531.9 0.505 3315± 206.4 0.371

The table shows the means, standard errors (SE) with n= 5
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Cu concentrations at both sampling times (see Fig. 1a,
Supplementary Table S4). The half maximal effective
concentration (EC50), for the first sampling was 76 mg kg−1

EDTA-Cu and 142 mg kg−1 EDTA-Cu for soil D and soil L
respectively (Fig. 1a, Supplementary Table S4). For the
second sampling the EC50 values slightly changed to around
80 mg kg−1 EDTA-Cu for both soils (Fig. 1a, Supplemen-
tary Table S4); these results are consistent with a negative
correlation of SMBC with EDTA-Cu over both soils (see
Supplementary Table S2). The response levelled off at an
application rate of 500 mg Cu kg−1 soil (see Fig. 1a).

The ergosterol concentration followed a similar trend as
SMBC for the first sampling (Fig. 1b) albeit with lower
EC50 values than SMBC, i.e. 49 and 9 mg kg−1 EDTA-Cu
for soil D and soil L, respectively (Fig. 1b, Supplementary
Table S4). At the first sampling, ergosterol started to decline
at the lowest application rate and seemed to be especially
sensitive to Cu; for soil D, the values were almost

approaching the limit of detection. At the second sampling,
the EC50 values increased for both soils by approximately
50 mg kg−1 Cu (Fig. 1b). Interestingly, the maximum
values declined and minimum values increased compared to
the first sampling (Supplementary Table S4). At the second
sampling higher ergosterol concentrations and a higher
EC50 value were observed for soil D compared to soil L.

Short to medium-term effects of copper application on
respiration and enzyme activities

Basal respiration rate was only measured at the second
sampling. Consistent with SMBC, metabolic activity in
terms of basal respiration decreased with increasing Cu,
especially in soil L (Fig. 2a). For soil L, a clear dose
response relationship was observed, and the EC50 value for
EDTA-Cu was determined at 187 mg kg−1 (Fig. 2a, Sup-
plementary Table S5); correspondingly, a significant
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negative correlation of EDTA-Cu and respiration was
observed for soil L (Supplementary Table S6). For soil D,
the values at lower concentrations remained almost constant
at 1.3 µg CO2-C g−1 h−1 and even rose at 500 and 1500 mg
Cu kg−1 addition (Fig. 2a). Basal respiration in soil D had a
similar trend as the shoot biomass (Supplementary Fig. S2).
For soil L and over both soils, basal respiration was

significantly positively related to shoot and root biomass
(Supplementary Table S3). The respiration rate related to
SMBC, i.e. the metabolic quotient qCO2, showed no
response to Cu in soil L (Fig. 2a) indicating that basal
respiration and SMBC were similarly reflecting the active
microbial community. In soil D, the increased respiration at
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500 and 1500 mg Cu kg−1 resulted in a trend of increasing
qCO2.

Both oxidative enzyme activities showed complex
responses to Cu addition (Fig. 2b & c). In soil L, pheno-
loxidase increased significantly for the first sampling, while
for the second sampling a decrease up to an application rate
of 500 mg Cu kg−1 was observed (Fig. 2) and an EC50 value
of 45 mg kg−1 EDTA-Cu was calculated (Supplementary
Table S5). In soil D, phenoloxidase showed the highest
activity at 500 mg Cu kg−1 for the first sampling and an
increasing trend with Cu application for the second
sampling.

For peroxidase at the first sampling, there was a decline
up to 500 mg Cu kg−1, but rising activities at higher Cu
concentrations in soil L, while the activities remained
similar up to 500 mg Cu kg−1 and then also increased in soil
D (Fig. 2c). For the second sampling, the opposite trend was
observed for both soils, i.e. high peroxidase activities up to
200 mg Cu kg−1 and a significant decline with higher Cu
concentrations. For soil L an EC50 value of 265 mg kg−1

EDTA-Cu was calculated (Fig. 2c, Supplementary Table
S5).

Profiling of the fungal community

The Illumina MiSeq sequencing approach resulted in suf-
ficient fungal sequences for all but one sample from soil L.
A high number of low efficiency amplification in soil D,

however, led to the exclusion of many samples from further
analyses due to low numbers of sequences.

Soil L tended to have higher numbers of fungal OTU per
sample (60-116 OTUs per sample) compared to soil D (38-
77). Similarly, higher numbers of fungal OTUs were found
after pooling of data from replicates in soil L (180-140
OTUs per treatment) compared to soil D (80-88), but lower
numbers of OTUs per treatment in soil D might have been
influenced by lower numbers of community profiling data
from soil D due to missing data (Table 3). No significant
differences in OTU richness were found between treatments
in any soil.

The fungal communities in soil D were less even than in
soil L. The most abundant OTU in untreated soil D covered
more than 70% of all reads. Maximum OTU abundance
further increased to more than 80 % in the D50 and D100
treatments and dropped to below 30% in the D5000 treat-
ment. Soil L was generally more even. Most abundant
OTUs covered between 18.3 % (L50) and 56.3 % (L500) of
all reads.

In soil D, Shannon diversity did not change with Cu
application, and in soil L a significant reduction was only
overserved for the two highest application rates (1500 and
5000 mg kg−1, Table 3).

In soil D, the fungal communities found in samples
treated with high amounts of Cu (1500 and 5000 mg kg−1)
deviated from the ones in the other treatments (Fig. 6),
whereas in soil L, communities with medium Cu treatment

Table 3 Richness and diversity
of soil fungal communities

soil Cu spiked n OTU/sample OTU/treatment most abundant OTU H'

mg kg−1 %

D 0 2 62.5± 0.4 81 71.3 1.5± 0.42

50 3 62.7± 2.5 88 82.6 1.1± 0. 39

100 3 64.0± 4.2 88 85.8 1.0± 0.10

200 4 61.0± 1.8 84 56.8 1.8± 0.19

500 3 60.7± 6.3 81 73.0 1.3± 0.27

1500 2 57.5± 13.8 85 43.1 1.7± 0.13

5000 2 62.0± 2.8 80 29.5 1.7± 0.04

L 0 5 98.0± 2.5 137 43.9 2.4± 0.33

50 4 106.3± 2.5 135 18.3 2.8± 0.09

100 5 92.4± 3.0 136 23.4 2.5± 0.08

200 5 84.4± 1.0 118 31.1 2.4± 0.02

500 5 74.6± 0.2 120 56.3 1.7± 0.07

1500 5 72.6± 3.0 123 37.0 1.2± 0.20

5000 5 103.2± 3.3 140 24.1 2.4± 0.39

n: number of samples with sufficient reads for molecular analyses

OTU/sample: average number of OTU per sample ± standard error

OTU/treatment: number of OTUs per treatment after pooling of data from replicates

most abundant OTU: relative abundance in % of most abundant OTU in pooled data from replicates

H’: Shannon Index for fungal diversity in soil samples, average ± standard error from replicates
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(50–500 mg kg−1) were separated from no or high (1500
and 5000 mg kg−1) treatments (Fig. 3).

All communities from both soils and all treatments were
dominated by Ascomycota with a relative abundance of
more than 80% (Fig. 4). The most abundant classes were
Sordariomycetes and Leotiomycetes with high abundance
in soil L for treatments L500 and L1500 (Fig. 4). The two
most abundant orders across all samples were Hypocreales
(Fig. 4) and Glomerellales with OTU read abundances of
~50 and 9%, respectively.

Soil L was dominated by OTU_1 – Fusicolla mer-
ismoides – in the absence of added Cu. With the addition of
Cu, OTU_2 – Thelebolus sp. – became dominant, but was
again replaced by OTU 15 – Emericellopsis sp. – in L1500
(Fig. 5) and OTU_1 and OTU_14 – Plectosphaerella sp. –
in L5000. The hypocrealean, potentially root pathogenic
genera Dactylonectria and Ilyonectria (OTU_7, OTU_9,
OTU_21) were highly abundant in soil L but were nearly
absent at the highest Cu concentration (Fig. 6). Further-
more, a group of basidiomycetous yeasts or dimorphic
fungi in the class Tremellomycetes was highly abundant
in soil L, especially at intermediate Cu concentrations
(Figs. 4 and 5).

Soil D was strongly dominated by OTU_1 – Fusicolla
merismoides – except in the D1500 and one D5000 sample.
These samples were dominated by OTU_14 – Plecto-
sphaerella sp. Dactylonectria and Ilyonectria (OTU_7,
OTU_9 and OTU_21), which were abundant in soil L, were
nearly absent in soil D.

In soil L, Acremonium, Dactylonectria, and Fusarium
OTUs strongly declined with rising Cu concentrations (Fig.
6). The EC50 was very low for Acremonium and Dactylo-
nectria with values of 3.5 and 6.6 mg kg−1 EDTA-Cu,
respectively. For the sum of OTUs that belong to the genus
of Fusarium, the EC50 concentration was 55 mg kg−1

EDTA-Cu (Fig. 6, Supplementary Table S7).

Discussion

Short to medium-term effects of Cu addition on soil
microbial and fungal biomass

Soil microbial biomass carbon (SMBC) was reduced in both
soils at both sampling times after Cu application. This is
likely due toxic effects of excess Cu (Gessler et al. 2011;
Mackie et al. 2012) and renders SMBC as a useful indicator
for soil health, providing valuable information about the
total community (Li et al. 2015; Shade et al. 2012). Even in
the long term of 50 years, Cu based fungicide contamina-
tion in different soils (12–3000 mg Cu kg−1) has been found
to impair fungi, bacteria and actinomycetes (Hussain et al.
2009). While the EC50 value of soil D stayed rather con-
stant, soil L seemed to respond to Cu at even lower con-
centrations at the second sampling, which may be an effect
of its lower pH value.

High sensitivity of the total fungal community was
observed at the first sampling time, reflected by lower EC50

values for the ergosterol content compared to total SMBC
(Fig. 1b, Supplementary Table S4). Differences between
EC50 values for ergosterol and SMBC were less pronounced
at the second sampling. Fungal biomass seems to adapt to
the added Cu, as the EC50 values increased for both soils
from the first to the second sampling (11 weeks). On the
other hand, at higher application rates ergosterol con-
centration were higher at the second sampling than at the
first sampling (especially for soil D), which indicates
adaption of fungi to Cu (Fig. 1b, Supplementary Table S4).
The latter has been reported by several ecotoxicological
studies as a response to Cu addition (e.g. Li et al. 2014).
The observed pattern suggests a slow adaptation of the
fungal community to the toxic effects of Cu. Reduced
nutrient competition by bacteria and provision of additional
nutrients from dead bacteria might have contributed to the

Fig. 3 Principal coordinate
analysis (PCoA) derived from
generalized UniFrac distances
with an alpha value of 0.05
based on the 97% OTU level of
the fungal community
compositions across different
copper treatments in soil D (left)
and soil L (right) at the second
sampling. Ellipses: represent
ellipses of dispersion, dotted
lines: axes of ellipses, dots:
community of sample, grid:
distance= 0.05
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increase in fungal biomass after prolonged incubation, and
several mechanisms of fungi to cope with high heavy metal
concentrations have previously been identified (Gorfer et al.
2009; Vig et al. 2003; Zapotoczny et al. 2007). In soil D,

which is characterized by a higher pH, soil organic matter
and clay content, and consequently lower availability of Cu,
higher ergosterol concentrations were observed at the sec-
ond sampling compared to soil L. This also fits to the results

Fig. 4 Relative abundance of fungal phyla (top panel) classes (middle panel) and order (bottom panel) with increasing concentrations of added Cu,
for soil D (left) and soil L (right)
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of plant biomass, which was less affected by Cu in soil D
(Supplementary Fig. S2).

The observed trends are in line with the finding that
bacteria and fungi respond differently to Cu in soil, with
effects strongly influenced by soil characteristics (Raja-
paksha et al. 2004). For example, soil texture might influ-
ence the Cu effect on the microbial community, as
applications of 200 and 2000 mg kg−1 CuSO4 reduced
fungal populations in loamy soils, but stimulated fungi in
sandy soils (Hemida et al. 1997). However, ecotox-
icological studies using CuSO4 also need to consider soil
pH, as high concentrations have been shown to acidify the
soils with low buffering capacity (Brandt et al. 2010;
Fernández-Calviño and Bååth 2016; Rajapaksha et al.
2004), generally favoring fungi (Rousk et al. 2009). Thus,
higher cumulative fungal growth in CuSO4 contaminated
soil as described earlier are not fully unexpected (Fernán-
dez-Calviño and Bååth 2016; Rajapaksha et al. 2004).
Besides, a stronger effect by pH than by Cu on the bacterial
community has been reported for a study with a factorial
design (de Boer et al. 2012). In the present study, Cu was

applied in form of Cu(OH)2 and resulted in a constant soil
pH up to 500 mg kg−1 Cu applied, but a significant increase
in the highest application rates (up to 5.9 and 7.7 in soils L
and D, respectively). While the pH shifts in the current
experiment would not favor fungal development, soil pH
also strongly determines the metal availability and therefore
toxicity to the soil microbial community.

Short to medium-term effects of Cu addition on
respiration and enzyme activities

Basal respiration, which was only measured at the second
sampling, followed a similar trend as SMBC, resulting in a
stable metabolic quotient throughout the treatments for soil
L. The decline in respiration gives an EC50 value of 187 mg
kg−1 EDTA-Cu for soil L. This is similar to other short-
term respiration results reported in response to Cu addition
(e.g. Fernández-Calviño and Bååth 2016), and may be
associated with heavy metal-induced microbial die off or
complex formation with their substrates, which are then less
available for energy production (Landi et al. 2000). The
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metabolic quotient has been described as an indicator for
the levels of stress through contamination (Khan and
Scullion 2002). From this, one might conclude that the
microbial activity was more stressed in response to Cu in
soil D than in soil L, where higher respiration and qCO2

were observed. However, this is controversial to the char-
acteristics of soil D (Table 1) having higher pH, soil organic
matter and clay content, which cause lower availability of
Cu due to sorption or formation of complexes (Giller et al.
1998). In addition, also plant biomass was less affected by
Cu in soil D (Supplementary Fig. S2). However, root exu-
dates still available at higher Cu concentrations can provide
substrate for microbial metabolism. This C substrate is most
probably rather allocated for maintenance than for microbial
growth, consequently, lowering substrate utilization effi-
ciency and increasing qCO2 (Bahemmat et al. 2015; Liao
and Xie 2007).

Oxidative enzymes showed an increase in activity at the
first sampling, 4 weeks after Cu application. Indeed, phenol-
and peroxidase can be deployed by bacteria and fungi for
the mitigation of toxicity effects of Cu (Sinsabaugh 2010).
When Cu becomes toxic, reactive oxygen radicals are
favored (Zapotoczny et al. 2007), which may enhance the
activity of oxidative enzymes. At the second sampling,
15 weeks after Cu application, peroxidase activity started to
decline at a threshold concentration of 500 mg Cu kg−1 in
both soils (Fig. 2b). This decline is probably due to a
toxicity effect on alfalfa (Supplementary Fig. S1). Although
the secretion of oxidoreductases such as lignin peroxidase
and manganese peroxidase has been observed mainly in
white rot fungi (Kuramae et al. 2013), peroxidase can also
be excreted by bacteria, Actinobacteria and plant roots to
stimulate degradative processes. In fact, root exudates of
alfalfa, have been identified as an important source of
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oxidoreductases with lower activities as a consequence of
lower root biomass (Gramss and Rudeschko 1998). The
latter is also supported by our results. Even though bulk soil
was sampled, the effect of plants in the pots can be observed
at the second sampling compared to the first, where in both
soils a strong reduction of oxidative enzymes was observed,
along with a strong decline in plant biomass due to Cu
application (Supplementary Fig. S1).

Short to medium-term effects of Cu addition on the soil
fungal community

The soil fungal community was highly uneven across both
soils and all treatments, which has previously been descri-
bed as a general feature of fungal communities (Fierer et al.
2007), but such a strong dominance of single taxa has not
been found before in soil. Consequently, fungal diversity
was lower than found in other studies for agricultural soils
(e.g. Klaubauf et al. 2010). In our experiment soil homo-
genization before potting and planting might have con-
tributed to the dominance of a few well adapted species.
Also, pot experiments are expected to be less stratified
vertically and horizontally. A similar tendency to high
abundances of single taxa has been found in decomposing
leaves in streams (Duarte et al. 2015). Fungal diversity as
estimated by Shannon’s Index’ was only slightly reduced in
soil L upon addition of 500 or 1000 mg kg−1 Cu, but
remained largely unaffected in the other treatments and in
soil D. Little influence on fungal diversity, but changes in
community structure by heavy metal contamination were
also found in previous studies, where long-term effects in
forest soils were studied (Hui et al. 2011; Op De Beeck
et al. 2015).

All communities from both soils and all treatments were
dominated by Ascomycota (Fig. 4), which is common in
agricultural soils (Domsch and Gams 1970; Klaubauf et al.
2010; Moll et al. 2016). Stronger effects of Cu addition on
fungal communities were seen in soil L, which can be
explained by the higher bioavailability of Cu as indicated by
the higher ratios of CaCl2-Cu /EDTA-Cu compared to soil
D (Table 2). The most abundant class were Sordariomycetes
with decline in relative abundance from L0 to L500; this
was accompanied by the development of Leotiomycetes in
soil L (Fig. 4). Both of these classes have been mentioned to
be cellulase producing (Schneider et al. 2012), underlining
their potential importance in soil C-cycling.

The most abundant species in the whole dataset, Fusi-
colla merismoides (formerly Fusarium merismoides, see
also Figs. 5 and 6), is considered a common, saprotrophic
soil fungus, which is also found in polluted water (Grä-
fenhan et al. 2011). It dominated the fungal community in
soil L in the absence of Cu and in soil D in most treatments.
The observed pattern suggests an r-strategy for soil

colonization by F. merismoides, which might have been
promoted by soil homogenization (see above) and which is
especially successful in the absence of more competitive
colonizers.

In soil L, Thelebolus sp. became more dominant at
intermediate Cu levels (Fig. 5) which partially explains the
separation of samples L50, L100, L200 and L500 from
samples with low – L0 – and very high – L1500 and L5000
– Cu-concentrations in PCoA (Fig. 3). This pattern indicates
a certain level of Cu resistance, which provides a compe-
titive advantage at intermediate Cu levels, but does not
allow good growth at high Cu concentrations. Thelebolus is
described as a coprophilus genus with a good adaptation to
lower temperatures (Wicklow and Malloch 1971). It seems
to show a preference for agricultural sites as it was also
found in a managed meadow and a pasture, but not in a cork
oak forest and vineyards in Sardinia (Orgiazzi et al. 2012).
Both agricultural sites, the managed meadow and the pas-
ture, mentioned in the latter study, had a similar, slightly
acidic pH as soil L.

A similar pattern as for Thelebolus was found for basi-
diomycetous yeasts and dimorphic fungi in the class Tre-
mellomycetes (Fig. 5). Relative abundances of these two
groups show a linear correlation across all samples (r=
0.72, p= 0.035). A similar correlation between certain
basidiomycetous yeast and Thelebolus was also found by
Orgiazzi et al. (2012). It will be interesting to see whether
they simply have preference for similar ecological niches or
a closer interdependence of a yet unknown mechanism.
Many species in the Tremellomycetes were described as
acidotolerant and heavy metal tolerant (e.g. Gadanho and
Sampaio 2009) and seem to prefer lower temperatures (e.g.
Wuczkowski et al. 2011). Furthermore, single isolates of
cryptococcal yeasts are often described as plant growth-
promoting yeasts (e.g. Liu et al. 2016), but an in-depth
study of this topic is still missing.

A significant reduction in response to Cu was observed
only for the highly abundant order of Hypocreales (Fig. 4).
Among the Hypocreales the potentially root pathogenic
genera Dactylonectria and Ilyonectria (OTU_7, OTU_9,
OTU_21) were highly abundant in soil L, but nearly absent
in soil D and in L5000. Species in Dactylonectria and
Ilyonectria can cause black-foot disease in grapevines
(Agustí-Brisach and Armengol 2013) and were described to
be sensitive to copper oxychloride (Alaniz et al. 2011).
Reduction in black-foot disease could thus be a beneficial
side effect of Cu application in viticultural soils, but
infection with this pathogen complex often already occurs
in nurseries (Reis et al. 2013).

Dactylonectria was very sensitive to Cu application, as
indicated by the EC50 value of 6.6 mg kg−1 EDTA-Cu.
Fusarium species are generally known as plant pathogens
with a high saprotrophic potential. Among the OTUs
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belonging to the genus of Fusarium, which also showed a
strong dose response relationship with Cu, there are
species such as Fusarium oxysporum and Fursarium
solani that are well known to cause root rot. Their decline
with Cu application is a beneficial non-target effect in
soil. In addition, also Fusarium graminearium, can have
negative effects in agriculture due to its mycotoxin
production.

Plectosphaerella sp., a genus of opportunistic plant
pathogenic species often found on cucurbits (Carlucci et al.
2012), became more dominant in soil D at higher Cu con-
centrations, which explains separation of samples D1500
and D5000 from the samples with lower Cu concentrations
in PCoA (Fig. 3).

Glomeromycota were not detected in the whole dataset.
The finding from other studies, where arbuscular mycor-
rhizal fungi where shown to be especially sensitive to heavy
metal pollution could therefore not be tested in this study.
Targeted studies involving specific primers targeting Glo-
meromycota in soil and root samples (Senés-Guerrero and
Schüßler 2016) combined with traditional microscopic and
spore washing techniques are needed to address this topic in
more detail.

Summary and conclusions

Strong negative effects of Cu application on the total
abundance of soil microbial biomass and the fungal biomass
proxy ergosterol were detected already at relatively low
concentrations. Microbial respiration was reduced by Cu
only in the acidic soil L. By contrast, oxidative enzyme
activities were elevated in response to high levels of Cu
application in the short term; in the medium term, perox-
idase was strongly related to plant and root biomass. A
more detailed picture was obtained by fungal community
analysis. The Shannon diversity of the fungal community
was mostly unaffected, but a remarkable Cu-induced
change in the community composition was found, which
depended on the soil properties and, hence, on Cu avail-
ability. A high number of diverse fungi were able to thrive
under conditions of high Cu concentrations, whereas
potentially root-pathogenic genera were strongly reduced at
increasing soil Cu levels. The latter is a beneficial side
effect, which can reduce black-foot disease in grapevine.
Our study demonstrates that Cu additions to vineyard soils
may disrupt microbial equilibria especially in less well
buffered, acidic, sandy soils. However, we did not find a
clear-cut decline in microbial/fungal indicators; rather, the
responses were diverse with certain organisms being sup-
pressed and others taking advantage of the temporarily
extreme conditions.
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