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Abstract Changes in stock location may affect the stability of international fisheries agree-
ments. This paper offers a theoretical analysis of the stability of regional fisheriesmanagement
organisations (RFMOs) in a non-cooperative, coalition formation game based on the classic
Gordon–Schaefer model. We employ a new stability concept which modifies Farsighted Sta-
bility (Chwe, J Econ Theory 63:299–325, 1994). We call this concept farsighted downwards
stability (FDS).We also employ the internal stability (IS) concept for comparison. Analytical
results regarding FDS for symmetric players without changing stock location show stable
Grand Coalitions for n ≤ 4 player games and the possibility for partial cooperation. Sen-
sitivity analysis deals with changing stock location and cost asymmetry. Stability decreases
in n, increases when costs are asymmetric and increases when FDS is employed. Farsighted
conjectures on behalf of RFMO members can thus help to maintain cooperation as stock
location changes. However, FDS is more sensitive to changes in stock location than IS.
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1 Introduction

There is a general recognition that cooperation is needed for the management of international
fisheries to ensure the sustainability of stocks. With this in mind, regional fisheries manage-
ment organisations (RFMOs) were set up to facilitate cooperation. The need for cooperation
has sparked a recent literature concerned with the potential for, and the stability of, such
agreements (e.g., Kaitala and Lindroos 1998; Bjørndal et al. 2000; Lindroos 2008; Pintas-
silgo and Lindroos 2008; Pintassilgo et al. 2010; Breton and Keoula 2012; Rettieva 2012;
Punt et al. 2012; Bjørndal and Lindroos 2012). Such research is especially important because
RFMO agreements are not binding or enforceable (Bjørndal et al. 2000). Much of the litera-
ture rightfully focuses on the potential for cooperation and the new-member problem (for a
summary see Bailey et al. 2010).

In addition to these established research lines, recent research has begun to focus on the
issue of changes in stock location which is likely due to climate change (Cheung et al. 2009).
For example, mackerel stocks in the North East Atlantic have recently shifted northwards
(Jansen and Gislason 2011). This has led to unilateral setting of national fishing quotas which
constitute a violation of the existing RFMO agreement (Arnason 2012 and Haraldsson and
Carey 2011). Ellefsen (2012) studies this specific problem with a calibrated model to assess
the effects on the stability of the RFMO after the entrance of Iceland into the game. In
general, uncertainty regarding the effects of climate change on stocks and the inflexibility of
agreements to changes in stock locations have also been shown to be a significant barrier to
maintaining cooperative agreements (Miller andMunro 2004). Furthermotivation is provided
by Munro (2008) who calls for more applied game theoretic research on this issue.

In addition to Ellefsen (2012), three other studies address changes in stock location.
Ekerhovd (2010) is concerned with both the area which is under RFMO management and
the Exclusive Economic Zones (EEZs) of given countries, wherein those countries have
exclusive fishing rights. Ekerhovd (2010) considers changes in the shares of stock of blue
whiting distributed between the high seas and EEZs and shows whether or not coalitions are
stable. The scenarios of changes in stock location have a strong impact on the stability of
coalitions. Further, Brandt and Kronbak (2010) consider the case of cod in the Baltic under
IPCC climate change scenarios. They analyse the size of the possible set of cooperative
agreements under changes to recruitment and size of the stock. They conclude that cooperative
solutions are less likely under changes in stock location. The most recent work, by Ishimura
et al. (2012) has been concerned with the Pacific sardine under climate variability and its
exploitation by Mexico, Canada and the USA. Different cooperative and non-cooperative
regimes are analysed. They conclude that unilateral efforts to maximise conservation and
management benefits would not be successful under climate change. The stability of the
different cooperative and non-cooperative regimes is, however, not analysed.

This paper conceptualises the stability of cooperation under changes in stock location
and hence adopts a different approach from Brandt and Kronbak (2010), Ekerhovd (2010),
Ishimura et al. (2012) and Ellefsen (2012). Cooperation is most beneficial when the RFMO
is a “Grand Coalition” consisting of all nations with a genuine interest in a given stock.
Accordingly, we examine the stability of Grand Coalitions for a fixed number of players
under changes in stock location.

Changes in stock location can be included in a model by allowing for changes in the
“catchability” (usually denoted by q in the standard Gordon–Schaefer model). Catchability
is normally considered to represent the fishing technology and thus the productivity of fishing
effort. As a stock of a constant size changes its position relative to the fishing harbours of
different countries,we can consider their productivity of effort as changing. Thiswould be due
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to changing sailing time before reaching fishing grounds or an increased concentration of fish
in proximity to the harbour. We assume that the productivity of fishing effort is determined
only by the stock location and therefore that fishing technology is identical across states.
This approach is most suitable for high seas fisheries where changing stock location does
not affect the spatial distribution of stock across EEZs. We also assume that climate change,
while it affects location, does not affect other aspects of the biology of the stock.

In addition to addressing the theory of changes in stock location, and in order to address
the question of how fully cooperative agreements can be stabilised, we use two solution
concepts. First,we employ a variant of the farsightedness conceptwhich is based on farsighted
conjectures (Chwe 1994). Farsighted conjectures are used in the context of a Great Fish War
by Breton and Keoula (2012). In comparison to Nash conjectures, farsighted conjectures do
not restrict players to remain in the coalition structure resulting from the deviation of another
player. Farsighted conjectures therefore allow players to respond to deviations by making
further deviations. Second, we employ the internal stability (IS) solution concept. This is
based on Nash conjectures and is used most frequently in the literature. Nash conjectures do
restrict players to remain in the coalition structure resulting from the deviation of another
player.

This paper analyses implications of changes in stock location for the stability of Grand
Coalitions under these different solution concepts. Comparing results under different solution
concepts allows us to analyse the degree to which the (credible) responses to deviations, as
conjectured by farsighted players, can affect the stability of Grand Coalitions under changing
stock location.

Our study uses analytics to explore the characteristics of a farsighted solution concept in
the symmetric setting and to derive some basic results in the asymmetric setting. A more
detailed analysis of the asymmetric case is achieved via sensitivity analyses, which allow us
to draw conclusions about the effects of asymmetry and changes in stock location on internal
and farsighted stability in 3- and 4-player games.

This article makes three contributions to the literature. Firstly, we broaden the literature
on asymmetric fishing games by comprehensively analysing the effects of asymmetric catch-
ability. This builds on work by Pintassilgo et al. (2010). In turn, and secondly, this allows us
to produce a theoretical framework to analyse the effects of changes in stock location on the
stability of cooperation. Thirdly, and as will become clear later in this article, we develop
a modified solution concept based on farsighted stability which addresses the problem of
myopia while also being applicable in asymmetric coalition formation games which use
sharing rules. We now continue into our model and analysis.

2 The Bio-economic Model

The set of N players represents n different fishing nations i who choose effort ei ; E =
(e1, . . . , en). We restrict effort such that ei ∈ R

+
0 . Efforts affect harvests hi and, in turn,

profits �i . We employ the Gordon–Schaefer model of fisheries which has a long tradition in
the literature. A single commercial fish stock is given as x . Stock grows according to

g(x) = r x
(
1 − x

k

)
. (1)

Here, r > 0 refers to the intrinsic growth rate of the stock and k is the carrying capacity of
the ecosystem. The production function (harvest) is given by

hi = qi ei x . (2)
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Here, 0 < qi ≤ 1 is the catchability coefficient which we use to represent changes in stock
location. Unlike most studies, we allow catchability to vary between players and therefore
become a source of potential asymmetry in the model.

This paper analyses the steady statewhere growth (Eq. 1) is equal to total harvest,
∑N

i=1 hi .
This allows us to determine the steady state stock as a function of efforts and obtain

x = k − k

r

N∑
i=1

qi ei . (3)

Fish is sold on a common market and profit is given by

�i = pqi ei x − ci ei , (4)

where p is price and ci is i’s unit cost of effort. Costs may differ between players. This
bio-economic model is used to calculate profits for any vector of efforts (e1, . . . , en).

3 The Fisheries Game

Because there can only be one RFMO for a given fish stock, we model RFMO stability as
a cartel game. We examine the incentives to participate in an RFMO in a two stage game.
In the first stage, players’ strategy space is {join, not join} and this determines their RFMO
membership. A coalition structure is denoted by the set S of players who join where |S| = s.
The set N\S contains n−s singletons who do not join the RFMO.We have a Grand Coalition
when S = N , i.e. where all players are in the RFMO. Given a coalition structure, players
choose their effort levels in the second stage.

3.1 Choosing Effort Levels

Effort levels are chosen tomaximise profits in a strategic setting.Coalitionmembers cooperate
by choosing effort levels to maximise joint profits. Effort is a function of the efficiency of
players. We define inverse efficiency as bi ≡ ci

pqi k
. Further, we define γi ≡ ci

qi
, which we

term the cost-catchability ratio of a given player. The term γi thus denotes the cost of fishing
effort adjusted for the catchability and contains all the terms of bi which we allow to be
asymmetric. Furthermore, let l ∈ S be the member with the lowest cost-catchability ratio
such that γl ≡ mini∈S γi . Under these definitions, the following holds:

Lemma 1 Under a common market, the only coalition member whose effort is non-zero is
the member with the lowest cost-catchability ratio, γl ≡ mini∈S γi ∀S ⊆ N.

Players can only have a relative advantage via the individual parameters, ci and qi . Therefore,
the player with the lowest cost-catchability ratio must be the most efficient fisher. Coalition
members cooperate to maximise joint profits and therefore the most efficient fisher will
assume the task of fishing for the coalition. In this way, it is always efficient for player l
in a coalition to fish since we have assumed, for simplicity, that cost is linear in effort and
therefore marginal and average costs are also constant. Non-linear costs would usually merit
multiple active fishers in the coalition and Lemma 1 would no longer apply.

We introduce transfers between coalition members to compensate members with zero
fishing effort under Lemma 1 and thus incentivising membership. Transfers allow the profit
of player l to be shared among the members. Transfers (or “side” payments) have met much
resistance in the policy world and are not implemented in direct financial terms (Munro
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2008). However, transfers are implicit in various policy instruments. Transfers can be made
through bargaining over catch shares for other commercial species within an RFMO or with
Individual Tradable Quotas (ITQs). Selling ITQs to the most effective member constitutes a
transfer.

Given Lemma 1 and the choices of each player to join or not join, we can, via reaction
functions, provide equilibrium effort strategies for coalition members and non-members.
The reaction function and equilibrium strategy for the All Singletons structure is derived in
“Appendix 1”.BecauseLemma1holds for all coalition structures, the effort levels determined
in the second stage for a game with coalition S will be the same as the efforts levels seen in
an All Singletons structure consisting of n − s + 1 players.

The reaction function of a singleton in the All Singletons and partial cooperative structures
is given by

ei = r

2qi
(1 − bi ) − 1

2qi

∑
j∈N\{i}

q j e j . (5)

The reaction function for the coalition in partially cooperative and Grand Coalition structures
is given by

el = r

2ql
(1 − bl) − 1

2ql

∑
k∈N\{S}

qkek . (6)

The equilibrium strategies for the Grand Coalition and both the coalition and singletons in
partial cooperation structures can be expressed in one equation, namely,

ei = (n − s + 1)r

(n − s + 2)qi
(1 − bi ) − r

(n − s + 2)qi

∑
j∈((N\S)∪{l})\{i}

(1 − b j ) for i ∈ (N\S) ∪ {l}

and

ei = 0 for i ∈ S\{l}. (7)

Equation (7) also represents the equilibrium strategy for the All Singletons structure
in the special case that the coalition consists of only one player, i.e. S = {l} such that
((N\S) ∪ {l}) = N .

Even before searching for solutions to the game, the equilibrium strategies permit insights
into the presence and nature of the externalities in the model. Equations (2) and (3) show how
harvest is a function of stock and therefore the harvest of 1 player will negatively affect other
players because less fish can be caught with the same effort. This negative externality offers
scope for beneficial cooperation. There is no competition when only one player in a Grand
Coalition fishes. This allows the player with the lowest cost-catchability ratio to maximise
the profit for the whole coalition by fishing from a large stock.

Equilibrium efforts, calculated in Eq. (7), can then be substituted into the profit function
(Eq. 4) to obtain the partition function V (S)which gives payoffs as a function of the coalition
structure. The partition function is the basis for the following section where we introduce
two stability concepts.

3.2 Stability, Solution Concepts and Sharing Rules

Coalition stability depends on how much profit a coalition generates and how that profit is
shared. A cartel partition function gives the profit of the coalition and every singleton. The
coalition profit is then shared between coalitionmembers via a sharing rule, which determines
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the payoffs. Wewill first provide a general definition of a sharing rule and then the particulars
of the sharing rule for the two solution concepts.

We use a sharing rulewhichmaximises potential for cooperation, namely the “almost ideal
sharing scheme” proposed by Eyckmans and Finus (2004), McGinty (2007) and Weikard
(2009). This sharing scheme uses “outside options” to determine how surplus is shared.
Outside options are defined as the payoff that a player will receive when he leaves a coalition.
The sharing scheme demands that every player receives the value of his outside option ωi

plus a share λi (S) of the surplus that the coalition generates in excess the sum of the values
of the outside options VS(S) − ∑

i∈S ωi such that the payoff Vi (S) of a coalition member in
S is given by:

Vi (S) = ωi + λi (S)

⎡
⎣VS(S) −

∑
j∈S

ω j

⎤
⎦ (8)

where
∑

i∈N λi (S) = 1 and λi (S) ≥ 0.
In our numerical analysis, we will use coalition surplus as a measure of coalition stability.

A positive (negative) surplus implies a stable (unstable) coalition. Our measure of stability
is therefore defined as

YS ≡ VS(S) −
∑
i∈S

ωi . (9)

How the outside option is defined depends on the stability concept used. We consider two
stability concepts: Nash stability and a modified farsighted stability concept. A stability
concept stipulates whether or not a player will deviate from a given coalition. A player’s
decision regarding deviation depends on the type of “conjecture” which is employed.

The first type of conjectures are Nash conjectures. This assumes that all players will
remain in the coalition structure which directly results from a deviation. Other players may
adjust their efforts but no player will enact further deviations. Therefore, for Nash stability,
ωi = Vi (S\{i}). The following inequality is a necessary condition for the Nash stability of
a coalition:

Vi (S) ≥ Vi (S\{i}) ∀ i ∈ S. (10)

The general formulation for Nash stability is that both IS (where no member wants to leave)
and external stability (where no singleton wants to join) must hold. Here, we are concerned
with the Nash stability of the Grand Coalition which cannot be enlarged and hence cannot
be externally unstable. IS is therefore a sufficient condition for a stable Grand Coalition.

The second type of conjecture is based on farsightedness. Farsighted conjectures do not
assume that players will remain in structures imposed upon them by a deviation. Should
further deviation from such structures be beneficial, then playerswill deviate.Whether further
deviations are beneficial is based on farsighted conjectures developed by Chwe (1994).

Farsighted conjectures require a different definition of the outside option. Specifically,
we introduce the farsighted downwards stability (FDS) concept. This concept is a restricted
version of Farsighted Equilibrium (Chwe 1994). FDS is a pragmatic solution concept which
restricts Farsighted Equilibrium such that it can be operationalized in a game with transfers
and asymmetric players. We now define FDS via the concepts of ordered sequences and
credible induction.

Definition 1 A strictly ordered sequence is defined as a vector of coalition structures
(S1, S2, . . . Sk) which are ordered such that S1 ⊃ S2 ⊃ · · · ⊃ Sk where |S j | =
|S j+1| + 1 ∀ j < k.
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Definition 2 A coalition Sk can be credibly induced via an ordered sequence iff ∀ S j ∈
(S1, S2, . . . Sk−1), there exists a player i ∈ S j such that Vi (Sk) ≥ Vi (S j ) and ∀ Sm ⊂ Sk ,
there does not exist an ordered sequence (Sk, . . . , Sm) such that ∀ S j ∈ (Sk, . . . , Sm) there
is an i ∈ S j such that Vi (Sm) ≥ Vi (S j ).

Definition 3 A coalition S satisfies FDS iff there does not exist a coalition Sk ⊂ S which
can be credibly induced from S.

Intuitively then, we consider sequences of deviations from a coalition where one player
after another deviates. Deviations by particular players are credible only if the payoff in the
structure at the end of the sequence of deviations provides a greater payoff for every deviator.
Therefore, by construction, the All Singletons structure always satisfies FDS. Structures
satisfying FDS are those from which outside options are derived. These are used to calculate
coalition stability as in Eq. (9).

Definition 1 refers to sequences of deviations. Sequences allow players to “induce” certain
structures (Definition 2). If a player deviates from aGrand Coalition, the payoff which results
directly from that deviation alone may be very large. However, if the new coalition does not
satisfy FDS, the initial deviation would induce further deviations by the remaining coalition
members until a structure satisfying FDS is reached. In the FDS structure, the player who
deviated first may receive a payoff lower than what he received in the Grand Coalition. As
such, FDS addresses the problem of myopia in Nash conjectures (Harsanyi 1974) and, can
potentially result in a larger set of stable coalitions than under IS.

Although the FDS concept may not be behaviourally convincing in all settings, we would
argue that it applies in our case where the main concern is the stability of the Grand Coalition.
Implicitly, the FDSconcept implies a punishment strategywhereby playerswhohave deviated
from the Grand Coalition are not allowed to benefit from re-joining. The FDS concept thus
reflects a plausible restriction on the action space of players.

The FDS solution concept also has several pragmatic advantages in games with transfers
and asymmetric players. These advantages result directly from the exclusion of external
stability considerations. If coalitions in asymmetric games can be externally unstable, then
a stable structure from which to draw the outside option may not exist. Furthermore, one of
the structures that could be reached is the Grand Coalition itself. This is due to the potential
for cycles in coalition structures.

To illustrate how cycles can occur, consider n = 3 and theGrandCoalition {1, 2, 3}. Player
1 considers what structure his deviation from the Grand Coalition would eventually induce
in order to decide if his initial deviation is worthwhile. His initial deviation would lead to
coalition {2, 3}. Suppose he knows that partial coalition {2, 3} is internally unstable and that
player 2 will deviate, resulting in All Singletons. He also knows that player 3 prefers {1, 3}
to All Singletons (it is externally unstable) so he knows that coalition structure {1, 3} will
form. Finally, he knows too that {1, 3} is externally unstable so 2 will join the coalition. This
brings us back to the Grand Coalition, and thus results in a cycle. This process is summarised
in Fig. 1. Note also that cycles cannot occur if players are symmetric. The presence of cycles
mean that there is no stable structure fromwhich player 1 can drawhis outside option to decide
whether his deviation from the Grand Coalition is beneficial. A further practical implication
is that if outside options are not calculable, then optimal sharing cannot be implemented.1

The issue of external stability, asymmetric players and farsightedness has been addressed
by Caparrós and Giraud-Heraud (2011). They suggest an alternative definition of external

1 Consider also that in this example, the set of imputations whose values could be considered to inform the
outside option includes the Grand Coalition itself. Needing to know Vi when we need to know Vi in order to
know Vi is a paradox best avoided.

123



598 A. N. Walker, H.-P. Weikard

Fig. 1 The potential for cycles.
The dashed arrows indicate
moves that are ruled out under
FDS and thus how cycles are
prevented

stability such that a coalition is externally stable if the addition of a player to that coalition
would lead to an internally unstable coalition. Such an approach combined with optimal
sharing rules would, however, not preclude the possibility of cycles.

The problem of cycles and the need to define outside options is avoided if there are no
transfers in the game. Transfers are not used in IEA analyses such as Zeeuw (2008), Osmani
andTol (2009) andBiancardi andLiddo (2010). In these examples, players receive the benefits
of cooperation directly. In our game, a requirement for stable coalitions is that benefits are
realised by the most efficient player and then distributed to coalition members.

In our specific circumstances, one option for dealing with this problem is to limit the
information required for the sharing rule for a given structure to that which can be provided
purely by the imputation for that particular structure. Various methods to achieve this such as
the nucleolus and the Shapley value are found in cooperative game theory. However, optimal
sharing rules perform best to stabilize coalitions for the provision of public goods (McGinty
et al. 2012). Therefore, employing methods such as the Shapley value under any solution
concept would lead to a reduction in the stability of Grand Coalitions (McGinty et al. 2012).
Hannesson (2011) argues that non-cooperative approaches are too pessimistic regarding the
potential for collaboration. Sharing rules which are not “optimal” are therefore undesirable.

In games with asymmetric players and transfer, the FDS concept therefore represents
a plausible restriction in the action space of players, prevents possible cycles and permits
a consistent application of optimal sharing rules. Additionally, if Grand Coalition stability
under changing stock location is improved when the FDS solution concept is employed, we
can suggest that restricting the action space of players as implied by the FDS concept could
be beneficial for ensuring stability. Later, we will return to the FDS concept in order to show
how it can be applied to asymmetric players using computational methods.

3.3 Some Established Results

Before we continue with our analysis, we briefly review some established results using IS.
Increasing the number of players leads to reduced IS of the Grand Coalition (Pintassilgo
and Lindroos 2008). IS of the Grand Coalition can however be achieved by introducing cost
asymmetry into the model (Lindroos 2008). Cost asymmetry increases the relative efficiency
at which a coalition can fish. In coalitions, the most efficient player fishes. Should this most
efficient player have a sufficiently large advantage, the removal of externalities resulting from
coalition formation allows themost efficient player to fully exploit his advantage to the extent
that he can compensate those in the coalition enough to prevent them from deviating.

4 Analysing FDS Coalitions with n Symmetric Players

For a given n and symmetric players, coalition structures are sufficiently described by the
number of coalition members s. For different numbers of symmetric players, structures can
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be described by a pair (n, s). In this section, we characterise the set of structures satisfying
FDS in a symmetric setting.

First note that, by construction, All Singleton structures (n, 1) satisfy FDS. Next, a larger
coalition s > 1 cannot satisfy FDS if members’ payoffs are less than what they get in All
Singletons. Hence, it is a necessary condition for a structure to satisfy FDS that

1

s
VS(n, s) ≥ Vi (n, 1). (11)

The right-hand side of Inequality (11) represents a player’s payoff in the All Singletons
structure. The left-hand side represents a member’s payoff in a coalition of size s. If this
inequality holds, then members (weakly) prefer to remain in structure (n, s) rather than
induce (n, 1).

Inequality (11) canbe simplifiedby cancelling out the economic andbiological parameters.
This is shown in “Appendix 2a”. We obtain the following inequality which only contains n
and s.

1

s(n − s + 2)2
≥ 1

(n + 1)2
(12)

Inequality (12) trivially holds for s = 1. Solving for s shows that for s > 1, the inequality
holds when.

s ≥ 3

2
+ n − 1

2

√
4n + 5. (13)

Using Inequality (13)we can, for a givenn, identify the smallest integer s forwhich (13) holds.
This gives us a set of coalition structures from which no player would deviate because any
deviation would induce (n, 1), which gives a smaller payoff. This set of coalition structures
thus satisfies FDS. In Fig. 2, all structures that satisfy FDS are marked by �. Structures
satisfying FDS where s = 1, display trivial FDS and those where s > 1 display non-trivial
FDS.

For a given n, coalitions for which s is too small to satisfy Inequality (13) therefore
do not satisfy FDS. Such structures are marked by α. To complete the characterisation of
structures satisfying FDS, note that Inequality (13) is only a necessary condition for FDS.
While all structures satisfying FDSmust satisfy (13), satisfying (13) is not sufficient for FDS.
For example, consider a Grand Coalition with 15 players. While (15, 15) satisfies Inequality
(13), we have not yet shown that this structure does not satisfy FDS because, as we will show,
(15, 13) is credibly inducible from (15, 15). Hence, our final step is to prove that structures
marked by β in Fig. 2 do not satisfy FDS.

Consider the incentives to leave the Grand Coalition. A player would deviate if his payoff
in the structure which is induced by his deviation (and hence satisfies FDS) provides a larger
payoff than his Grand Coalition payoff:

Vj /∈S(s, n) ≥ 1

n
VN (n, n). (14)

Similar to the derivations in “Appendix 2a”, when substituting the payoffs into (14), again,
economic and biological parameters cancel and we obtain

s ≥ 2 + n − 2
√
n. (15)

We compare the conditions for s in (13) and (15) in “Appendix 2b”. The comparison shows
that the minimum coalition size required for positive incentives to deviate from the Grand
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Fig. 2 Coalition structures satisfying FDS. Pairs (n, s) marked by filled square satisfy FDS. Coalition struc-
tures marked by α and β do not satisfy FDS. From structures marked by α, the structure (n, 1)will be induced.
From structures marked by β, structures displaying non-trivial FDS will be induced

Coalition (15) is always smaller than the minimum size of a coalition satisfying FDS, deter-
mined by (13). Hence, there are incentives to deviate from Grand Coalitions marked by β

because structures displaying non-trivial FDS satisfy (15). Furthermore, member payoffs in
any coalition s < n in structures marked by β are lower than the Grand Coalition member
payoff. Therefore members of these partial coalitions also have an incentive to deviate. We
have thus fully characterised the set of structures satisfying FDS in our symmetric fisheries
game.

5 Analytics of Asymmetry and Changing Stock Location

We will now begin to analyse the role of asymmetry in the model. This section presents
analytical results on the effects of changes in stock location. These results will allow us
to understand the results to be presented in the sensitivity analysis to follow. Asymmetry
in the Gordon–Shaefer model has been studied by Pintassilgo et al. (2010) who consider
cost-asymmetry. It turns out that there are important differences between the effects of cost-
asymmetry and catchability-asymmetry in themodel. Understanding these differences allows
us to understand and compare results.

Firstly, let us consider the equilibrium effort strategy given in Eq. (7). It is immediately
obvious that effort is decreasing ci . However, taking the first derivative of Eq. (7) with respect
to qi shows us that a threshold value of bi exists which determines whether changes in qi
have a positive or negative effect on the equilibrium effort strategy. The threshold, where
changes in qi have no effect on the equilibrium effort strategy, is given by
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b̂i = 1

2
−

∑
j∈((N\S)∪{l})\{i}(1 − b j )

2(n − s + 1)
, (16)

where l refers to the coalition member with the lowest cost-catchability ratio. If bi is greater
than the threshold value, equilibrium effort is increasing in qi . Given that bi is the inverse
efficiency parameter, players who are inefficient in terms of bi respond to increases in qi by
increasing their effort, whereas those who are efficient in terms of bi respond to increases
in qi by decreasing their effort. Because effort is always decreasing in ci , we can see that
different asymmetries may have very different effects.

Intuitively, cost reductions or catchability increases for a given player relative to other
players will increase the harvest of that player. The key difference between the marginal
effects of ci and qi is that increases in harvests due to decreases in ci will be achieved by
increasing effort,whereas, from thederivationof (16),weknow that increases in harvest due to
increases in qi can be achieved with a reduction in effort. Therefore, increases in catchability
allow efficient players to reduce effort and costs while simultaneously increasing harvests.
On the other hand, reductions in cost can only be exploited by increasing effort, which is
costly, if albeit at a lower unit rate. This suggests that favourable marginal changes in qi
may be more profitable to a player than favourable marginal changes in ci . We examine this
proposition for the n player case, and find that

− ∂�i

∂ci
<

∂�i

∂qi
⇔ qi < ci . (17)

Therefore, marginal increases in qi are more beneficial than marginal reductions in ci as
long as qi is less than ci . We provide more details on the derivation of condition (17) in
“Appendix 3”.

6 Numerical and Sensitivity Analyses

The purpose of this section is to expand our analysis to include asymmetric players in order to
analyse the effects of changing stock location. Accordingly, we must operationalize the FDS
solution concept to deal with asymmetric players in a numerical setting. The main challenge
in doing so is in defining players’ outside options.

By construction, FDS allows us to exclude the possibility of cycles. However, introducing
asymmetry requires us to deal with two additional problems in order to identify outside
options and calculate stability. The root of these problems is in Definition 2, which requires
that for a coalition to be unstable, at least one player must have an incentive to deviate. If
a coalition does not generate enough profit to satisfy outside options (i.e. there is a negative
surplus), all players have an incentive to deviate because the negative surplus is shared
among players. Therefore, the payoff of coalition membership will be less than the outside
option.Accordingly, theremay bemany ordered sequenceswhich endwith credibly inducible
structures. In order to calculate the outside option for player i , we need to know which
structures satisfying FDS could result from a deviation by player i from the Grand Coalition.
We label this set of structures as the feasible set.

Definition 4 The feasible set of player i, fi , is defined as the set of all Sk which can be reached
from the Grand Coalition via ordered sequences resulting in credibly inducible structures.

An example of the feasible set for player 1 is shown in Fig. 3. Figure 3 illustrates a 4-player
example where all coalitionmembers have an incentive to deviate from the {2, 3, 4} structure.
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Fig. 3 The elements of the
feasible set for player 1 are
marked by an asterisk

The structures {3, 4} and {2, 4} are stable such that the payoffs to player 1 in these structures
are included in player 1’s feasible set. {2, 3} is however, not stable but the All Singletons
structure is. The payoff to player 1 in the All Singletons is therefore included and those in
the {2, 3} structure are excluded. In this case then, f1 has three elements because there are
three structures which can be credibly induced via ordered sequences. We now need to use
the elements of a player’s feasible set to define the outside option of that player.

Definition 5 The outside option is defined as ωi = maxS∈ fi Vi (S)

Definition 5 assumes that players will always deviate if there is at least one structure in
the feasible set which provides a higher payoff. This reflects a cautious approach because it
is less likely to lead to stable Grand Coalitions than, for example, taking the mean. In this
way, stability can only be underestimated.

Finally, the FDS concept is based on static conjectures. Players foresee the eventual result
of other players’ actions and do not hesitate by waiting for the next period to deviate.

Having fully defined our FDS concept and illustrated how it is applied in practise, we
can now continue the analysis. In reality, fisheries games are characterised by asymmetries
in catchability and costs. We work on the assumption that fishing nations are asymmetric in
their catchability and we wish to see how stability of Grand Coalitions is affected by changes
in catchability.

6.1 Changes in Stock Location with 3 Players

To begin, we consider the 3-player case with a specific scenario for changing stock location
whereby catchability shifts entirely from player 1 to player 2. For simplicity, let us assume
that Player 3 is not affected by the changing stock location. In this way, the sum of the
catchability of the three players remains constant. Following the illustrative example, we
carry out a sensitivity analysis to obtain more general results.

We define the vector Q = (q1, q2, q3) to denote position of the fish stock relative to the
three players. In our illustrative example, we consider 80 different values of Q, which are
ordered to represent gradual stock change as shown in Fig. 4.

We limit our analysis to values of qi which ensure that players are always efficient enough
to choose positive fishing effort. This allows us to isolate the effect of catchability change
from changes in the number of players who are actively fishing. Therefore, we never consider
values of qi lower than 0.6. Figure 5 shows stability results for our illustrative example using
the following parameterisations; p = 1; k = 10; c1 = c2 = c3 = 1.5. We do not specify a
value for the parameter r because r has no effect on the stability of coalitions. This is proven
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Fig. 4 Values of catchability for
3 players across 80 ordered sets
of Q

Fig. 5 Stability values for a 3-player Grand Coalition with cost symmetry for the different parameterisations
indicated in Fig. 4. a Internal stability which is always negative, indicating an unstable Grand Coalition across
all parameterisations. b FDS. Different parameterisations result in varying FDS of partial coalitions, which in
turn affects the outside options for players in the Grand Coalition and thus the stability of the Grand Coalition.
For example, at parameterisation 10, the partial coalition {1, 2} satisfies FDS. This means that the outside
option of Player 3 leaving the Grand Coalition is determined in the structure given by coalition {1, 2}

in “Appendix 4”.We choose this parameterisation because it allows us to fully illustrate the
potential differences between the IS and FDS solution concepts.

Here, theGrandCoalition is internally unstable under all parameterisations of catchability.
Precisely the opposite is true when the FDS is considered. The Grand Coalition satisfies FDS
under all parameterisations of catchability.

To explain these results, note that under IS, the outside options are always drawn from
the remaining 2-player coalition (regardless of its stability). Note also, that under FDS, the
set of stable partial coalitions changes and hence the set of coalition structures from which
outside options are drawn changes also. Figure 5a shows how, as symmetry increases (perfect
symmetry exists where Q = 40), internal instability becomes more severe. This conforms
with previously established results. Similarly, for a given set of stable partial coalitions,
FDS of the Grand Coalition also decreases as symmetry increases. However, under FDS,
the set of stable partial coalitions changes. These changes result in discontinuous jumps in
stability. Increasing asymmetry increases the size of the set of stable partial coalitions and
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this decreases FDS while, for a given set of stable partial coalitions, increasing asymmetry
increases FDS.

In order tomakemore general comparisons between the effects on changing stock location
under the two solution concepts, we carry out a sensitivity analysis. We use bold type face
to denote sets of values of a given parameter used in the analysis. The analysis tests over
a discrete parameter space given by θ×Q where θ = (p, c1, c2, c3,k). Our approach is to
determine appropriate values for the set θ and analyse the properties of each element of θ as
stock location changes.

Appropriate values of θ need to allow for comparison of results with Pintassilgo et al.
(2010). As such, we require a uniform distribution of bi over a suitable range. However,
the asymmetric qi in our case precludes collecting terms p, ci , qi and k into the single
parameter bi in the profit function a la Pintassilgo et al. (2010). We therefore require a
procedure which tests a uniform distribution of bi but also specifies parameters for p, ci and
k, thus determining the set θ.

In determining θ, we note that the variables p, ci and k have no upper bound. However, a
necessary condition for positive effort of player i is that bi must be in the interval 0 ≤ bi < 1.
Therefore, we choose the values p, ci and k such that bi does not exceed its bounds for any
tested value of qi . Additionally, we select values for p, ci and k such that the values of bi are
uniformly distributed in the interval [0, 1). Values for p, ci and k are chosen from sets of
random draws from uniform distributions in the following intervals; 0 < ci < 2, 0 < p < 2
and 1 < k < 100. We select these intervals because they are reasonable and allow for a full
range of bi . In addition, due to the result given in (17), it is appropriate to allow ci to be less
and greater than qi .

We retain our assumption that changes in stock location occur in the range 0.6 ≤ qi ≤ 1.
Elements of Q are drawn from a uniform distribution in the interval of [0.6, 1] and obey the
criterion that q1 + q2 + q3 = 2.4. The summation criterion ensures that total catchability
is always constant and thus represents the case where catchability is redistributed between
players.2

The parameter space θ ×Q has approximately 100,000 elements which provides sufficient
confidence in the results. For the cost-symmetric and cost-asymmetric case and for each
element of θ×Q, we test for FDS and IS. The sensitivity analysis is programmed in Matlab
to classify each element of θ into certain categories (see Table 1) depending on the stability
of the Grand Coalition as stock location changes.

The results of the sensitivity analysis in Table 1 demonstrate that outcomes similar to
those in Fig. 5a occur for 34.1% (Never IS) of parameterisations for θ. Outcomes similar to
those in Fig. 5b occur for 18.8% (Always FDS) of parameterisations of θ. Further analysing
the cost-symmetric case, the results also show that Sometimes FDS and Sometimes IS are
the most common outcomes. However, Always IS never occurs but Always FDS occurs for
18.8% of parameterisations of θ in the cost-symmetric case. Additionally, Sometimes IS is
less common than Sometimes FDS. Within our range of catchability changes, the use of the
FDS solution concept offers significant stability improvements compared to IS.

Table 1 also shows that cost-asymmetry increases stability for both solution concepts.
When cost asymmetry is introduced, the potential range of the cost-catchability ratio for the
three players is greater when costs are asymmetric and thus, it is more likely that the most

2 In this way, we lose the ordering of Q as seen in Fig. 4. Given our method of statistical analysis, loosing
ordering does not affect the interpretation of the results. If the random draws were ordered to represent a
changing stock location scenario over time, as in Fig. 4, the results would be the same as without ordering.
Further, this method benefits from not presenting scenarios as in Fig. 4 because imposing such a scenario is
restrictive, particularly in the case of the four player game.
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Table 1 Results of sensitivity analyses for the cost-symmetric and cost-asymmetric cases in a 3-player game

Cost-symmetric Cost-asymmetric

Always FDS (%) 18.8 38.98

Sometimes FDS (%) 81.2 61.02

Never FDS (%) 0 0

Always IS (%) 0 25.17

Sometimes IS (%) 65.9 48.16

Never IS (%) 34.1 26.67

There are three categories. FDS and internal stability (IS) are reported for each of the three categories as
percentages of the elements of θ which fall into each category. Firstly, “Always FDS/Always IS”; where the
stability concept is satisfied across all parameterisations of Q. Secondly, “Sometimes FDS/Sometimes IS”;
where the stability concept is satisfied for at least one, but not all parameterisations of Q. Thirdly, “Never
FDS/Never IS”; where the stability concept is not satisfied for any parameterisation of Q

efficient member of the coalition can satisfy outside option requirements. We therefore see
an increase in stability for both the FDS and IS solution concepts. Cost-asymmetry has a
greater effect under the IS solution concept, as evidenced by the larger increase in Always
IS. This indicates that the FDS solution concept is less reliant on cost-asymmetry to improve
stability than IS.

In general then, stability increases under the FDS solution concept and in asymmetry. An
interesting aspect of the results is that the FDS solution concept results in more frequent
occurrences of “Sometimes FDS” in both the cost-symmetric and asymmetric cases. This
means that, under the FDS solution concept, changing stock location is more likely to render
a stable Grand Coalition unstable (or vice versa). Therefore, while the FDS concept results in
more stability in general, it also showsmore sensitivity to changing stock location. Sensitivity
to changing stock location increases for FDS relative to IS because of the different way that
the outside option is calculated. Using the 3-player game as an example, under IS, the outside
options are always drawn from the payoffs of free-riders playing against partial coalitions.
Under FDS, each outside option is calculated according to the stability of the partial coalitions.
Changes in stock location can change the stability of partial coalitions and thus lead to greater
variation in the outside options as stock location changes. In turn, this increases the sensitivity
of stability to changing stock location.

6.2 Changes in Stock Location with 4 Players

We now examine the effect of a unit increase in the number of players. In order to do so,
we employ the same sensitivity analysis procedure as in the previous subsection. The only
changes are that θ = (p, c1, c2, c3, c4,k), the random draws for catchability must now obey
the criterion that q1 + q2 + q3 + q4 = 3.2 and the increased number of players increases the
number of elements in θ×Q.

The results in Table 2, in comparison to Table 1, show that, as expected, increasing the
number of players from 3 to 4 decreases stability for both solution concepts and in both
the cost-symmetric and asymmetric cases. Cost-asymmetry increases IS and FDS. Again,
FDS offers improvements in stability overall, but also increases the frequency of “Sometimes
FDS” in both cost-symmetric and asymmetric cases and thus increases the sensitivity ofGrand
Coalition stability to changing stock location. Comparison of Tables 1 and 2 shows that the
problem of sensitivity with FDS becomes more severe as the number of players increases.
There are two reasons for this. Firstly, in general, stability decreases in n. Secondly, in the

123



606 A. N. Walker, H.-P. Weikard

Table 2 Results of sensitivity analysis for a cost-symmetric and cost-asymmetric case in a 4-player game

Cost-symmetric Cost-asymmetric

Always FDS (%) 0 8.87

Sometimes FDS (%) 100 78.29

Never FDS (%) 0 12.84

Always IS (%) 0 12.23

Sometimes IS (%) 48.15 51.07

Never IS (%) 51.85 36.70

For definitions of the terms in the first column, see Table 1

3-player case there are only 4 structures (3 partial coalitions and All Singletons) from which
the outside options can be drawn. In the 4-player case, there are 11 structures. Thus, changes
in stock location can change the stability of a greater number partial coalitions and thus lead
to greater variation in the outside option.

In addition to analysing the stability properties of each element of θ, we can also analyse
each element of θ×Q individually. This allows for direct comparison to Pintassilgo et al.
(2010). For 4-player games, considering asymmetry in ci (which is represented by asymmetry
in bi ), Pintassilgo et al. (2010) find that the Grand Coalition will be Internally Stable in 5.1%
of cases. In our cost-symmetric case, the percentage of elements of θ ×Q for which the Grand
Coalition is internally stable is 22% (not shown in Table 2). This shows that asymmetry in
qi is more likely to lead to stability than asymmetry in ci .

The reason for this difference has already been partially explained in Sect. 5, where we
established that marginal increases in qi lead to a greater increase in profit than marginal
reductions in ci if and only if qi < ci . Therefore, when qi < ci holds, a given degree of
asymmetry in qi can lead to greater differences in payoffs between players than the same
degree of asymmetry in ci . In our sensitivity analysis, due to our selection of parameter
ranges, qi < ci may or may not hold. When it does hold, a given degree of asymmetry in qi
can allow the most efficient coalition member to be more profitable than for a given degree
of asymmetry in ci . Thus, the most efficient coalition member is more likely to be able to
satisfy outside options. This explains the increased stability in our case relative to Pintassilgo
et al. (2010).

Of course, the selection of intervals for qi and ci in the sensitivity analysis affects this
result. For example, if ci is always greater than qi then the Grand Coalition will be stable
for more elements of θ ×Q. In general, it holds that increases in qi which reinforce existing
cost advantages of the most efficient coalition member will increase stability. However, the
relative magnitudes of ci and qi are important in determining the marginal effect of changes
in qi on coalition stability.

The results show that the FDS solution concept offers consistently more Grand Coalition
stability under stock location changes in both 3- and 4-player games. Although, the improve-
ments in stability due to the FDS solution concept are accompanied by an increase in the
sensitivity of stability to changing stock location.

7 Discussion and Conclusion

The results of this study contribute to an improved understanding of the impacts of changing
stock location on the potential for full cooperation regarding fish stocks. When players are
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symmetric and changes in stock location affect all players equally, the Grand Coalition
satisfies FDS for n ≤ 4. For n > 4, large partial coalitions can also satisfy FDS. When
considering cost-symmetry and cost-asymmetry combined with changing stock location, we
find that FDS leads to an increase in stability relative to IS. However, while stable Grand
Coalitions are more likely under the FDS solution concept, changes in whether a Grand
Coalition is stable due to changing stock location are also more likely. In this way, the use
of the FDS solution concept increases stability, but also increases the sensitivity of stability
to changes in stock location.

Finally, we discuss some important issues highlighted by our results. We need to consider
the positivist aspect of which solution concept best reflects reality and the normative aspect
of which behaviours implied by the solution concept are preferable. The normative aspect is
clear. Should policy makers wish to increase the stability of Grand Coalitions under changes
in stock location, then mechanisms could be put into place to encourage further deviation,
thereby forcing players who are considering a deviation to make farsighted conjectures about
the effects of their deviation. In doing so, policy makers should consider that such farsighted
conjectures may lead to more frequent switches been stable and unstable Grand Coalitions as
a consequence of the increase in sensitivity to changing stock location associated with FDS.

The positivist question is less clear cut. In the simplest, symmetric case, Grand Coalitions
are unstable for more than 4 players. In reality, there have been examples of both success
and failure of fisheries agreements for various numbers of fishing states (see Munro 2008).
This offers some support for the notion that fishing countries are posing credible threats to
deviation and that this facilitates stable coalitions.

There are also other approaches which could be employed to analyse the issue of changes
in stock location. For example, Long and Flaaten (2011) use a Stackelberg game to analyse
the potential for cooperation to manage straddling fish stocks and have foundmore optimistic
results than in the literature based on Cournot games. Breton and Keoula (2012) employ a
dynamic farsightedness concept as well as a static version. A dynamic structure has the
potential to increase the stability of the Grand Coalitions when stable coalition structures are
reached after a large number of deviations (for example, the All Singletons structure) and the
discount rate is sufficiently low. Higher payoffs from deviations will therefore be reduced
through discounting and this will help to stabilise Grand Coalitions.
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Appendix 1: Reaction Function and Equilibrium Strategy for the All Singletons Struc-
ture

Individual profits are given by

�i = pqi ei x − ci ei .
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Using the steady state condition, solving for x and substituting the value for x gives us

�i = pqi ei

⎛
⎝k

r

⎛
⎝r − qi ei −

∑
j∈N\{i}

q j e j

⎞
⎠

⎞
⎠ − ci ei .

The first order condition is

�′
i = pqi k − 2pq2i kei

r
− pqi

∑
j∈N−i

q j e j

r
− ci = 0.

Solving for effort gives the reaction function

ei = r

2qi
(1 − bi ) − 1

2qi

∑
j∈N\{i}

q j e j

where bi = ci
pqi k

.

We manipulate the reaction function to obtain the following two identities;

ei = r (1 − bi )

qi
− 1

qi

∑
i∈N

qi ei

∑
i∈N

qi ei = r

n + 1

∑
i∈N

(1 − bi ).

Substituting the second identity into the first gives us the equilibrium strategy

ei = r (1 − bi )

qi
− r

qi (n + 1)

∑
i∈N

(1 − bi ),

the RHS of which can be manipulated so that ei is a function of the inverse efficiency
parameters of all other players such that,

ei = nr

(n + 1) qi
(1 − bi ) − r

(n + 1) qi

∑
j∈N\{i}

(1 − b j ).

Appendix 2a: Derivation of Inequality (12)

1

s
VS(n, s) ≥ Vi (n, 1)

r(1 − b)

n + 1

[
pk

(
1 − n (1 − b)

n + 1

)
− c

q

]
≤ r (1 − b)

s (n − s + 2)

[
pk

(
1 − (n − s + 1) (1 − b)

n − s + 2

)
− c

q

]
.

Cancelling terms outside the square brackets and dividing both sides by pk yields

1

n + 1

[
(1 − b) − n(1 − b)

n + 1

]
≤ 1

s(n − s + 2)

[
(1 − b) − (n − s + 1) (1 − b)

n − s + 2

]
.

Removing (1 − b) from inside the brackets and cancelling yields

1

n + 1

(
1

n + 1

)
≤ 1

s(n − s + 2)

(
1

n − s + 2

)
.

Which simplifies to 1
(n+1)2

≤ 1
s(n−s+2)2

. Solving for s gives the result in (12).
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Appendix 2b: Comparison of (13) and (15)

We examine the difference between the right hand sides of (13) and (15).
(
3

2
+ n − 1

2

√
4n + 5

)
− (

2 + n − 2
√
n
)

⇔ −1

2
+ 2

√
n − 1

2

√
5 + 4n

Hence, the difference is positive (and increasing) for all n > 2.

Appendix 3: The Relative Advantage of Cost Versus Catchability Asymmetries

Beginning by substituting Eqs. (3) and (7) into Eq. (4) and simplifying, we have equilibrium
profit

�i = prk

[
Bi

a

a + 1
−

∑
j B j

a + 1

][
1 − Bi

a

a + 1
+

∑
j B j

a + 1
+

∑
j

(
Bj

a

a + 1
−

∑
k Bk

a + 1

)]

−cir

qi

[
Bi

a

a + 1
−

∑
j B j

a + 1

]
.

where Bi ≡ 1 − bi ∀i, a ≡ n − s + 1,
∑

j sums over all j ∈ N\i and ∑
k sums over all

k ∈ N\ j .
The first differentials of the profit function are given below,

∂�i

∂ci
= r

qi (a + 1)2

⎡
⎣(

2a − 2a2
)
(1 − bi ) + (2a − 1)

∑
j

(
1 − b j

)
⎤
⎦ ,

∂�i

∂qi
= − cir

q2i (a + 1)2

⎡
⎣(

2a − 2a2
)
(1 − bi ) + (2a − 1)

∑
j

(
1 − b j

)
⎤
⎦ .

Appendix 4: The Independence of Coalition Stability from r

Wewill demonstrate that the parameter r has no effect on stability. In order to do so, we prove
that the ordering of any two profit functions, regardless of coalition size or membership, does
not depend on r . The subscript j and k are used to denote the steady state stock size and
effort under different coalition sizes or membership choices and hold their usual meaning for
ci and qi .

Consider the ordering

pq j e j x j − c j e j > pqkek xk − ckek .

Equations (3) and (7) from the main text are repeated below.

xi = k − k

r

N∑
i=1

qi ei (3)
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ei = (n − s + 1)r

(n − s + 2)qi
(1 − bi ) − r

(n − s + 2)qi

∑
j∈((N\S)∪{l})\{i}

(1 − b j ) for i ∈ (N\S) ∪ {l}

(7)

Substitution of (7) into (3) shows that x is not a function of r because the r terms cancel.
Effort ei is linear in r and can thus be entirely cancelled from the ordering. Given that the
equality of any two profits does not depend on r , it holds also that the payoff of a given
coalition member (Eq. 7) also does not depend on r . To see this, note that given Eq. (9),
VS(S) >

∑
j∈S ω j is a sufficient condition for stability. The argument for the independence

of the ordering of any two profit functions from r thus holds also for payoffs.
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