Skip to main content

Advertisement

Log in

Novel biallelic TRPM1 variants in an elderly patient with complete congenital stationary night blindness

  • Clinical Case Report
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Background

Little is known about whether patients with complete congenital stationary night blindness (CSNB) maintain visual function throughout their lifetime. The purpose of this report was to describe clinical and genetic features of an elderly female patient with complete CSNB that we followed for 5 years.

Methods

Molecular genetic analysis using whole-exome sequencing (WES) was performed to detect disease-causing variants. We performed a comprehensive ophthalmic examination including full-field electroretinography (ERG).

Results

In the patient, WES identified two novel variants (c.1034delT; p.Phe345SerfsTer16 and c.1880T>A; p.Met627Lys) in the TRPM1 gene. Her unaffected daughter has one of the variants. The patient reported that her visual acuity has remained unchanged since elementary school. At the age of 68 years old, fundus and fundus autofluorescence imaging showed no remarkable findings except for mild myopic changes. Goldmann perimetry showed preserved visual fields with all V-4e, I-4e, I-3e and I-2e isopters. Optical coherence tomography demonstrated preserved retinal thickness and lamination. Rod ERG showed no response; bright-flash ERG showed an electronegative configuration with minimally reduced a-waves, and cone and 30-Hz flicker ERG showed minimally reduced responses. Overall, the ERG findings of ON bipolar pathway dysfunction were consistent with complete CSNB.

Conclusions

This is the oldest reported patient with complete CSNB and biallelic TRPM1 variants. Our ophthalmic findings suggest that some patients with TRPM1-related CSNB may exhibit preserved retinal function later in life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schubert G, Bornschein H (1952) Analysis of the human electroretinogram. Ophthalmologica 123:396–413. https://doi.org/10.1159/000301211

    Article  CAS  PubMed  Google Scholar 

  2. Miyake Y, Yagasaki K, Horiguchi M, Kawase Y, Kanda T (1986) Congenital stationary night blindness with negative electroretinogram: a new classification. Arch Ophthalmol 104:1013–1020. https://doi.org/10.1001/archopht.1986.01050190071042

    Article  CAS  PubMed  Google Scholar 

  3. Bech-Hansen NT, Naylor MJ, Maybaum TA, Sparkes RL, Koop B, Birch DG et al (2000) Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet 26:319–323. https://doi.org/10.1038/81619

    Article  CAS  PubMed  Google Scholar 

  4. Pusch CM, Zeitz C, Brandau O, Pesch K, Achatz H, Feil S et al (2000) The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein. Nat Genet 26:324–327. https://doi.org/10.1038/81627

    Article  CAS  PubMed  Google Scholar 

  5. Dryja TP, McGee TL, Berson EL, Fishman GA, Sandberg MA, Alexander KR et al (2005) Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci USA 102:4884–4889. https://doi.org/10.1073/pnas.0501233102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zeitz C, van Genderen M, Neidhardt J, Luhmann UF, Hoeben F, Forster U et al (2005) Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15-Hz flicker electroretinogram. Invest Ophthalmol Vis Sci 46:4328–4335. https://doi.org/10.1167/iovs.05-0526

    Article  PubMed  Google Scholar 

  7. Audo I, Kohl S, Leroy BP, Munier FL, Guillonneau X, Mohand-Said S et al (2009) TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 85:720–729. https://doi.org/10.1016/j.ajhg.2009.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li Z, Sergouniotis PI, Michaelides M, Mackay DS, Wright GA, Devery S et al (2009) Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am J Hum Genet 85:711–719. https://doi.org/10.1016/j.ajhg.2009.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Genderen MM, Bijveld MM, Claassen YB, Florijn RJ, Pearring JN, Meire FM et al (2009) Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am J Hum Genet 85:730–736. https://doi.org/10.1016/j.ajhg.2009.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Audo I, Bujakowska K, Orhan E, Poloschek CM, Defoort-Dhellemmes S, Drumare I et al (2012) Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 90:321–330. https://doi.org/10.1016/j.ajhg.2011.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peachey NS, Ray TA, Florijn R, Rowe LB, Sjoerdsma T, Contreras-Alcantara S et al (2012) GPR179 is required for depolarizing bipolar cell function and is mutated in autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 90:331–339. https://doi.org/10.1016/j.ajhg.2011.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zeitz C, Jacobson SG, Hamel CP, Bujakowska K, Neuille M, Orhan E et al (2013) Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 92:67–75. https://doi.org/10.1016/j.ajhg.2012.10.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Furukawa T, Ueno A, Omori Y (2020) Molecular mechanisms underlying selective synapse formation of vertebrate retinal photoreceptor cells. Cell Mol Life Sci 77:1251–1266. https://doi.org/10.1007/s00018-019-03324-w

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura M, Sanuki R, Yasuma TR, Onishi A, Nishiguchi KM, Koike C et al (2010) TRPM1 mutations are associated with the complete form of congenital stationary night blindness. Mol Vis 16:425–437

    CAS  PubMed  PubMed Central  Google Scholar 

  15. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R et al (2015) ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130:1–12. https://doi.org/10.1007/s10633-014-9473-7

    Article  PubMed  Google Scholar 

  16. Hayashi T, Hosono K, Kurata K, Katagiri S, Mizobuchi K, Ueno S et al (2020) Coexistence of GNAT1 and ABCA4 variants associated with Nougaret-type congenital stationary night blindness and childhood-onset cone-rod dystrophy. Doc Ophthalmol 140:147–157. https://doi.org/10.1007/s10633-019-09727-1

    Article  PubMed  Google Scholar 

  17. Ninomiya W, Mizobuchi K, Hayashi T, Okude S, Katagiri S, Kubo A et al (2020) Electroretinographic abnormalities associated with pregabalin: a case report. Doc Ophthalmol 140:279–287. https://doi.org/10.1007/s10633-019-09743-1

    Article  PubMed  Google Scholar 

  18. Katagiri S, Akahori M, Sergeev Y, Yoshitake K, Ikeo K, Furuno M et al (2014) Whole exome analysis identifies frequent CNGA1 mutations in Japanese population with autosomal recessive retinitis pigmentosa. PLoS ONE 9:e108721. https://doi.org/10.1371/journal.pone.0108721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Katagiri S, Hayashi T, Nakamura M, Mizobuchi K, Gekka T, Komori S et al (2020) RDH5-related fundus albipunctatus in a large Japanese cohort. Invest Ophthalmol Vis Sci 61:53. https://doi.org/10.1167/iovs.61.3.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mizobuchi K, Hayashi T, Yoshitake K, Fujinami K, Tachibana T, Tsunoda K et al (2020) Novel homozygous CLN3 missense variant in isolated retinal dystrophy: a case report and electron microscopic findings. Mol Genet Genomic Med. https://doi.org/10.1002/mgg3.1308

    Article  PubMed  PubMed Central  Google Scholar 

  21. Guo J, She J, Zeng W, Chen Q, Bai XC, Jiang Y (2017) Structures of the calcium-activated, non-selective cation channel TRPM4. Nature 552:205–209. https://doi.org/10.1038/nature24997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeitz C, Robson AG, Audo I (2015) Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res 45:58–110. https://doi.org/10.1016/j.preteyeres.2014.09.001

    Article  PubMed  Google Scholar 

  23. Al-Hujaili H, Taskintuna I, Neuhaus C, Bergmann C, Schatz P (2019) Long-term follow-up of retinal function and structure in TRPM1-associated complete congenital stationary night blindness. Mol Vis 25:851–858

    CAS  PubMed  PubMed Central  Google Scholar 

  24. AlTalbishi A, Zelinger L, Zeitz C, Hendler K, Namburi P, Audo I et al (2019) TRPM1 mutations are the most common cause of autosomal recessive congenital stationary night blindness (CSNB) in the Palestinian and Israeli populations. Sci Rep 9:12047. https://doi.org/10.1038/s41598-019-46811-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Milam AH, Saari JC, Jacobson SG, Lubinski WP, Feun LG, Alexander KR (1993) Autoantibodies against retinal bipolar cells in cutaneous melanoma-associated retinopathy. Invest Ophthalmol Vis Sci 34:91–100

    CAS  PubMed  Google Scholar 

  26. Ueno S, Inooka D, Nakanishi A, Okado S, Yasuda S, Kominami T et al (2019) Clinical course of paraneoplastic retinopathy with anti-Trpm1 autoantibody in Japanese cohort. Retina 39:2410–2418. https://doi.org/10.1097/IAE.0000000000002329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the patient and her daughter for participating in this study.

Funding

This work was supported by a grant from the Japanese Retinitis Pigmentosa Society (JRPS) Research Grant 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaaki Hayashi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Statements of human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Statement on the welfare of animals

This article does not contain any studies with animals performed by any of the authors.

Patient consent

The patient and her daughter have consented to the submission of the case report to the journal.

Informed consent

The protocol for this study was approved by the Institutional Review Board of the Jikei University School ofMedicine (approval numbers: 24-231 6997). The protocol adhered to the tenets of the Declaration of Helsinki, with written informed consent obtained from the female patient and her daughter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, T., Mizobuchi, K., Kikuchi, S. et al. Novel biallelic TRPM1 variants in an elderly patient with complete congenital stationary night blindness. Doc Ophthalmol 142, 265–273 (2021). https://doi.org/10.1007/s10633-020-09798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-020-09798-5

Keywords

Navigation