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Abstract
We present a semiparametric method to estimate group-level dispersion, which is 
particularly effective in the presence of censored data. We apply this procedure to 
obtain measures of occupation-specific wage dispersion using top-coded adminis-
trative wage data from the German IAB Employment Sample. We then relate these 
robust measures of earnings risk to the risk attitudes of individuals working in these 
occupations. We find that willingness to take risk is positively correlated with the 
wage dispersion of an individual’s occupation.
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1  Introduction

Important economic issues often center on the shape of distributions. Examples 
include questions relating to income inequality, the shape of wage offer distributions, 
or the riskiness of returns to financial assets. In various settings, empirical labor 
economists have been interested in measures of wage dispersion. More than often, 
such measures have to be estimated from censored data. For example, the March 
Current Population Survey (CPS), which contains survey responses on weekly 
earnings top-coded for anonymization purposes, has been used in several stud-
ies. Researchers have frequently dealt with this problem by multiplying top-coded 
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earnings by a factor of 1.3 to 1.5 (e.g., Katz and Murphy 1992; Juhn et al. 1993). 
Other studies have relied on distributional assumptions to impute censored earnings 
in their data (e.g., Dustmann et al. 2009). Closely related, moments can typically be 
recovered if the shape of the distribution and the censoring rule are known. In many 
settings, however, the shape of the wage distribution is unknown and possibly itself 
of interest, and estimation methods that require parametric assumptions typically 
yield inconsistent estimates when these are violated.1 More advanced semiparamet-
ric methods have been used for social security earnings records matched to the CPS, 
which suffer from a much higher degree of censoring due to a legal contribution 
limit (e.g., Chay and Honoré 1998; Hu 2002).

We present a measure of group-level dispersion that can be straightforwardly 
obtained from quantile regression (QR). Our method does not require parametric 
assumptions on the error terms and is as such consistent under heteroskedasticity 
and non-normality even for censored data. In addition, by using this simple-to-com-
pute method, which is based on group coefficient estimates at different quantiles 
rather than residuals, we can avoid dealing with censored residuals. Our semipara-
metric approach allows to estimate differential patterns of dispersion across occupa-
tions. We are thus able to adequately characterize the entire conditional wage distri-
bution while explicitly incorporating the dispersion effect of covariates.

We then demonstrate the usefulness of the estimation procedure in an application 
in which we relate the estimated occupation-specific wage dispersion in the German 
labor market as a measure of occupation-specific earnings risk to the risk attitudes 
of individuals working in these occupations. In order to estimate the occupation-
specific cross-sectional earnings risk, we rely on German administrative wage data 
from the IAB Employment Sample (IABS) that contains wage information censored 
at the statutory limit for social security contributions. The IABS offers great sam-
ple size, such that we are able to work with more precise occupation definitions 
than previous studies and reduce the effect of aggregation on variation. We then 
match the estimated wage dispersion measure of occupations to individuals in the 
German Socio-Economic Panel Study (SOEP) working in these occupations. The 
SOEP provides us with survey information on risk attitudes and other individual and 
household characteristics. Consistent with previous studies (e.g., Bonin et al. 2007; 
Fouarge et al. 2014) that have assessed the relation between occupational earnings 
risk and risk preferences, we find evidence of a statistically significant correlation 
between our measure of occupational earnings risk and the risk attitudes of indi-
viduals working in a particular occupation: Those who state to be more willing to 
take risks are more likely to work in occupations with higher cross-sectional wage 
dispersion.

1  For example, the Tobin–Amemiya maximum likelihood estimator (Tobin 1958; Amemiya 1973) and 
the two-step Heckit approach (Heckman 1976, 1979) are inconsistent under deviations from homoske-
dasticity (e.g., Maddala and Nelson 1975; Hurd 1979; Arabmazar and Schmidt 1981; Brown and Moffitt 
1983; Donald 1995) and normality (e.g., Arabmazar and Schmidt 1982; Goldberger 1983; Paarsch 1984). 
The simulation study of Vijverberg (1987) for the case of non-normality shows that the estimated error 
variance is often seriously biased, which may trouble our dispersion analysis.
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Our empirical application is related to a large literature that investigates the rela-
tionships between risk preferences and occupational choice. Early studies (e.g., Bel-
lante and Link 1981) have assessed how risk preferences affect the choice between 
private sector and public sector employment. The typical finding in this strand of 
the literature is that higher levels of individual risk aversion significantly increase 
the probability of working in the public sector (see, e.g., Guiso and Paiella 2005; 
Fuchs-Schündeln and Schündeln 2005; Dohmen and Falk 2010 for evidence based 
on Italian and German data). A second class of studies has focused on the relation-
ship between risk preferences and the probability of self-employment, which is 
considered to be more risky than dependent employment. Using data for different 
countries and employing different measures of risk attitudes, these studies consist-
ently find that a higher propensity to take risks increases the probability of being 
self-employed (see, e.g., Cramer et al. 2002; Guiso and Paiella 2005; Ekelund et al. 
2005; Caliendo et al. 2009; Dohmen et al. 2011; Beauchamp et al. 2017 for evidence 
from the Netherlands, Italy, Sweden, Germany, Germany, and Sweden respectively).

Most closely related to our empirical application are studies that have related 
proxies of risk aversion or direct measures of risk attitudes to occupational earnings 
risk. Saks and Shore (2005), for example, use data from the National Postsecondary 
Student Aid Survey in the U.S. and find that, as expected under decreasing absolute 
risk aversion utility, individuals with higher parental wealth more frequently choose 
college majors leading into occupations with greater conditional earnings variation 
(see also King 1974), as estimated on U.S. data from the Panel Study of Income 
Dynamics (PSID) and the Baccalaureate & Beyond survey.2 Bonin et  al. (2007) 
and Fouarge et al. (2014) use direct measures of risk attitudes and relate them to an 
explicit statistic for the riskiness of occupations, the occupation-specific standard 
deviation of the residuals from a Mincer wage regression, in the German and Dutch 
labor markets respectively. They find a significant positive relationship between this 
cross-sectional earnings risk measure and individuals’ stated willingness to take 
risks. While Bonin et  al. (2007) carry out all estimation on data from the SOEP, 
Fouarge et al. (2014) compute the occupation-specific cross-sectional earnings risk 
based on administrative wage data from Statistics Netherlands (CBS) and relate it 
to the self-reported risk attitudes of respondents to the ROA School Leavers Sur-
vey, which is based on the SOEP questions on willingness to take risks. Schulhofer-
Wohl (2011) uses responses to the question on risky jobs in the Health and Retire-
ment Study to relate them to the amount of income risk experienced by individuals, 
estimated based on data from matched social security earnings records. Schulhofer-
Wohl classifies individuals into a low and a high risk tolerance group and finds that 
the latter carry significantly more of both aggregate and idiosyncratic risk.

2  There is a related literature on the relationship between risk preferences and educational choice (e.g., 
Belzil and Hansen 2004; Belzil and Leonardi 2007; Chen 2008; Shaw 1996). Theoretical predictions 
about the relationship between risk preferences and educational choice are less clear cut as education 
may be considered a risky investment (Levhari and Weiss 1974), but also shield against unemployment 
(Mincer 1991; Nickell and Bell 1996).
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Our main contribution to this strand of the literature is the introduction of a 
robust measure of occupation-specific earnings risk that does not rely on para-
metric assumptions for the error terms and yields consistent estimates for occu-
pation-specific wage dispersion even if homoskedasticity and normality assump-
tions are violated. Moreover, the earnings risk measure we propose in the paper 
can even be estimated in the presence of censored wage information. This can 
be of great advantage in empirical work as administrative wage data are often 
top-coded. Importantly, Monte Carlo simulations show that our method for the 
estimation of wage dispersion is particularly effective compared to conventional 
approaches.

In our application, we find that individuals with greater stated willingness to take 
risks work in occupations with higher cross-sectional wage dispersion. After esti-
mating risk profiles of occupations on the IABS data, we match them to individu-
als in the SOEP working in these occupations. The SOEP provides us with survey 
information on risk preferences and other individual and household characteristics. 
The IABS on the other hand offers great sample size, such that we are able to work 
with more precise occupation definitions than previous studies and reduce the effect 
of aggregation on variation.

The econometric approach we propose can be utilized in any setting where the 
researcher or analyst is interested in the dispersion of an outcome variable that is 
censored. An additional example is a demand planner who needs to balance the 
cost of being under- or oversupplied and therefore has to model the distribution of 
demand. Historical demand may only be observed censored because the number of 
units that can be sold is limited by the amount of inventory.

The organization of the paper is as follows. In Sect. 2, we briefly discuss QR and 
present our method for estimating dispersion in more detail. In addition, we describe 
a particularly useful estimation algorithm for censored data, the 3-step censored 
quantile regression (CQR) estimator by Chernozhukov and Hong (2002), which we 
use in our application on risk preferences and occupational sorting in Sect. 3. Sec-
tion 4 concludes.

2 � Estimation of Group‑Level Dispersion

Our method for the estimation of dispersion is not based on residuals, but rather on 
the difference of coefficient estimates at particular quantiles. As such, it is in the 
spirit of the heteroskedasticity test of Koenker and Bassett (1982), which carries out 
a Wald test on the differences of coefficient estimates at different quantiles. Specifi-
cally, we first estimate the model by (C)QR at different quantiles, such as the 10th, 
25th, 50th, 75th, and 90th percentile, including dummy variables for the groups 
which are to be compared. In our application, for instance, we include dummies 
for all occupations. We then consider the differences of the coefficient estimates 
for these dummies at two particular quantiles, such as the 10th and 90th percen-
tile (“10–90 spread”), and compare their values across occupations. Our approach 
is not only computationally simple, but it also controls for the dispersion effect of 
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covariates, and thereby filters out the (possibly) heteroskedastic effect of, for exam-
ple, education and tenure in our application.

To introduce notation and build intuition, we briefly summarize quantile regres-
sion in Sect. 2.1 before introducing our dispersion measure in Sect. 2.2. Section 2.3 
discusses a particularly simple estimator for censored quantile regression used in our 
application.

2.1 � Quantile Regression

Quantile regression (QR), introduced by Koenker and Bassett (1978) as a gener-
alization of median regression, allows us to parsimoniously describe the entire 
conditional wage distribution by estimating conditional quantile functions (CQF) 
Q�(Yi|Xi).3 We denote the conditional �-quantile of Y given X as

For a linear quantile model, q�(Xi) = X�
i
�(�) , and we can write Yi as

While specifying a parametric model of the conditional quantiles, we are agnostic 
about the error distribution in our semiparametric framework. All we rely on is a 
conditional quantile restriction, stipulating that the conditional quantile of the error 
is equal to a constant. We assume that Xi always includes a constant term or full set 
of dummies, which affords us the following normalization:

Estimation typically proceeds by characterizing conditional quantiles as the solution 
to a particular expected loss minimization problem, in the context of which it is use-
ful to define the “check” (or weighted absolute loss) function. For � ∈ (0, 1),

In the case of our linear quantile model, q�(Xi) = X�
i
�(�),

We can define the QR estimator as its sample equivalent and the optimal predictor 
minimizing the realized loss:

(1)Q𝜏(Yi|Xi) ≡ q𝜏(Xi) ≡ F−1
Yi|Xi

(𝜏) = inf
r∈ℝ

{
r ∶ FYi|Xi

(r) > 𝜏
}
.

(2)Yi = X�
i
�(�) + ui(�).

(3)Q�(ui(�)|Xi) = 0.

(4)𝜌𝜏(u) ≡ 𝜏�(u ≥ 0)u + (1 − 𝜏)�(u < 0)(−u)

(5)= [𝜏 − �(u < 0)]u.

(6)�(�) = argmin
b

�
[
��
(
Yi − X�

i
b
)
|Xi

]
.

3  An excellent non-technical introduction with illustrative examples and an overview of applications can 
be found in Koenker and Hallock (2001). Buchinsky (1998) summarizes a range of points relevant to the 
empirical researcher.
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Asymptotic normality and consistency of the QR estimator can be shown (Bassett 
and Koenker 1978).

2.2 � Differences of Quantile Coefficients

To construct our dispersion statistics, we estimate linear quantile models with 
occupation dummies at different quantiles. For consistency, we require that the 
number of observations per occupation group grows large. To make the treat-
ment of the occupation dummies more explicit, we write Xi = (Ẋ�

i
, Ẍ�

i
)� , where Ẋi 

includes all regressors but the occupation dummies, which are stacked in a sepa-
rate vector Ẍi s.t. Ẍij = 1 if individual i works in occupation j and 0 otherwise:

To build intuition for how a statistic like 𝜂̂j(𝜏1) − 𝜂̂j(𝜏2) measures relative dispersion 
in occupation j, we consider the illustrative yet likely simplistic special case of a 
location-scale model. Suppose Yi is dependent on Ẋi and Ẍi in mean and through 
a re-scaling of variances, where �i ∣ Xi

iid
∼F�(⋅) for some distribution function F� s.t. 

�[�i] = 0:

In this model, the dummies in Ẍi have a location effect through 𝛼̈ and a scale 
effect through 𝜁 . For the regression specification (8), 𝛽(𝜏)

p
�����→ 𝛼̇ + F−1

𝜖
(𝜏)𝜁̇ and 

𝜂̂(𝜏)
p
�����→ 𝛼̈ + F−1

𝜖
(𝜏)𝜁 , respectively. Therefore, for any occupation j and two different 

quantiles �1 and �2 , 𝜂̂j(𝜏1) − 𝜂̂j(𝜏2)
p
�����→ 𝜁j[F

−1
𝜖
(𝜏1) − F−1

𝜖
(𝜏2)] , and we can consistently 

estimate each occupation’s scale effect up to a multiplying constant.
Chamberlain (1994,  p. 186) starts by discussing comparable normal-location 

models but considers them inadequate for characterizing the conditional wage dis-
tribution. In particular, they imply constant covariate slopes across the quantiles, 
which are at odds with the quantile patterns of industry wage effects he finds. More-
over, and closest to our application, Chamberlain presents differential patterns across 
industries and relates these to industry-specific residual dispersion. Close inspection 
of the industry coefficients in Chamberlain (1994, Table 5.4) at different quantiles 
reveals that even the location-scale model may be too restrictive. A statistical test 
of the location-scale hypothesis can be based on a Khmaladze transformation, but is 
only available for uncensored data. Applying a human capital model including occu-
pation dummies to self-reported earnings in the SOEP, the Khmaladze test (Koenker 
and Xiao 2002) rejects the location-scale hypothesis at the 1% level. The parametric 
heteroskedasticity of the location-scale model implies the same relative dispersion 
pattern across occupations regardless of what quantiles we use for our difference 
metric, and it thereby rules out differential tail behavior in occupations.

(7)𝛽(𝜏) = argmin
b

N∑

i=1

𝜌𝜏
(
Yi − X�

i
b
)
.

(8)q̂𝜏(Xi) = Ẋ�
i
𝛽(𝜏) + Ẍi

�
𝜂̂(𝜏).

(9)Yi = Ẋ�
i
𝛼̇ + Ẍ�

i
𝛼̈ +

(
Ẋ�
i
𝜁̇ + Ẍ�

i
𝜁
)
𝜖i.
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Our dispersion statistic does not require a parametric location-scale model. For 
example, it can accommodate heterogeneous shock distributions across occupa-
tions. In this case, estimates at different quantiles will result in different estimates 
of relative dispersion across occupations. More generally, (8) measures the effect 
of our set of occupation groups on all different quantiles while controlling for the 
dispersion effect of the additional covariates. This gives us a measure of the con-
ditional dispersion effect of each occupation.

While the linear specification of the conditional quantiles may appear restrictive, 
a linear quantile model is frequently only intended as a reduced-form approxima-
tion, such as for the minimum distance (MD) estimators in Buchinsky (1994, p. 409) 
and Chamberlain (1994, p. 181).4

To evaluate the practical merits of the approach, we carry out a set of Monte 
Carlo simulations (“Monte Carlo Evidence on Estimation of Dispersion” section in 
the “Appendix”). We find that compared to conventional approaches, our method is 
particularly effective for the estimation of dispersion in the presence of interaction 
effects in variance. For a moderate degree of censoring of 10%, very similar to that 
in our application, the 10–90 spread obtained from CQR does just as well as when 
we leave the data uncensored.

2.3 � Censored Quantile Regression

A particular feature of conditional quantiles not shared by conditional expectations 
is equivariance to monotone transformations. For any non-decreasing function g(⋅p),

As a result, QR is particularly suited for censoring problems. In addition, it does not 
require the restrictive assumptions of parametric censored estimators. In the case 
of top-coding, we observe Yi = min(Ci, Y

∗
i
) , where Y∗

i
 is the latent true value of the 

process of interest and Ci is some observed upper limit, of which we assume Y∗
i
 to be 

independent conditional on Xi . Since for any Ci ∈ ℝ , min(Ci, ⋅p) is a non-decreasing 
function, we have (Powell 1986):

The censored quantile regression (CQR) estimator follows trivially as the minimiz-
ing argument of the Powell objective function (Powell 1986):

(10)Q�[g(Yi)|Xi] = g[Q�(Yi|Xi)].

(11)Q�

(
Y∗
i
|Xi

)
= X�

i
�(�) ⇒ Q�(Yi|Xi) = min

[
Ci,X

�
i
�(�)

]
.

4  Formally, Chamberlain (1994, p. 181) recognized that the QR estimator provides a linear approxima-
tion to the CQF, albeit of a less “transparent” nature than in the OLS and MD case. Angrist et al. (2006) 
show that QR minimizes a weighted mean-squared error loss function for specification error, implicitly 
providing a weighted MD approximation to the true nonlinear CQF. Applying the framework to wage 
regressions with a focus on the education variable, they find QR to provide a useful approximation to the 
conditional wage distribution.



526	 D. Pollmann et al.

1 3

As in the uncensored case, the QR-based estimator is consistent under general non-
normal distributions and heteroskedasticity (Powell 1984, 1986). Buchinsky (1994) 
gives a well-known application to changes in the US wage structure. For estimation, 
he presents his iterative linear programming algorithm (ILPA), which iteratively 
performs QR on observations with predictions in the uncensored region, based on 
the previous iteration. Convergence is achieved if two subsequent sets of observa-
tions are the same; while this need not occur, convergence guarantees local opti-
mality. Another alternative, the BRCENS algorithm, is proposed in Fitzenberger 
(1997). Unfortunately, both algorithms have less than reliable convergence proper-
ties with respect to the Powell estimator (12), particularly in large samples and for 
high dimensionality, as in our application.

Chernozhukov and Hong (2002) present the three-step CQR method, which 
avoids a great deal of problems by selecting a more “benign” sample based on 
an initial regression of the probability of censoring, and subsequently works with 
standard QR.5,6 

Step 1	� Let �i = �(Yi ≠ Ci) ; that is, �i is an indicator of non-censoring (with cen-
soring point Ci ). We estimate a parametric (e.g., probit or logit) model for 
the probability of non-censoring: 

 Here, X̃i is a vector of suitable transformations of (X�
i
,Ci)

� . In general, model (13) 
will be misspecified and any corresponding estimators such as MLE will therefore 
be inconsistent for the true propensity score h(Xi,Ci) . However, it is only used as an 
auxiliary regression to select an initial sample J0 with propensity score h(Xi,Ci) > 𝜏 , 
necessary for consistent estimation of quantile �.7 To ensure this, we do not base our 
selection on the condition that p(X̃�𝛾̂) > 𝜏 , but rather that p(X̃�

i
𝛾̂) > 𝜏 + k , where k 

is a trimming constant strictly between 0 and 1 − � . Since we do not necessarily 
have to select the largest subset J0 , there is some freedom in choosing k. For this, we 
write J0 as a function of k, J0(k) = {i ∶ p(X̃�

i
𝛾̂) > 𝜏 + k} . The approach taken here, 

following Chernozhukov and Hong, is to choose the trimming constant k such that

(12)𝛽CQR(𝜏) = argmin
b

N∑

i=1

𝜌𝜏
[
Yi −min

(
Ci,X

�
i
b
)]
.

(13)�Pr(𝜂i = 1 ∣ Xi,Ci) = p
(
X̃�
i
𝛾̂
)
.

(14)#J0(k)∕#J0(0) = 90%.

5  Applications include Melly (2005) on wage inequality, Kowalski (2009) on medical expenditure, and 
Schmillen and Möller (2012) on lifetime unemployment.
6  The estimators of Buchinsky and Hahn (1998) and Khan and Powell (2001) similarly carry out a first-
stage selection, but are impractical for high dimensionality and large data sets.
7  Note the deviation from Chernozhukov and Hong, who select a sample with propensity score 
h(X

i
,C

i
) > 1 − 𝜏 . This is an important difference between left- and right-censoring.
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This means that we discard 10% of those observations with a probability estimate 
higher than � . The authors provide the sufficient condition that p(X�

i
�0) − k (for 

𝛾0 = plim𝛾̂ ) be a lower bound on h(Xi,Ci) . 

Step 2	� We obtain the initial (inefficient) estimator 𝛽0(𝜏) by standard QR on the 
sample J0(k) : 

Next, we select J1 = {i ∶ X�
i
𝛽0(𝜏) < Ci − 𝛿N} , where 𝛿N > 0 is a small number such 

that as the sample size N → ∞ , 
√
N ⋅ �N → ∞ and �N → 0 . We choose �N similarly to 

k, but with a lower percentage of discarded observations of 3%. The aim of this step 
is to include all observations {Xi ∶ X�

i
𝛽(𝜏) < Ci} to build up the efficiency of the next 

step. 

Step 3	� We obtain the three-step estimator 𝛽1(𝜏) by running (15) with J1 instead of 
J0.

Step 4	� (optional). Step 3 may be repeated a finite number of times on a sample 
Jl = {i ∶ X�

i
𝛽 l−1(𝜏) < Ci − 𝛿N} , yielding estimates 𝛽 l(𝜏) for l ∈ {2,…}.

 The remaining conditions discussed in Powell (1984, pp. 310–312) and Chernozhu-
kov and Hong (2002, p. 876), most notably the conditional quantile restriction (3) as 
well as the independence of observations, ensure consistency and asymptotic normal-
ity. Due to distributional equivalence with the Powell estimator, the estimator inherits 
its efficiency properties. In contrast to the iid case, the variance–covariance matrix now 
depends on the error density at the �-quantile, which may vary across the heteroskedas-
tic observations.

One may wonder how much more restrictive three-step CQR is in comparison with 
Powell’s canonical CQR model. For instance, does the parametric first-step classifica-
tion model invoke additional assumptions which are at odds with, for example, the het-
eroskedasticity in our wage data? Since the initial model only provides an incorrect 
lower bound for the true propensity score, no such assumptions are required; neither a 
particular distribution nor conditional homoskedasticity nor a location-scale submodel 
are imposed.

In practice, Chernozhukov and Hong report good finite-sample properties in a vari-
ety of situations. Their results are rather insensitive to the choice of probability model 
in step 1; we therefore use a probit model in our application. Additional iterations in 
step 4 are akin to Buchinsky’s ILPA method. Their usefulness at least partially depends 
on the dimensionality of the regression. When estimating a human capital model on 
the IABS data including only standard controls—years of education, a cubic experi-
ence term, and a quadratic tenure term, but no occupation dummies—step 4 gener-
ally does not bring about large improvements in terms of the Powell objective func-
tion (12). However, in our main specification, we include dummies to account for the 
effects of 130 different occupations. In this case, step 4 still turns out to yield substan-
tial improvements. Additional iterations generally lead to only quite small or minuscule 

(15)𝛽0(𝜏) = argmin
b

∑

i∈J0(k)

𝜌𝜏
(
Yi − X�

i
b
)
.
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improvements, or even an increase in the objective function. In our application, we 
therefore allow for three additional iterations in step 4, and select the estimates corre-
sponding to the lowest value of the Powell function.

3 � The Relationship Between Risk Attitudes and Occupational 
Earnings Risk

3.1 � SOEP and IABS Data

The German Socio-Economic Panel Study (SOEP) (Wagner et  al. 2007) contains 
detailed information on household and individual characteristics, in particular on 
occupation and risk preferences. We estimate the earnings risk of occupations using 
a large administrative data set, the IAB Employment Sample (IABS), that contains 
information on wages and human capital variables collected for social insurance 
purposes. We restrict the sample to West German men in full-time employment 
between 25 and 54 years of age. Following Bonin et al. (2007), we discard obser-
vations for individuals with wages in the bottom and top percentile of the uncon-
ditional wage distribution from the SOEP sample. Since our primary interest lies 
in occupational choice within dependent employment, we do not consider the self-
employed. As the IABS does not include tenured civil servants, we omit them from 
the SOEP sample as well. We exclude part-time workers, apprentices, and workers 
in retirement, as well as those employed in military service or alternative civilian 
service. Occupation identifiers are based on the German KldB coding.8

3.1.1 � Risk Attitudes

Recent waves of the SOEP contain self-reported measures of risk aversion in general 
and in specific contexts. In particular, individuals were asked to state their willing-
ness to take risks on an eleven-point scale. The general risk question was included in 
2004, 2006, 2008, and 2009.9 Dohmen et al. (2011) confirm the validity of the gen-
eral risk question by analyzing its predictive power for decisions in a lottery choice 
experiment with real money at stake, which they administer on a separate sample. In 
addition, all of the survey measures explain a variety of risky behaviors, including 

8  Both SOEP and IABS report occupations using the German Klassifizierung der Berufe (“Classifica-
tion of occupations”), albeit in different versions: While the SOEP employs the 1992 version (KldB 
92), the coding in the IABS is based on the earlier 1988 version (KldB 88). Specifically, the IABS 
uses the 3-digit level of the KldB 88 (Berufsbezeichnungen) identifying 328 different occupations; in 
our IABS R04 file, these are aggregated to 130 different occupations for anonymity purposes (Drews 
2008, pp. 79–86). In the SOEP, occupations are coded according to the 4-digit level of the KldB 92. To 
match occupations in the SOEP to those in the IABS, we use a cross walk file from the Federal Statistical 
Office.
9  The exact wording (translated from German) is as follows: “How do you see yourself: are you gener-
ally a person who is fully prepared to take risks or do you try to avoid taking risks? Please tick a box on 
the scale, where the value 0 means: ‘not at all willing to take risks’ and the value 10 means: ‘very willing 
to take risks’.”
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holding stocks, smoking, and participation in active sports. However, measurement 
error appears to be substantial; we expect to improve on the measurement of risk 
preferences by utilizing the responses from multiple waves. For each individual, we 
therefore compute an unweighted average of all available responses, the number of 
which varies between one and four.

3.1.2 � Riskiness of Occupations

The IABS, an anonymized sample from a large administrative data set,10 includes 
(gross) wage information as well as other employee characteristics reported by the 
employer for social security contribution purposes. Since misreporting of wages is 
subject to severe penalties, measurement error is likely to be minimal. The report-
ing precision of some of the dependent variables in our human capital model may 
be considerably lower, since they are only collected and reported for statistical pur-
poses, but with no pertinence to social security. The education variable in particular 
is frequently missing or inconsistent for different employment spells of one individ-
ual. Since measurement error may affect our analysis by introducing possibly sys-
tematic noise to our dispersion estimates, we apply a correction described in Fitzen-
berger et al. (2006). Tenure with an employer, on the other hand, can be computed 
with great precision due to the spell nature of the data.

For the entire sample period, a statutory limit was in place on the amount of 
monthly income subject to social security contributions, leading to top-coding of 
wages. This ceiling is a matter of federal legislation and is adjusted on an annual 
basis; for the main year of our analysis, 2004, it was EUR 61,800 in annual income. 
The degree of censoring remains fairly constant over the sample period at around 
10%, but varies considerably by groups of age, education, and occupation.11

3.2 � Mincerian Human Capital Model

We choose a log-linear wage specification including years of education, a cubic 
polynomial for (potential) experience, and a quadratic polynomial for tenure. The 
inclusion of occupation dummies serves two purposes: First of all, it captures occu-
pation-specific effects such as compensating wage differentials. More central to our 
analysis, the estimation of occupation effects at different quantiles is useful to evalu-
ate wage dispersion at the occupation level.12

10  In this paper, we use the IABS R04 version, which is a 2% sample of the German social security 
records for the period from January 1, 1975, to December 31, 2004. From this, we draw a cross section 
for June 30 for each year considered in our analyses.
11  Overall, 10.5% of the observations in our sample have their wage information censored from above. 
The figure is 55.5% for university graduates aged 45 to 54, but as low as 0.4% for 25 to 34 year-olds 
without any degree.
12  Note that we do not, for example, interpret the parameter estimates on years of education as causal 
returns to schooling. Rather, we focus on our dispersion estimates as the observable within-occupation 
earnings variation.
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We estimate the model using (1) a Tobit ML approach, and (2)–(6) the three-
step CQR estimator13 at the 10th, 25th, 50th, 75th, and 90th percentile (Table 1). 
We construct 95% confidence intervals using the direct percentile method with 100 
bootstrap replications. Controlling for occupation, most of the variables have a fairly 
constant effect across quantiles; heterogeneous returns to education are likely mainly 
realized through occupational sorting. While we observe the familiar concave effect 
of experience, there is no clear-cut evidence that variation follows any particular 
experience pattern. Interestingly, variation is decreasing in tenure; we would instead 
expect that as employers acquire more knowledge about their workers, variation 
increases. However, the difference is rather small.

Under normality and homoskedasticity, the Tobit estimates should be very close 
to the CQR estimates at the 50th percentile. However, most of the estimates in col-
umn (1) and (4) are many standard errors apart, suggesting that these assumptions 
are not valid and the Tobit estimates biased. We further perform outer-product-of-
the-gradient conditional moment tests (Skeels and Vella 1999); the test statistics for 
the null hypotheses of normality and homoskedasticity follow �2(r) distributions 
with r = 2 and r = 273 , respectively. The test statistic for normality, 4099.3, is far 

Table 1   Human capital model

Human capital model estimated using (1) Tobit ML approach, and (2)–(6) the three-step CQR estima-
tor at the 10th, 25th, 50th, 75th, and 90th percentile. Standard errors of coefficient estimates, computed 
using direct percentile (bootstrap) method with 100 replications and asymptotic normality, in parenthe-
ses; ***/**/*Indicate significance at 1%/5%/10% level. Dependent variable is the log of censored daily 
wage. Occupation dummies based on IABS KldB 88 coding

Dependent variable: log of censored daily wage

(1) (2) (3) (4) (5) (6)

Experience 0.064***
(0.002)

0.058***
(0.006)

0.060***
(0.005)

0.058***
(0.003)

0.057***
(0.004)

0.050***
(0.005)

Experience2∕100 − 0.236***
(0.008)

− 0.228***
(0.031)

− 0.224***
(0.024)

− 0.211***
(0.016)

− 0.202***
(0.020)

− 0.170***
(0.027)

Experience3∕1000 0.029***
(0.001)

0.029***
(0.005)

0.028***
(0.004)

0.026***
(0.003)

0.024***
(0.003)

0.020***
(0.004)

Tenure 0.025***
(0.000)

0.039***
(0.001)

0.027***
(0.001)

0.020***
(0.001)

0.018***
(0.001)

0.016***
(0.001)

Tenure2∕100 − 0.057***
(0.001)

− 0.091***
(0.005)

− 0.061***
(0.003)

− 0.043***
(0.003)

− 0.038***
(0.003)

− 0.035***
(0.005)

Years of Education 0.056***
(0.000)

0.049***
(0.002)

0.050***
(0.002)

0.052***
(0.001)

0.052***
(0.002)

0.049***
(0.003)

Constant 3.305***
(0.012)

3.004***
(0.050)

3.203***
(0.037)

3.419***
(0.026)

3.666***
(0.036)

3.952***
(0.068)

Occupation dum-
mies

Yes Yes Yes Yes Yes Yes

Observations 168,863 168,863 168,863 168,863 168,863 168,863

13  We use an extended version of the user-written Stata command cqiv (Chernozhukov et al. 2011).
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larger than the theoretical 1% critical value of 9.2, and the same goes for homoske-
dasticity with a test statistic of 14,768.0 against a 1% critical value of 290.6. We thus 
reject the hypotheses of both normality and homoskedasticity.

3.3 � Estimates for Risk Aversion and Dispersion

We regress the wage dispersion within an individual’s occupation, departing from 
a specification using the 10–90 spread, on stated willingness to take risks and a 
number of controls (Table 2). We estimate a positive effect of willingness to take 
risks in all specifications, significant at either the 5% or the 10% level; the effect is 
larger for average risk attitudes, likely due to greater measurement precision: For 

Table 2   IABS risk profiles

OLS estimates. Robust standard errors of coefficient estimates, allowing for clustering at the IABS KldB 
88 occupation level, in parentheses; ***/**/*Indicate significance at 1%/5%/10% level. Dependent vari-
able is the 10–90 spread of occupation dummy estimates from QR, on IABS KldB 88 level. “General 
Risk Attitude” is the response to the 2004 general risk question, “General Risk Attitude (av.)” is the cor-
responding average over the 2004, 2006, 2008, and 2009 responses

Dependent variable: 10–90 spread of occupation effects

(1) (2) (3) (4) (5) (6)

General Risk Attitude 0.003**
(0.002)

0.002*
(0.001)

0.003*
(0.002)

General Risk Attitude 
(av.)

0.005**
(0.002)

0.005**
(0.002)

0.005**
(0.002)

Experience 0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

Tenure − 0.000
(0.000)

0.000
(0.000)

− 0.000
(0.000)

0.000
(0.000)

Years of Education 0.002
(0.004)

0.010**
(0.004)

0.002
(0.004)

0.010**
(0.004)

Married and living 
together

− 0.017**
(0.007)

− 0.016**
(0.007)

− 0.017**
(0.007)

− 0.017**
(0.007)

Body height 0.000
(0.000)

0.001
(0.000)

0.000
(0.000)

0.001
(0.000)

Public Sector Employ-
ment

− 0.015
(0.026)

− 0.017
(0.026)

− 0.014
(0.026)

− 0.016
(0.026)

Median wage (occ.) − 0.122*
(0.068)

− 0.122*
(0.068)

Constant − 0.188***
(0.014)

− 0.206**
(0.087)

0.164
(0.264)

− 0.198***
(0.014)

− 0.221**
(0.086)

0.150
(0.261)

Observations 2815 2740 2740 2822 2747 2747
R-squared 0.002 0.009 0.051 0.004 0.011 0.054
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the single-year and average measure of risk tolerance, we estimate an effect size 
of 0.0009 and 0.0018 standard deviations, respectively, per point increase on the 
11-point risk scale (assuming normality for purely expositional purposes).14 Of the 
control variables, only marital status, education, and median wage15 are significant.

The median wage enters negatively; it seems unlikely that this is entirely due 
to wage compression in the top regions of occupations with high median wage. 
Instead, observations in high-wage occupations are naturally more likely to be cen-
sored. If censoring leads to an underestimation of dispersion, this will be picked up 
by the coefficient on median wage. The effect of median wage is clearly the most 
pronounced at the 90th percentile (Table 3), which is affected most by censoring; 
in fact, the unconditional 90th percentile is censored. As long as there is sufficient 
within-occupation heterogeneity that each of them will contain a number of individ-
uals with uncensored conditional 90th percentile, this will not be a problem given 
correct specification of the model. Since median wage has a standard deviation of 
around 0.3, the magnitude of the distortion is not that large in principle; however, it 
is a lot larger than the effect of risk attitudes. Reassuringly, their effect is very simi-
lar when considering the 25–75 spread instead.

Turning our attention to individual median differences, the results in Table 3 do 
not show any difference between the lower and the upper part of the wage distribu-
tion; all quantiles are similarly correlated with risk attitudes. Also here, we find a 
larger coefficient estimate on the average measure of risk tolerance. The significance 
of the second-stage estimates just presented is sensitive to the number of iterations 
used in step 4 of the 3-step CQR routine and thus the precision of our wage regres-
sions; stopping at step 3, the results are slightly less clear.

Due to the nature of our data, which does not measure individuals’ risk atti-
tudes before they make their occupational choice, we cannot establish a causal 
impact of risk attitudes on occupational sorting. Any causal sorting interpre-
tation of our results rests on some sort of stability assumption with respect 
to risk attitudes. In particular, systematic differences in risk attitudes of indi-
viduals working in different occupations should not entirely result from expo-
sure to occupational risk over the working life.16 Evidence indicating that risk 

14  The standard errors we present are underestimates of the true standard errors as they do not account 
for variance introduced by the first-stage estimation of the dispersion metrics, which we use as our 
dependent variable. We cannot ignore the first-stage variance since the moment condition of the second-
stage OLS regression is not adaptive, i.e. its expectation generally has a non-zero gradient with respect to 
the first-stage parameteres even when evaluated at the true value of the parameters (see Section 12.5.2 of 
Wooldridge (2010) for a more general discussion). The simplest procedure to correct standard errors is 
to bootstrap both estimation stages. We can take advantage of the independence of the two samples (IAB 
and SOEP) and simply replace the dependent variable in the second-stage regression with independent 
draws from the bootstrap distribution of the disperson metrics obtained in the first stage.
15  For a few occupations (electrical engineers, managers/executives, doctors and pharmacists), median 
earnings are above the censoring threshold, and hence, median wage is censored. Omitting these occu-
pations does not affect the results for overall dispersion and the upper regions, but slightly reduces the 
significance of the estimates at the lower quantiles.
16  Fouarge et al. (2014) elicited risk attitudes among school leavers and graduates around the time that 
they entered the labor market, reducing the potential for endogeneity problems resulting from exposure 
to occupation characteristics. They find a significant correlation between occupational earnings risk and 
risk attitudes.



533

1 3

Robust Estimation of Wage Dispersion with Censored Data: An…

Ta
bl

e 
3  

IA
B

S 
ris

k 
pr

ofi
le

s

O
LS

 e
sti

m
at

es
. R

ob
us

t s
ta

nd
ar

d 
er

ro
rs

 o
f c

oe
ffi

ci
en

t e
sti

m
at

es
, a

llo
w

in
g 

fo
r c

lu
ste

rin
g 

at
 th

e 
IA

B
S 

K
ld

B
 8

8 
oc

cu
pa

tio
n 

le
ve

l, 
in

 p
ar

en
th

es
es

; *
**

/*
*/

*I
nd

ic
at

e 
si

gn
ifi

ca
nc

e 
at

 1
%

/5
%

/1
0%

 le
ve

l. 
D

ep
en

de
nt

 v
ar

ia
bl

e 
ar

e 
th

e 
m

ed
ia

n 
di

ffe
re

nc
es

 o
f 

oc
cu

pa
tio

n 
du

m
m

y 
es

tim
at

es
 f

ro
m

 Q
R

, o
n 

IA
B

S 
K

ld
B

 8
8 

le
ve

l. 
“G

en
er

al
 R

is
k 

A
tti

tu
de

” 
is

 th
e 

re
sp

on
se

 to
 th

e 
20

04
 g

en
er

al
 ri

sk
 q

ue
sti

on
, “

G
en

er
al

 R
is

k 
A

tti
tu

de
 (a

v.
)”

 is
 th

e 
co

rr
es

po
nd

in
g 

av
er

ag
e 

ov
er

 th
e 

20
04

, 2
00

6,
 2

00
8,

 a
nd

 2
00

9 
re

sp
on

se
s

D
ep

en
de

nt
 v

ar
ia

bl
e:

 m
ed

ia
n 

di
ffe

re
nc

es
 o

f o
cc

up
at

io
n 

eff
ec

ts

10
–5

0
25

–5
0

50
–7

5
50

–9
0

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

G
en

er
al

 R
is

k 
A

tti
tu

de
0.

00
2*

(0
.0

01
)

0.
00

0
(0

.0
00

)
0.

00
1*

*
(0

.0
00

)
0.

00
2*

(0
.0

01
)

G
en

er
al

 R
is

k 
A

tti
tu

de
 (a

v.
)

0.
00

3*
*

(0
.0

01
)

0.
00

1*
(0

.0
01

)
0.

00
2*

**
(0

.0
01

)
0.

00
3*

*
(0

.0
01

)
Ex

pe
rie

nc
e

0.
00

0
(0

.0
00

)
0.

00
0

(0
.0

00
)

0.
00

0
(0

.0
00

)
0.

00
0

(0
.0

00
)

−
 0

.0
00

(0
.0

00
)

−
 0

.0
00

(0
.0

00
)

−
 0

.0
00

(0
.0

00
)

−
 0

.0
00

(0
.0

00
)

Te
nu

re
−

 0
.0

00
(0

.0
00

)
−

 0
.0

00
(0

.0
00

)
0.

00
0

(0
.0

00
)

0.
00

0
(0

.0
00

)
0.

00
0*

*
(0

.0
00

)
0.

00
0*

*
(0

.0
00

)
0.

00
0*

(0
.0

00
)

0.
00

0*
(0

.0
00

)
Ye

ar
s o

f E
du

ca
tio

n
0.

00
5*

(0
.0

03
)

0.
00

5*
(0

.0
03

)
0.

00
2*

(0
.0

01
)

0.
00

2*
(0

.0
01

)
0.

00
3*

(0
.0

01
)

0.
00

3*
(0

.0
01

)
0.

00
5*

*
(0

.0
02

)
0.

00
5*

*
(0

.0
02

)
M

ar
rie

d 
an

d 
liv

in
g 

to
ge

th
er

−
 0

.0
09

**
(0

.0
04

)
−

 0
.0

09
**

(0
.0

04
)

−
 0

.0
03

(0
.0

02
)

−
 0

.0
04

(0
.0

02
)

−
 0

.0
05

*
(0

.0
03

)
−

 0
.0

05
*

(0
.0

03
)

−
 0

.0
08

**
(0

.0
03

)
−

 0
.0

08
**

(0
.0

03
)

B
od

y 
he

ig
ht

0.
00

0
(0

.0
00

)
0.

00
0

(0
.0

00
)

0.
00

0
(0

.0
00

)
0.

00
0

(0
.0

00
)

0.
00

0
(0

.0
00

)
0.

00
0

(0
.0

00
)

0.
00

0
(0

.0
00

)
0.

00
0

(0
.0

00
)

Pu
bl

ic
 S

ec
to

r E
m

pl
oy

m
en

t
−

 0
.0

00
(0

.0
16

)
−

 0
.0

00
(0

.0
16

)
−

 0
.0

09
(0

.0
07

)
−

 0
.0

09
(0

.0
07

)
−

 0
.0

01
(0

.0
09

)
−

 0
.0

01
(0

.0
09

)
−

 0
.0

16
(0

.0
12

)
−

 0
.0

16
(0

.0
12

)
M

ed
ia

n 
w

ag
e 

(o
cc

.)
−

 0
.0

12
(0

.0
48

)
−

 0
.0

12
(0

.0
48

)
−

 0
.0

09
(0

.0
22

)
−

 0
.0

09
(0

.0
22

)
−

 0
.0

02
(0

.0
22

)
−

 0
.0

02
(0

.0
22

)
−

 0
.1

10
**

*
(0

.0
32

)
−

 0
.1

10
**

*
(0

.0
32

)
C

on
st

an
t

−
 0

.1
14

(0
.2

09
)

−
 0

.1
23

(0
.2

08
)

−
 0

.0
46

(0
.0

96
)

−
 0

.0
49

(0
.0

95
)

−
 0

.1
09

(0
.0

84
)

−
 0

.1
12

(0
.0

83
)

0.
27

8*
*

(0
.1

22
)

0.
27

3*
*

(0
.1

21
)

O
bs

er
va

tio
ns

27
40

27
47

27
40

27
47

27
40

27
47

27
40

27
47

R-
sq

ua
re

d
0.

02
5

0.
02

7
0.

02
0

0.
02

2
0.

03
2

0.
03

4
0.

13
3

0.
13

5



534	 D. Pollmann et al.

1 3

preferences are rather stable is accumulating. Sahm (2008), for example, shows 
that risk preferences change only gradually with age but are rank-order stable. 
Changes in macroeconomic conditions have an impact on measured risk toler-
ance, but changes in income, wealth or other major events that reduce expected 
lifetime wealth, such as job displacement or a deterioration in health, do not 
affect individuals’ willingness to take risk. Dohmen et  al. (2007) analyze the 
stability of responses to the general risk question in the SOEP. For two subject 
pools, one a subset of the SOEP, the other a separate one, they find a test–retest 
correlation of 0.62 and 0.60, respectively, over a 6-week horizon. It is plausible 
to assume that risk preferences do not change dramatically over such a short time 
period so that the variation in answers in the test–retest samples can be attrib-
uted to measurement error. The correlation between the 2004 and 2006 waves of 
the SOEP, in comparison, is 0.50, which is not too far below the 6-week bench-
mark; this suggests that risk attitudes constitute an inherent and stable trait. 
Beauchamp et  al. (2017) support this interpretation, as they find very similar 
results for Swedish data using the same risk measure as is used in the SOEP.

In our setting, a sorting interpretation also requires that the ranking of occu-
pations with respect to their occupational earnings risk has remained stable. 
Otherwise, the risk profile estimated on the 2004 cross section may not have 
been relevant at the time when individuals chose their occupation. In an extreme 
case, risk attitudes might not have been related to differences in occupation-spe-
cific earnings risk when individuals sorted into an occupation. Instead, a wage 
setting mechanism in which preferences of incumbents shape the occupational 
earnings risk might be a potential channel through which a correlation between 
risk preferences and wage dispersion can arise. To address the question whether 
there have been considerable changes in occupation-specific wage dispersion, 
we estimate wage dispersion measures for the years 1979, 1984, 1989, 1994, and 
1999, and compute Pearson correlation coefficients with occupations as cross-
sectional unit (Table  4). The correlation coefficient is decreasing in the time 
span considered, but remains positive and high; it is larger than 0.65 for any pair 
of years. This suggests that the relative wage dispersion of occupations has been 
rather stable in West Germany in the period from 1979 to 2004, and that the risk 
profiles we estimate from a cross section for 2004 are quite close to those rel-
evant at the point of labor market entry for most of the individuals in the SOEP.

Table 4   Temporal stability of 
risk profiles

Pearson correlation coefficients of 10–90 spread per occupation 
across years

1979 1984 1989 1994 1999 2004

1979 1.000
1984 0.818 1.000
1989 0.768 0.902 1.000
1994 0.781 0.854 0.874 1.000
1999 0.654 0.778 0.810 0.899 1.000
2004 0.655 0.694 0.753 0.896 0.922 1.000
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Finally, we cannot rule out that the correlation between risk attitudes and 
wage dispersion is driven by cognitive abilities rather than risk preferences: 
There is evidence for a negative relationship between risk aversion and cogni-
tive abilities (e.g., Dohmen et al. 2010), and at the same time, dispersion may be 
particularly attractive for high-ability individuals.

4 � Conclusion

We discuss a particular method to estimate group-level wage dispersion, which is 
based on semiparametric methods. Specifically, we estimate a human capital model, 
including dummy variables for each of the groups of interest, at a number of dif-
ferent quantiles; we then take the differences of the dummy coefficients at differ-
ent quantiles as a measure of dispersion within each group. The method is particu-
larly useful when working with data which is either censored or top-coded, such 
as administrative data and some survey data, since it is more robust to deviations 
from homoskedasticity and distributional assumptions than parametric estimators. 
In addition, it controls for the dispersion effect of covariates, and allows us to esti-
mate the entire conditional wage distribution and its differences across groups. In an 
application which connects a large German administrative data set, the IAB Employ-
ment Sample (IABS), which is subject to censoring due to a legislative contribution 
limit, and a household survey, we find that individuals with greater willingness to 
take risks work in occupations with higher cross-sectional wage dispersion.
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Appendix: Monte Carlo Evidence on Estimation of Dispersion

In this section, we review the performance of the estimation method described in 
Sect. 2.2 for both censored and uncensored data and compare it to a residual-based 
method. For uncensored and censored data, we use the difference between the coef-
ficient estimates of the group dummies at the 90th and 10th percentile from (C)QR. 
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For uncensored data only, we estimate a conventional OLS regression including 
group dummies and compute the standard deviation of residuals per group. After 
each of 1000 simulations, we compute the correlation of an occupation-specific 
scale �j and the three statistics. The models investigated are stylized versions of the 
wage distribution setting in our empirical analysis; specifically, we first consider 
a model with only group-specific scale, and then turn to location-scale models in 
which a regressor has a heteroskedastic effect. The censored data is derived directly 
from the uncensored data through right-censoring at the 90th percentile such that in 
each case, 10% of the data are censored, which is intended to resemble the degree of 
censoring in the IABS data used in our application.

Group‑Specific Scale Model

The DGP has the following linear representation:

for i ∈ {1,… ,N} and j ∈ {1,… ,M} , cj
iid
∼N(0,�2) , �i

iid
∼N(0, 1).

In our simulation, we set N = 1000 , Ẋi

iid
∼U(0, 1) , � = 2 , � = 0.2 , and 

�j = 0.1 + 0.2Uj , where Uj

iid
∼U(0, 1) . Individuals i are randomly assigned to one of 

M = 10 groups j(i) according to a uniform distribution.
Table 5 shows a very similar performance for all three statistics, with a correla-

tion close to unity in each case.

Linear Location‑Scale Model

Leaving all else the same,

(16)Yi = 𝛼Ẋi + cj(i) + 𝜎j(i)𝜖i

(17)Yi = 𝛼Ẋi + cj(i) +
(
𝛿Xi + 𝜎j(i)

)
𝜖i

Table 5   Group-specific scale 
model

Correlation of risk measures with true dispersion

Mean Std. Dev. Min. Max.

10–90 spread 0.975 0.021 0.794 0.999
10–90 spread (cens.) 0.968 0.026 0.729 0.999
Resid. std. dev. 0.984 0.013 0.881 0.999

Table 6   Linear location-scale 
model

Correlation of risk measures with true dispersion

Mean Std. Dev. Min. Max.

10–90 spread 0.899 0.072 0.228 0.993
10–90 spread (cens.) 0.891 0.076 0.198 0.994
Resid. std. dev. 0.852 0.107 0.159 0.988
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with � = 0.5 . Hence, the independent variable Ẋ now exerts a heteroskedastic effect.
Already, the 10–90 spread does slightly better (Table 6) for the uncensored data. 

Notably, it also works just as well when only censored data is available.

Nonlinear Location‑Scale Model

We adapt the DGP such that the scale effect of the independent variable Ẋ is now 
negatively related to the occupation variance:

For � = 1,

As reported in Table 7, the statistics based on QR are a lot more robust in this case, 
since the scale effect of Ẋ at the different quantiles is explicitly controlled for. The 
discrepancy will likely be even larger for more irregular distributions. Also, our 
method for dispersion estimation works equally well for censored data.
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