Skip to main content

Advertisement

Log in

Suppressive effects of novel derivatives prepared from Aconitum alkaloids on tumor growth

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Little information has so far been reported regarding the antiproliferative properties of Aconitum alkaloids against human tumor cells despite of their intense toxicities. In the present study, the antitumor properties and radiation sensitizing effects were investigated by various types of novel derivatives prepared from Aconitum alkaloids. The antitumor properties were investigated against human tumor cell lines, A172, A549, HeLa and Raji, respectively, by a cell growth, a clonogenic assay, cell cycle distribution, cell cycle related molecules and γH2AX expression. The novel compounds derived from C20-diterupenoid alkaloids showed a significantly suppressive effect in all cell lines. In contrast, natural C19-norditerpenoid alkaloids and their derivatives showed either no effect or only a slight effect. One of the compounds also showed radiosensitizing properties on A549 cells. These effects are not related to either the cell cycle distribution, the enhancement of apoptosis or the γH2AX expression. Novel derivatives prepared from Aconitum alkaloids, not but natural alkaloids, clearly showed anti-proliferative activity in human tumor cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haveman J, Castro Kreder N, Rodermond HM et al (2004) Cellular response of X-ray sensitive hamster mutant cell lines to gemcitabine, cisplatin and 5-fluorouracil. Oncol Rep 12:187–192

    PubMed  CAS  Google Scholar 

  2. Didelot C, Mirjolet JF, Barberi-Heyob M (2002) Radiation could induce p53-independent and cell cycle-unrelated apoptosis in 5-fluorouracil radiosensitized head and neck carcinoma cells. Can J Physiol Pharmacol 80:638–643

    Article  PubMed  CAS  Google Scholar 

  3. Pauwels B, Korst AE, Andriessen V et al (2005) Unraveling the mechanism of radiosensitization by gemcitabine: the role of TP53. Radiat Res 164:642–650

    Article  PubMed  CAS  Google Scholar 

  4. Zhang M, Boyer M, Rivory L et al (2004) Radiosensitization of vinorelbine and gemcitabine in NCL-H460 non-small-cell lung cancer cells. Int J Radiat Oncol Biol Phys 58:33–60

    Google Scholar 

  5. Baumann M, Krause M (2004) Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results. Radiother Oncol 72:257–266

    Article  PubMed  CAS  Google Scholar 

  6. Kvols LK (2005) Radiation sensitizers: a selective review of molecules targeting DNA and non-DNA targets. J Nucl Med 46:187S–190S

    PubMed  CAS  Google Scholar 

  7. Sonnemann J, Gekeler V, Ahibrecht K et al (2004) Down-regulation of protein kinase Ceta by antisense oligonucleotides sensitises A549 lung cancer cells to vincristine and paclitaxel. Cancer Lett 209:177–185

    Article  PubMed  CAS  Google Scholar 

  8. Qing C, Jiang C, Zhang JS et al (2001) Induction of apoptosis in human leukemia K-562 and gastric carcinoma SGC-7901 cells by salvicine, a novel anticancer compound. Anticancer Drugs 12:51–56

    Article  PubMed  CAS  Google Scholar 

  9. Meg LH, Zhang JS, Ding J (2001) Salvicine, a novel DNA topoisomerase II inhibitor, exerting its effects by trapping enzyme-DNA cleavage complexes. Biochem Pharmacol 62:733–741

    Article  Google Scholar 

  10. Yildiz F, Perez R, Redpath JL (2000) Paclitaxel exposure time determines the nature of interaction with radiation in HeLa cells: the role of apoptosis. Eur J Cancer 36:1426–1532

    Article  PubMed  CAS  Google Scholar 

  11. Chan TY (1994) Aconitine poisoning: a global perspective. Vet Hum Toxicol 36:326–328

    PubMed  CAS  Google Scholar 

  12. Feldkamp A, Koster B, Weber HP (1991) Fatal poisoning caused by aconitine monk's hood (Aconitum napellus). Monatsschr Kinderheilkd 139:366–367

    PubMed  CAS  Google Scholar 

  13. Negulyaev Yu A, Vedernikova EA, Savokhina GA (1990) Aconitine-induced modification of signal sodium channels in neuroblastoma cell membrane. Gen Physiol Biophys Commun 9:167–176

    CAS  Google Scholar 

  14. Fu M, Wu M, Wang JF et al (2007) Disruption of the intracellular Ca2+ homeostasis in the cardiac excitation–concentration coupling is a crucial mechanism of arrhythmic toxicity in aconitine-induced cardiomyocytes. Biochem Biophys Res Commun 23:929–936

    Article  CAS  Google Scholar 

  15. Wada K, Ishizuki S, Mori T et al (1998) Effects of Aconitum alkaloid kobusine and pseudokobusine derivatives on cutaneous blood flow in mice. Biol Pharm Bull 21:140–146

    PubMed  CAS  Google Scholar 

  16. Wada K, Ishizuki S, Mori T et al (2000) Effects of Aconitum alkaloid kobusine and pseudokobusine derivatives on cutaneous blood flow in mice; II. Biol Pharm Bull 23:607–615

    PubMed  CAS  Google Scholar 

  17. Wada K, Ishizuki S, Mori T et al (1997) Effects of alkaloids from Aconitum yesoense var. macroyesoense on cutaneous blood flow in mice. Biol Pharm Bull 20:978–982

    PubMed  CAS  Google Scholar 

  18. Wada K, Bando H, Amiya T (1985) Two new C20-diterpenoid alkaloids from Aconitum yesoense var. macroyesoense (NAKAI) TAMURA, structures of dehydrolucidusculine and N-deethyldehydrolucidusculine. Heterocycles 23:2473–2477

    CAS  Google Scholar 

  19. Bando H, Wada K, Amiya T et al (1987) Studies on Aconitum species V. Constituents of Aconitum yesoense var. macroyesoense (NAKAI) TAMURA. Heterocycles 26:2623–2637

    CAS  Google Scholar 

  20. Wada K, Bando H, Amiya T (1988) Studies on Aconitum species VI. Yesoline, a new C20-diterpenoid alkaloid from Aconitum yesoense var. macroyesoense (NAKAI) TAMURA. Heterocycles 27:1249–1252

    CAS  Google Scholar 

  21. Wada K, Bando H, Amiya T et al (1989) Studies on Aconitum species. XI. Two new diterpenoid alkaloids from Aconitum yesoense var. macroyesoense (NAKAI) TAMURA V. Heterocycles 29:2141–2148

    Article  CAS  Google Scholar 

  22. Wada K, Bando H, Kawahara N (1990) Studies on Aconitum species. XIII. Two new diterpenoid alkaloids from Aconitum yesoense var. macroyesoense (NAKAI) TAMURA VI. Heterocycles 31:1081–1088

    CAS  Google Scholar 

  23. Bando H, Kanaiwa Y, Wada K et al (1981) Structure of deoxyjesaconitine. A new diterpene alkaloid from Aconitum subcuneatum NAKAI. Heterocycles 16:1723–1725

    CAS  Google Scholar 

  24. Mori T, Bando H, Kanaiwa Y et al (1983) Studies on the constituents of Aconitum Species. II. Structure of deoxyjesaconitine. Chem Pharm Bull 31:2884–2886

    CAS  Google Scholar 

  25. Wada K, Bando H, Mori T et al (1985) Studies on the constituents of Aconitum Species. III. On the components of Aconitum subcuneatum NAKAI. Chem Pharm Bull 33:3658–3661

    CAS  Google Scholar 

  26. Wada K, Bando H, Watanabe M et al (1985) Studies on the constituents of Aconitum Species. IV. On the components of Aconitum japonicum THUNB. Chem Pharm Bull 33:4717–4722

    Google Scholar 

  27. Bando H, Wada K, Amiya T et al (1988) Studies on the constituents of Aconitum Species. VII. On the components of Aconitum japonicum THUNB. Heterocycles 27:2167–2174

    Article  CAS  Google Scholar 

  28. Bando H, Wada K, Tanaka J et al (1989) Two new diterpenoid alkaloids from Delphinium pacific giant and revised 13C-NMR assignment of delpheline. Heterocycles 29:293–1300

    Article  Google Scholar 

  29. Wada K, Yamamoto T, Bando H et al (1992) Four diterpenoid alkaloids from Delphinium elatum. Phytochemistry 31:2135–2138

    Article  CAS  Google Scholar 

  30. Jalal Hosseinimehr S, Inanami O, Hamasu T et al (2004) Activation of C-Kit by stem cell factor induces radioresistance to apoptosis through ERK-dependent expression of survivin in HL60 cells. J Radiat Res 45:557–561

    Article  PubMed  Google Scholar 

  31. Liu Y, Nakahara T, Miyakoshi J et al (2007) Nuclear accumulation and activation of nuclear factor kB after split-dose irradiation in LS174T cells. J Radiat Res 48:13–20

    Article  PubMed  CAS  Google Scholar 

  32. Hall EJ (2000) Radiobiology for the radiologist. Lippincott, Philadelphia

    Google Scholar 

  33. Chodoeva A, Bosc JJ, Guillon J et al (2005) 8-O-Azeloyl-benzoylaconine: a new alkaloid from the roots of Aconitum karacolicum Rapcss and its antiproliferative activities. Bioorg Med Chem 13:6493–6501

    Article  PubMed  CAS  Google Scholar 

  34. Kobayashi J (2004) Molecular mechanism of the recruitment of NBS1/hMRE11/hRAD50 complex to DNA double-strand breaks: NBS1 binds to g-H2AX through FHA/BRCT domain. J Radiat Res 45:473–478

    Article  PubMed  CAS  Google Scholar 

  35. Takahashi A, Ohnishi T (2005) Dose gH2AX foci formation depend on the presence of DNA double strand breaks? Cancer Lett 229:171–179

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research Fund from the Ministry of Education, Science and Culture of Japan (No. 19659300, IK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuo Kashiwakura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazawa, M., Wada, K., Takahashi, K. et al. Suppressive effects of novel derivatives prepared from Aconitum alkaloids on tumor growth. Invest New Drugs 27, 111–119 (2009). https://doi.org/10.1007/s10637-008-9141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-008-9141-4

Keywords

Navigation