
https://doi.org/10.1007/s10626-021-00346-0

Behaviour equivalent max-plus automata for timed
petri nets under open-loop race-policy semantics

Lukas Triska1 · Thomas Moor1

Received: 8 January 2021 / Accepted: 1 July 2021 /
© The Author(s) 2021

Abstract
Timed Petri nets and max-plus automata are well known modelling frameworks for timed
discrete-event systems. In this paper we present an iterative procedure that constructs a max-
plus automaton from a timed Petri net while retaining the timed behaviour. Regarding the
Petri net, we essentially impose three assumptions: (a) the Petri net must be bounded, i.e,
the reachability graph must be finite; (b) we interpret the Petri net with single server seman-
tics; and (c) the Petri net operates according to the race policy, i.e., the earliest possible
transition will fire and thereby possibly consume tokens required by other competing tran-
sitions. Under these assumptions we show that the proposed procedure terminates with a
finite deterministic max-plus automaton that realises the same timed behaviour as the Petri
net. As a variation of the plain race policy, we also consider that a subsequently designed
supervisor may temporarily disable distinguished transitions. Again, we present a terminat-
ing procedure that constructs a behaviour equivalent deterministic max-plus automaton. We
demonstrate by example how the latter automaton can be utilised as an open-loop model in
the context of supervisor control.

Keywords Timed discrete-event systems · Petri nets · Max-plus automata · Race policy

1 Introduction

Max-plus automata are defined as a generalisation of plain automata by assigning minimum
durations to individual transitions, and, hence, can be used to model the behaviour of timed
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discrete-event systems; see Gaubert (1995). Although max-plus automata are not as expres-
sive as general timed automata introduced by Alur and Dill (1994), they can be conveniently
analysed within an algebraic setting, e.g., considering power series with coefficients from
the idempotent semiring over the reals with addition and maximum as the two binary opera-
tions. Max-plus automata must not be confused with linear max-plus dynamic systems and
variations thereof; see e.g. Baccelli et al. (1992) or Hardouin et al. (2018).

Max-plus automata have also been utilised in the context of supervisory control. Here,
a given max-plus automaton represents the plant behaviour and one seeks to synthesise a
supervisory controller such that the closed-loop behaviour satisfies a prescribed specifica-
tion; e.g. Komenda et al. (2009) and Su et al. (2012). As with un-timed supervisory control
introduced by Ramadge and Wonham (1989), the basic case of complete observation corre-
sponds to a deterministic plant automaton. However, it is well known that not all max-plus
automata are determinisable. Algorithms that enable determinisation of max-plus automata
under restrictive conditions have been presented by Gaubert (1995) and Mohri (1997),
where weighted automata are applied to speech recognition and their determinisation is pos-
sible if the so-called twin property holds. A less restrictive condition for termination of the
procedure has been introduced in Lahaye et al. (2020). The classical algorithm for determin-
isation based on normalisation of the state vector has been extended by Kirsten (2008) for
polynomially ambiguous max-plus automata, where a more general clone property guaran-
tees the determinisation. For the more restrictive class of unambiguous max-plus automata
a concept for observer construction has been proposed recently by Lai et al. (2021). Nev-
ertheless, for non polynomially ambiguous max-plus automata even the decidability of
determinisation is still open. Weighted automata have also been used in image processing;
see Culik and Kari (1997).

Similar to max-plus automata, timed Petri nets are introduced by assigning durations to
individual transitions in a Petri net; see Ramchandani (1973). There are a number of alterna-
tive firing rules commonly applied to plain Petri nets, and this variety is inherited by timed
Petri nets. For example, Gaubert and Mairesse (1999) and Lahaye et al. (2015) consider so
called safe timed Petri nets under preselection policy and show how they can be converted
to behaviour equivalent max-plus automata. Although this is a relevant result for the pur-
pose of analysis, the obtained automata in general fail to be deterministic and are, hence, of
limited use in the context of controller synthesis. In contrast, Komenda et al. (2016) con-
sider so called bounded Petri nets under race policy and provide a semi-algorithm that in
the case of termination generates behaviour equivalent deterministic max-plus automata. To
this end, Komenda et al. (2016), p. 427, impose a fairness condition on the Petri net and
show that this condition is sufficient to imply termination of the semi-algorithm.

The present paper is based on our earlier conference contribution (Triska and Moor
2020), where we follow the line of thought by Komenda et al. (2016). However, we do
propose some strategic variations of the algorithm that allow us to drop the fairness require-
ment. In particular, our algorithm terminates for all bounded Petri nets under race policy
with rational timing parameters, and thereby generalises the results by Komenda et al.
(2016). Our conversion result is still a deterministic max-plus automaton and technically can
serve as the basis for a subsequent supervisory controller design. However, plain race-policy
semantics leave little leverage for a supervisor to control the system under consideration.
Extending our earlier conference contribution, we therefore propose to explicitly account
for supervisors, that may temporarily disable distinguished transitions and thereby give pri-
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ority to alternative transitions that could not occur under plain race policy. Since these
considerations take place before any specific decision is made by the supervisor, we refer
to our semantics as open-loop race policy. As with our base result for plain race-policy
semantics, we present an algorithm for the construction of a behaviour equivalent deter-
ministic max-plus automaton that terminates for bounded Petri nets with rational timing
parameters.

The paper is organised as follows. After providing some elementary notation in Section 2,
we recall common definitions regarding max-plus automata and timed Petri nets. In prepara-
tion of the following discussion, we also derive a formal representation for the behaviour of
timed Petri nets. Section 4 then presents our first main result in that we construct a behaviour
equivalent max-plus automaton for a given timed Petri net with race-policy semantics. Here,
the discussion includes a formal proof of termination for our algorithm, provided that the
Petri net is bounded. This result is extended in Section 5, where we address open-loop race-
policy semantics, again including a proof of termination for bounded Petri nets. Subsequent
controller design is demonstrated by a simple example in Section 6.

2 Notation

The positive integers are denoted by N and we let N0 := N∪̇{0}. The rationales are denoted
by Q and the reals R. The non-negative rationals are denoted by Q≥0 and the non-negative
reals R≥0. For a neutral element ε regarding the max operation, we also consider Qmax :=
Q∪̇{−∞} and Rmax := R∪̇{−∞} with ε := −∞ and the convention that x + ε = ε for all
x ∈ Rmax.

An alphabet A is a finite set of symbols. We denote A∗ the Kleene-closure of A, i.e., the
set of finite-length words composed from symbols in A, including the empty word λ ∈ A∗,
λ �∈ A. Subsets of A∗ are referred to as languages over A.

Throughout this paper we identify a map f : X → Y

with the associated vector g = (gx)x∈X ∈ YX, gx = f (x) ∈ Y for all x ∈ X; i.e., we do
not distinguish between f and g and use either notation whenever convenient.

An equivalence relation ≡ on a set Q is a reflexive, symmetric and transitive relation,
technically defined as a subset ≡⊆ Q × Q. We use common infix notation q ′ ≡ q ′′ for
(q ′, q ′′) ∈ ≡. The associated equivalence classes are denoted by [q] := { q ′ ∈ Q | q ≡ q ′ }.
Given two equivalence relations ≡1, ≡2 ⊆ Q × Q, we say that ≡1 is at least as fine as ≡2,
if for all q ′, q ′′ ∈ Q with q ′ ≡1 q ′′ we have that q ′ ≡2 q ′′.

3 Max-plus automata and timed petri nets

In this section we first recall common definitions regarding max-plus automata and timed
Petri nets. Notational conventions are kept in line with Komenda et al. (2016). A more
extensive introduction to this topic is given by Gaubert (1995) and Seatzu et al. (2012).
Subsequently we demonstrate how a representation of the semantic state of a timed Petri
net can be obtained and how the behaviour of the timed Petri net can be formally defined in
terms thereof. This amounts to an automaton representation, which, however, at this stage
may not be finite.
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3.1 Deterministic max-plus automata

Max-plus automata are introduced as a generalisation of plain automata with durations
assigned to transitions. We regard the timing component in Rmax with the binary operations
max and +, which entail the respective neutral elements ε := −∞ and e := 0.1

Definition 1 A max-plus automaton is defined as a quadruple G = (Q,A, Q0, δ), where

• Q is the set of states,
• A is the alphabet of event symbols,
• Q0 is the set of initial states, and
• δ : Q × A × Q → Rmax is the transition function.

The max-plus automaton G is finite if Q is a finite set.

The transition function in a max-plus automaton associates with each transition a non-
negative duration and thereby generalises the common transition relation of plain automata.
Technically, we require that for q, q ′ ∈ Q and a ∈ A either

δ(q, a, q ′) = d ≥ 0 (1)

to indicate that the respective transition takes no more than d time units, or that

δ(q, a, q ′) = ε (2)

to indicate that the respective transition cannot take place at all.
A path or run in the max-plus automaton G is defined as a sequence

π = q0a1q1a2q2 · · · anqn (3)

such that q0 ∈ Q0 and qi ∈ Q, ai ∈ A, δ(qi, ai+1, qi+1) �= ε for all i ∈ N0, i < n. With the
run π we associate the word w = a1a2 · · · an. A word w ∈ A∗ is recognised by G if there
exists at least one run π with associated word w. Note that the empty word λ is recognised
by any max-plus automaton via the trivial run π = q0. The logical behaviour L(G) ⊆ A∗
of G is then defined as the set of all words recognised by G.

A max-plus automaton is deterministic if it has exactly one initial state and if, given a
state and an event symbol, there can be at most one successor state. Throughout this paper,
we only consider deterministic automata. Technically, we then have that Q0 = {q0} and that
for all q, q ′, p′ ∈ Q and for all a ∈ A

δ(q, a, q ′) ∈ R≥0 and δ(q, a, p′) ∈ R≥0 =⇒ δ(q, a, q ′) = δ(q, a, p′) and q ′ = p′ .
(4)

In particular, we have that for each w ∈ L(G) there exists exactly one run of G with w the
associated word.

The timed behaviour of max-plus automata is defined via a dater function that returns
the date at which a sequence of events has definitely been executed. For the situation of
deterministic max-plus automata, the technical construction simplifies considerably.

1Our main technical results developed in this paper are restricted to timing constraints expressible in terms
of rational deadlines from Qmax. However, we formally refer to the more general case of Rmax when citing
basic definitions from the literature.
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Definition 2 The behaviour yG : A∗ → Rmax of a deterministic max-plus automaton G =
(Q,A, {q0}, δ) is given by

yG(w) := δ(q0, a1, q1) + δ(q1, a2, q2) + · · · + δ(qn−1, an, qn) , (5)

where π = q0a1q1a2q2 · · · anqn is the unique run with associated word w ∈ L(G), includ-
ing the special case of w = λ with the empty sum, i.e., yG(λ) = 0. For w �∈ L(G), we let
yG(w) = ε.

Referring to the transition durations as weights, the timed behaviour amounts to the sum
of the transition weights along the unique run associated with each individual recognised
word. Taking this perspective, we define the labeled and weighted transition relation ‘→’
by letting

q
a/d−−→ q ′ (6)

for q, q ′ ∈ Q and a ∈ A if and only if d = δ(q, a, q ′) ≥ 0. This transition relation
is commonly extended to words in A∗ by taking the transitive closure while accumulating
weights. Technically, we begin with the empty word λ ∈ A∗ and define the transitions

q
λ/0−−→ q , (7)

for all q ∈ Q. We then iteratively define further transitions

q
wa/d−−−→ q ′′ (8)

with q, q ′′ ∈ Q, w ∈ A∗ and a ∈ A if and only if

q
w/d ′
−−→ q ′ and q ′ a/d ′′

−−→ q ′′ (9)

are both defined for some q ′ ∈ Q and d = d ′ + d ′′.
For the deterministic max-plus automata considered in this paper, it can be seen by induc-

tion over the length of words that, given q ∈ Q and w ∈ A∗, there exists at most one
duration d ∈ R≥0 and one successor state q ′ ∈ Q such that

q
w/d−−→ q ′ . (10)

Moreover, considering the initial state q = q0 and a word w ∈ A∗, the existence of d and
q ′ that qualify for Eq. 10 is equivalent to yG(w) = d ≥ 0.

3.2 Petri nets

A Petri net is a bipartite graph with places and transitions as nodes. Places can hold any
number of tokens and the token configuration determines which transitions are enabled. We
recall the formal definition and comment on aspects relevant for the present paper.

Definition 3 A Petri net is a quadruple G = (P,T ,F , M0), where

• P is a finite set of places,
• T is a finite set of transitions,
• F ⊆ (P × T ) ∪ (T × P) is the incidence relation, and
• M0 : P → N0 is the initial marking.

The configuration of a Petri net is given by a marking M : P → N0, which specifies the
number of tokens present at each place. Whenever convenient, we identify the function M
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with the corresponding vector in NP
0 . The evolution of the marking over logic time adheres

to the following rules:

(S1) Transition t ∈ T is enabled by a marking M if each input place of t has at least one

token; i.e., if Mp > 0 for all p ∈ P with (p, t) ∈ F . This is denoted by M
t→. Given

a marking M , we write

En(M) := { t ∈ T |M t→} ⊆ T (11)

for the set of all enabled transitions.
(S2) Considering the Petri net with marking M , an enabled transition t ∈ En(M) can fire.

The firing of t transforms the marking M into M ′, where one token is eliminated
from each input place of t and, subsequently, one token is generated for each output
place. Technically, we denote Elm(M, t) ∈ N

P
0 the intermediate marking after token

elimination, i.e.,

Elm(M, t)p :=
{

Mp − 1 if (p, t) ∈ F ,

Mp else,
(12)

for all p ∈ P . Likewise, token generation is expressed by Gen(M, t) ∈ N
P
0 with

Gen(M, t)p =
{

Mp + 1 if (t, p) ∈ F ,

Mp else,
(13)

for all p ∈ P . Then, the successor marking M ′ is obtained as M ′ :=
Gen(Elm(M, t)). The overall process is denoted by M

t→ M ′.

Conforming with the above rules, a firing sequence is specified by markings Mi ∈ N
P
0 ,

i = 0, . . . , n ∈ N, and transitions ti ∈ T such that Mi
ti→ Mi+1 for i = 0, . . . , n − 1 ∈ N,

and we associate the word w := t0t1 · · · tn−1 ∈ T ∗ with this firing sequence. The logical
behaviour L(G) ⊆ T ∗ of the Petri net G is then defined as the set of all words associated
with some firing sequence.

A Petri net is called bounded if for all markings reachable by some firing sequence the
token count at each place does not exceed a uniform bound.

Definition 4 The reachability graph or marking graph of a bounded Petri net G is the
deterministic finite automaton Reach(G) = (M,T ,M0, tr ), where

• the state setM is the set of markings reachable by some firing sequence,
• the alphabet is the set of transitions T ,
• the initial state is the initial marking M0, and
• the partial transition function tr : M × T → M is defined for M ∈ M and t ∈ T by

tr (M, t) := M ′ if and only if M
t→ and where M ′ ∈ M is the unique marking with

M
t→ M ′.

Note that the determinism of the reachability graph crucially depends on the direct use
to the set of transitions as alphabet. When applying the same approach in the presence of
explicit transition labels, such a labeling needs to be injective for us to obtain a deterministic
reachability graph. Since an explicit labeling is quite common in the literature, we refer to
our setting as injectively labeled.
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3.3 Timed Petri nets under race policy

In the context of time extensions for Petri nets multiple approaches have been introduced
that are based on assigning durations to places, transitions, or both, see e.g. Merlin (1974)
and Ramchandani (1973), and Cerone andMaggiolo-Schettini (1999). In our specific setting
we consider a class of timed Petri nets that is obtained from plain Petri nets by associating
with each individual transition a duration. This style of generalisation is similar to when
moving from plain automata to max-plus automata.

Definition 5 A timed Petri net is a pair (G, τ ), where G is a Petri net with set of transitions
T and where τ = (τt )t∈T ∈ R

T≥0 is a parameter vector representing the durations associated
with each individual transition.

In contrast to the setting with max-plus automata, the duration τt here is interpreted as the
firing time of transition t ∈ T . Since holding times are not considered throughout this paper,
the duration τt is the minimum delay between enabling and firing of t . This interpretation
leads to the following informal extension of firing rules.

(S3) The tokens belonging to the initial marking become available at time instant zero.
(S4) All transitions are considered to be single server, meaning that a transition can only

process one token from each input place at a time.
(S5) If multiple transitions are enabled, the one that can fire the earliest has priority. This

rule is also known as race policy. In the case several transitions qualify under this
policy, either one can fire next.

(S6) Transitions are fired as soon as possible, which is referred to as the earliest
functioning firing rule.

These semantics are effectively the same as in Komenda et al. (2016). For a general
discussion of alternative settings, such as multi server, see e.g. Seatzu et al. (2012).

At this point we are looking to find a formal representation of the timed behaviour. Our
approach here is to extend the discrete state set

M ⊆ N
P
0 (14)

from the reachability graph by a continuous component C to strategically encode clock
values in order to address the timing rules (S3)–(S6). Technically, we let

C := (R≥0 ∪ {‡})T (15)

to maintain one clock per transition that shows the time for which the transition has been
continuously enabled or, alternatively, the distinguished symbol ‡ to explicitly indicate that
the respective transition is disabled and, hence, the clock is inactive. While the initial mark-
ingM0 is specified by the Petri net, we define the initial clock vector asC0 := (c0,t )t∈T ∈ C

with

c0,t :=
{
0 if M0

t→ , and

‡ else .
(16)

Thus, the overall set of semantic states amounts to the product M × C with initial state
(M0, C0) ∈ M × C. We define a number of operations on these states that turn out useful
in the subsequent discussion.

• As a means to update the values of all clocks after the elapse of some finite amount of
time we define the operation Inc for a clock vector C = (ct )t∈T ∈ C and a duration
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d ∈ R≥0, that is Inc(C, d) ∈ C with

Inc(C, d)t :=
{

ct + d if ct ∈ R≥0 and

‡ else ,
(17)

for all t ∈ T .
• In the interest of comparing clock values and for better readability, we define for d ∈

R≥0
min(‡, d) = ‡ (18)

The min operator is extended to vector valued arguments in the obvious elementwise
way.

• To reset the value of specific clocks we define the operation Reset for a set of transitions
R ⊆ T and a clock vector C = (ct )t∈T ∈ C. The clocks corresponding to transitions
in R are reset and other clocks are not effected; that is Reset(C,R) ∈ C with

Reset(C,R)t :=
{
0 if t ∈ R , and

ct else ,
(19)

for all t ∈ T . The single server transition semantics are then implemented by resetting
the respective clock value after every firing of a transition.

• Since the timing is only relevant for enabled transitions, we deactivate a clock refer-
ring to disabled transitions by substituting said clock with the indicator symbol ‡. This
operation is performed by Sub, defined for S ⊆ T and C = (ct )t∈T ∈ C with
Sub(C, S) ∈ C and

Sub(C, S)t :=
{

ct , if t ∈ S, and

‡ else .
(20)

for all t ∈ T .
• In order to adequately reset and start relevant clocks, we need to identify newly enabled

transitions. Given a marking M ∈ M with M t→M ′ for some transition t ∈ T and the
unique successor marking M ′ ∈ M, a transition t ′ ∈ T is obviously newly enabled if it
is enabled in M ′ but not in M , i.e., if t ∈ En(M ′) \ En(M). In this case, the correspond-
ing entry in the clock vector shall be set to 0. However, we also need to account for the
situation where the elimination of tokens as required by firing t temporally disables a
transition t ′ which otherwise is enabled by both markings M and M ′. Technically, we
then obtain

NewEn(M, t, M ′) := En(M ′) \ En(Elm(M, t)) ⊆ T . (21)

Note that systematically resetting clocks of newly enabled transitions ensures that
clocks of enabled transitions are always active, and hence, show a real value as opposed
to the distinguished symbol ‡. Note also that our construct here crucially relies on the
assumption of single server semantics.

• The race policy guarantees that among enabled transitions only the one(s) with the
minimal remaining firing delay can be fired. With En(M) the set of transitions enabled
by a marking M we define FirstFired(M,C) ⊆ En(M) by

FirstFired(M,C) = { t ∈ En(M) |
∀ u ∈ En(M) : τt − ct ≤ τu − cu} . (22)

In this regard the expression d = τt − ct for t ∈ FirstFired(M,C) represents the
minimal remaining firing delay among transitions enabled by the marking M . Hence,

590 Discrete Event Dynamic Systems (2021) 31:583–607



before the elapse of d time units, no transition can fire and after the elapse of d time
units some transition a ∈ FirstFired(M,C) will fire provided that En(M) �= ∅.

We are now in the position to formally define the overall timed Petri nets semantics by
introducing weighted transitions

(M,C)
a/d−−→ (M ′, C′) , (23)

between two semantic states
with M, M ′ ∈ M, C, C′ ∈ C, a ∈ T and d ∈ R≥0 if and only if

(i) M
a−→ M ′ ,

(ii) a ∈ FirstFired(M,C) ,
(iii) d = τa − ca ,
(iv) C+ = Inc(C, d) ,
(v) C++ = Reset(C+,NewEn(M, a,M ′) ∪ {a}) ,
(vi) C′ = Sub(C++,En(M ′)) .

Note that the above transition relation is deterministic by construction in the sense that

(M,C)
a/d ′
−−→ (M ′, C′) and (M,C)

a/d ′′
−−→ (M ′′, C′′) (24)

implies d ′′ = d ′, M ′′ = M ′ and C′′ = C′. In particular, the transitions can be interpreted
as state transitions in a deterministic max-plus automata with state set Q = M×C and we
will follow this up in the subsequent section. To this end, we refer to the common extension
of weighted transition relations to words as presented at the end of Section 3.1 for a formal
definition of the timed behaviour of the Petri net. Technically, we begin with the empty
word λ ∈ T ∗ and define the transitions

(M,C)
λ/0−−→ (M,C) (25)

for all M ∈ M, C ∈ C. Referring to Eq. 23 with conditions (i)–(vi), we then iteratively
introduce further transitions

(M,C)
wa/d−−−→ (M ′′, C′′) (26)

withw ∈ T ∗, a ∈ T and d ∈ R≥0 whenever there existM ′ ∈ M,C′ ∈ C and d ′, d ′′ ∈ R≥0
such that

(M,C)
w/d ′
−−→ (M ′, C′) and (M ′, C′) a/d ′′

−−→ (M ′′, C′′) . (27)

and d = d ′ + d ′′. Note that the determinism as observed above carries over to the extension
to words. In particular, given a word w ∈ T ∗ there exists at most one matching sequence of
transitions beginning at the initial state (M0, C0) and, if so, a unique corresponding overall
duration d.

Definition 6 The behaviour of a timed Petri net (G, τ ) is defined as the dater function
yG : T ∗ → Rmax with yG(w) := d if

(M0, C0)
w/d−−→ (M ′, C′) (28)

for some M ′ ∈ M and C′ ∈ C, and referring to the transition relation defined by Eqs. 23–
27, or, else, yG(w) := ε.
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4 Finite state representation

Based on the semantics defined in the previous section, we are now looking to obtain a max-
plus automaton with equal behavior to a given bounded, timed Petri net operating under
race policy with single server semantics. For our main result, Theorem 1, we show that a
suitable automaton with a finite number of states always exists and we demonstrate how to
obtain such an automaton.

4.1 Behaviour considerations

As a first step in constructing the desired max-plus automaton we propose an initial candi-
date with an infinite state set that realizes the same behavior as the respective timed Petri
net. This is done be re-interpreting the transition relation on the semantic states, Section 3.3,
Eq. 23, as the transition function of a max-plus automaton with state set Q = M × C, i.e.,
the set of all pairs of markings and clock vectors with regard to a given bounded timed Petri
net (G, τ ), G = (P,T ,F ,M0). Given a state q = (M,C) ∈ Q, we ask for all possible
successor states under the restriction of the race policy and with single server semantics.
Referring to the determinism of the transition relation on semantic states, Eq. 23, recall that
given q = (M,C) ∈ Q and t ∈ T there exists at most one duration d ∈ R≥0 and one
successor state q ′ = (M ′, C′) ∈ Q such that

q
t/d−−→ q ′ . (29)

Hence, we can define the max-plus transition function δ : Q × T × Q → Rmax by

δ(q, t, q ′) =
{

d, if q
t/d−−→ q ′ for d ∈ R≥0 and

ε, else,
(30)

and consider the deterministic max-plus automaton

G = (Q,T , {(M0, C0)}, δ) . (31)

It is evident from the construction that the weighted transition relation, Eq. 30, associated
with G matches the transition relation on the semantic states defined in Section 3.3, Eq. 23.
Hence, we have that

∀ w ∈ T ∗ . yG(w) = yG(w) . (32)

In other words, the timed behaviour of the max-plus automaton G equals the behaviour of
the timed Petri net (G, τ ).

4.2 Restriction to a finite automaton

Although the state set Q = M×C of G is technically infinite due to the C-component, our
conjecture is that the set of reachable states is only finite. In support of a formal argument,
we conduct a forward-reachability analysis on G. Consider the operator

NextState(P ) :=
{ q ′ ∈ Q | ∃ t ∈ T , q ∈ P . δ(q, t, q ′) ≥ 0 } (33)
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defined for sets of states P ⊆ Q. Then the set of reachable states in G is obtained by the
following iteration

Q0 := {(M0, C0)} , (34)

Qi+1 := Qi ∪ NextState(Qi) , (35)

Q∗ := ∪{ Qi | i ∈ N0 } , (36)

i.e., there exists a path π in G that ends in a state q ∈ Q if and only if q ∈ Q∗. Since non-
reachable states do not contribute to the behaviour, we can restrict G to the state set Q∗.
Technically, we consider the max-plus automaton

G∗ = (Q∗,T , {(M0, C0)}, δ∗) , (37)

where the transition function δ∗ : Q∗ × T × Q∗ → Rmax equals δ on the restricted domain,
i.e.,

∀ (q, t, q ′) ∈ Q∗ × T × Q∗ . δ∗(q, t, q ′) = δ(q, t, q ′) . (38)

and we conclude that yG(w) = yG(w) = yG∗(w) for all w ∈ T ∗.
From the boundedness assumption of the Petri net G it follows that the set of reachable

markings M in Reach(G) is finite. In order to establish that Q∗ is finite, we show that
the range of the C-component over all states in Q∗ is finite, too. To this end, consider the
following Lemma.

Lemma 1 The entries of the clock vector C in every state (M,C) ∈ Q∗ of the automaton
G∗ are bounded by the respective entry in the vector of transition durations τ ∈ R

T≥0, i.e.

∀ (M,C) ∈ Q∗ , t ∈ T . ct �= ‡ ⇒ ct ≤ τt . (39)

Proof For the case of Q∗ = {(M0, C0)} the claim is trivially true since each entry c0,t of
C0 by definition either equals ‡ or 0 ≤ τt , with the latter inequality as a consequence of τt

being non negative.
For a proof by contradiction, suppose there exists a state q ′ = (M ′, C′) ∈ Q∗ different

from the initial state, and such that c′
t > τt for some transition t ∈ T . Since q ′ is not

the initial state, there exists i ∈ N0 such that q ′ �∈ Qi but q ′ ∈ Qi+1. Hence, by Eq. 35,
we have that q ′ ∈ NextState(Qi). By the definition of NextState, Eq. 33, we can choose a
predecessor state q = (M,C) ∈ Qi ⊆ Q∗ such that δ(q, a, q ′) = d ≥ 0 for some a ∈ T .
With Eq. 30 this implies

(M,C)
a/d−−→ (M ′, C′) , (40)

and we can refer to conditions (i)–(vi) below (23) to derive further consequences. In order
for c′

t to be greater than zero, transition t has to be enabled for marking M ′ as well as
the predecessor marking M , otherwise transition t would be considered obviously newly
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enabled or disabled and the clock value c′
t is reset; see conditions (v) and (vi), respectively.

In particular, we have t ∈ En(M). Referring to condition (i), we have a ∈ En(M) and, since
transition a was chosen according to the race policy semantics, condition (ii), we also have
a ∈ FirstFired(M,C), i.e.,

d = τa − ca ≤ τb − cb , (41)

for all b ∈ En(M). From the definition of clock values via conditions (iv)–(vi), we obtain
ct + d = c′

t to conclude

ct + d = c′
t (42)

⇔ ct + τa − ca = c′
t > τt (43)

⇔ τa − ca > τt − ct . (44)

As t ∈ En(M) holds true, Eq. 44 constitutes a contradiction with Eq. 41.

Regarding the above lemma we consider the restricted range of clock values

C∗ := ([0, τmax] ∪ {‡})T ⊆ C , (45)

with τmax = maxt∈T τt to observe that

Q∗ ⊆ M × C∗ . (46)

If all entries in the timing vector τ are non-negative integers, i.e., τ ∈ N
T
0 , then the clock

vector C of any state q = (M,C) ∈ Q∗ is also in N
T
0 . Since the intersection of C∗ with

N
T
0 is a finite set, this implies that Q∗ is a finite set, too. For the case of a rational timing

τ ∈ Q
T≥0, we uniformly scale clocks to refer to the least common denominator of all entries

in τ to again obtain a finite set Q∗ by the same argument. Note that this observation does
not carry over to general real-valued timings τ ∈ R

T≥0. We now state our main result.

Theorem 1 Consider a bounded, injectively labeled, timed Petri net (G, τ ) under race-
policy and with single server semantics. Assuming a rational timing vector τ ∈ Q

T≥0, there
exists a finite deterministic max-plus automaton with equal behaviour. One such automaton
is given by

G∗ = (Q∗,T , {(M0, C0)}, δ∗) , (47)

as defined in Eq. 37 via the iteration (34)–(36). In particular, the iteration attains a fixpoint
after finitely many steps, i.e., we have Q∗ = Qi for some i ∈ N0.

Proof Finiteness of Q∗ is a consequence of Lemma 1 and the discussion for rational tim-
ings thereafter. Behavioural equivalence has been discussed in Section 4.1 concluding with
Eq. 32. Attaining a fixpoint Q∗ = Qi for some i ∈ N0 is a consequence of finiteness of Q∗
and monotonicity Qi ⊆ Qi+1 ⊆ Q∗ in the iteration (34)–(36).

4.3 Algorithm and example

With the intent to have the necessary computational steps be clearly accessible we present
an equivalent representation in the form of an algorithm; see Procedure 1.
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In order to illustrate the application of the proposed procedure we will detail relevant
construction steps for the Petri net depicted in Fig. 1. Here, all relevant vectors are triples of
single digit integers and we can concisely write xyz for the vector (x, y, z) ∈ (N0 ∪ {‡})3;
i.e., for the initial state with the marking as depicted we have (M0, C0) = (201, 0‡0) and we
start our reachability analysis with Q0 = {(201, 0‡0)}. Following the algorithmic procedure
we note that

• FirstFired(201, 0‡0) = {a} ,
• d = τa − ca = 2 − 0 = 2 ,
• tr (201, a) = 111 ,
• NewEn(201, a, 111) = {b} ,
• Sub(Reset(Inc(0‡0, 2), {a, b}), {a, b, c}) = 002 ,

and we obtain NextState(Q0) = {(111, 002)} and thus
Q1 = {(201, 0‡0), (111, 002)}. (48)

For the next iteration we additionally need to consider successors of the newly obtained
state (111, 002). Therefore, we note

• FirstFired(111, 002) = {b, c} ,
• db = τb − cb = 1 − 0 = 1 ,
• tr (111, b) = 201 ,
• NewEn(111, b, 201) = {c} ,
• for b: Sub(Reset(Inc(002, 1), {b, c}), {a, c}) = 1‡0 ,
• dc = τc − cc = 3 − 2 = 1 ,
• tr (111, c) = 111 ,
• NewEn(111, c, 111) = {b, c} ,
• for c: Sub(Reset(Inc(002, 1), {b, c}), {a, b, c}) = 100 ,
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Fig. 1 Timed Petri net (G, τ )

to obtain
NextState({(111, 002)})={(201, 1‡0), (111, 100)}

and therefore

Q2 = {(201, 0‡0), (111, 002), (201, 1‡0), (111, 100)}. (49)

Continuing in the same vein until the termination condition is reached at Q5 = Q4, results
in the max-plus automaton portrayed in Fig. 2.

5 Generalisation to open-loop race-policy semantics

In oder to address subsequent supervisory controller design, we now distinguish control-
lable and uncontrollable transitions; i.e., we consider a Petri net G = (P,T ,F ,M0) as in
Definition 3, however, the set of transitions is composed as a disjoint union T := Tc∪̇Tu of

Fig. 2 Resulting max-plus automaton G∗
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controllable and uncontrollable transitions Tc and Tu, respectively. As in the purely logical
setting, a supervisor can then be designed to disable any controllable transition at any instant
of time. In contrast to the purely logical setting, such a supervisor potentially enlarges the
timed behaviour under race-policy: disabling a transition that would otherwise win the race
effectively enables alternative transitions that are not accounted for in the timed behaviour
considered so far. To obtain an open-loop model suitable as a basis for a subsequent super-
visor design, such additional transitions must be included when transforming the Petri net
into a max-plus automaton. In this section, we review and adapt our approach in this regard.

5.1 Behaviour considerations

Recalling the informal semantics (S1)–(S6), Section 3, we propose the below variations for
(S5) and (S6) in order to address the open-loop configuration and to account for the potential
effect of a supervisor. We refer to this variation as open-loop race policy.

(S5’) As with plain race-policy semantics, a transition that can fire no later than any other
enabled transition can always fire next. This accounts for supervisors, that do not
disable the respective transition. Additionally, transitions that can fire no later than
any uncontrollable transition can also fire next. This accounts for supervisors, that
disable all earlier controllable transitions. If multiple transitions qualify under this
policy, either one of them can fire next.

(S6’) Transitions will fire as soon as possible, while respecting the priorities imposed by
Rule (S5’).

Not that in the absence of controllable transitions, i.e. Tc = ∅, rule (S5’) matches plain
race policy (S5) and, in turn (S6’) matches the earliest firing rule (S6). In this sense, the
proposed open-loop race semantics are a generalisation of plain race semantics.

We are now in the position to set up transitions in terms of semantic states similar to the
case of plain race-semantics.

Technically, we let

(M,C)
a/d−−→ (M ′, C′) , (50)

for M, M ′ ∈ M, C, C′ ∈ C, a ∈ T and d ∈ R≥0 if and only if

(i) M
a−→ M ′ ,

(ii’) {t ∈ (En(M) ∩ Tu) : τt − ct < τa − ca} = ∅
(iii’) d = max(τa − ca, 0) ,
(iv) C+ = Inc(C, d) ,
(v) C++ = Reset(C+,NewEn(M, a, M ′) ∪ {a}) ,
(vi) C′ = Sub(C++,En(M ′)) .

Here, technical condition (ii’) corresponds to rule (S5’), while (iii’) ensures non-
negative weights. The latter could occur due to a supervisor disabling otherwise qualifying
transitions.

The open-loop behaviour yG of the timed Petri net (G, τ ) under open-loop race pol-
icy is then defined literally as in the previous Definition 6, except that we now refer to
the transitions defined by Eq. 50 as opposed to Eq. 23. Likewise, we set up the transi-
tion function δ literally as in Eq. 30 to obtain a behaviour equivalent max-plus automaton
G = (Q,T , {(M0, C0)}, δ), i.e., we again have yG(w) = yG(w) for all w ∈ T ∗; see also
Section 4.1.
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5.2 Finite realisation

Our aim in this section is to identify states with identical future behaviour. In order to
proof that a realization of G with a finite state set exists, we show that all states of G

can be assigned to a finite number of equivalence classes without changing the behaviour.
Technically, our construction is based on the notion of quotient automata and language
equivalent states. Both concepts are well known for plain automata (see e.g. Hopcroft and
Ullman 1979), and we present a nearby adaption for our use case of deterministic max-plus
automata.

Definition 7 For a given equivalence relation ≈ on the set of states Q of the max-
plus automaton G = (Q,A, {q0}, δ), we define the quotient automaton G≈ =
(Q≈, A, {[q0]}, δ≈) where

• Q≈ is the set of all equivalence classes in Q, i.e., Q≈ := { [q] | q ∈ Q },
• A is the alphabet of event symbols,
• [q0] is the equivalence class with the initial state q0,
• δ≈ : Q≈ ×A×Q≈ → Rmax is defined for arguments ([p], a, [p′]) ∈ Q≈ ×A×Q≈ by

δ≈([p], a, [p′]) := max{ δ(q, a, q ′) | q ∈ [p], q ′ ∈ [p′] } .

In general, a quotient automaton realizes a “larger” behaviour than the original automa-
ton in that it (a) picks up words in the logical behaviour that are not possible in the original
automaton and in that it (b) provides a pessimistic estimate on the respective minimum dura-
tion; i.e., we have yG≈(w) ≥ yG(w) for all w ∈ A∗. However, the behaviour is maintained
exactly, provided that we only merge so called behavioural equivalent states.

Definition 8 Let G = (Q,A, {q0}, δ) be a max-plus automaton. For r, s ∈ Q we denote
Gr = (Q, A, r, δ) and Gs = (Q, A, s, δ) the respective automaton obtained by substituting
the initial state. Then, the two states r and s are called behavioural equivalent if yGr (w) =
yGs (w) for all w ∈ A∗. This is denoted by r

bhv∼ s and defines the behaviour equivalency
bhv∼ on Q associated with the automaton G.

As with plain automata (see e.g. Hopcroft and Ullman 1979), it can be verified by induc-
tion over the length of words that G and Gbhv∼ and G exhibit the same behaviour; note

that this fact crucially relies on determinism and does not carry over to the general case of
non-deterministic max-plus automata.

Lemma 2 Let G = (Q, A, {q0}, δ) be a max-plus automaton with behaviour equivalency
bhv∼ on Q and consider the quotient automaton Gbhv∼ . Then yGbhv∼

(w) = yG(w) for all w ∈
A∗.

Proof As a preliminary observation, we note that
bhv∼ is a right congruence, i.e., the

equivalence of two states is retained under the execution of transitions with the same label.
For the induction hypothesis, assume that yG(w) = yGbhv∼

(w) for some w ∈ A∗. If
yGbhv∼

(w) = yG(w) ≥ 0, there exists a unique run πG of G associated with w that ends in a
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final state q ∈ Q and, as part of our induction hypothesis, we assume that there also exists
a unique run πGbhv∼

of Gbhv∼ associated with w that ends in the final state [q] ∈ Q≈.
For the base case, we have w = λ and observe yG(λ) = 0 = yGbhv∼

(λ) with the unique

trivial runs πGbhv∼
and πGbhv∼

consisting of the respective initial states q0 ∈ Q and [q0] ∈ Q≈.
This established the induction hypothesis for w = λ.

For the induction step, consider the hypothesis for a specific w ∈ A∗ and one extra
symbol a ∈ A. In the case of yG(w) = yGbhv∼

(w) = ε, there exists no matching run and

we observe yG(wa) = yGbhv∼
(wa) = ε to conclude the induction step. From now on we

consider yG(w) = yGbhv∼
(w) = d ≥ 0, i.e., by determinism of G we have a unique run πG

of G with associated word w and some final state q ∈ Q and by the induction hypothesis
we have a unique run πGbhv∼

of Gbhv∼ with associated word w and final state [q] ∈ Q≈. We

again distinguish two cases.
For case (a) we assume that G can execute a in state q. By the determinism of G, we

pick the unique q ′ ∈ Q and d ′ ≥ 0 such that δ(q, a, q ′) = d ′. Thus, we obtain a run π ′
G of

G with associated word wa and with final state q ′ and we observe that yG(wa) = d + d ′.
By the definition of

bhv∼ , we observe that yGq (a) = yGp(a) = d ′ for all p ∈ [q]. Now pick
an arbitrary p ∈ [q]. Determinism of G then implies the unique existence of p′ ∈ Q with

δ(p, a, p′) = d ′. Referring to our preliminary observation that
bhv∼ is a right congruence, we

also have p′ ∈ [q ′]. Since p ∈ [q] was chosen arbitrarily, we obtain δ≈([q], a, [q ′]) = d ′
and δ≈([q], a, r) = ε for all r �= [q ′]. Hence, there exists a unique run π ′

Gbhv∼
of Gbhv∼ with

associated word wa and final state [q ′] ∈ Q≈. In particular, and we have that yGbhv∼
(wa) =

d + d ′ = yG(wa). This concludes the induction step for case (a).
For case (b), we assume that G can not execute a in state q. We then have yGq (a) =

ε and, hence, yG(wa) = ε. By the definition of
bhv∼ , this implies yGp(a) = ε for any

p ∈ [q] and, thus, δ(p, a, p′) = ε for any p ∈ [q] and any p′ ∈ Q. Thus, we obtain
δ≈([q], a, [q ′]) = ε for any q ′ ∈ Q. Regarding Gbhv∼ , this implies yGbhv∼

(wa) = ε. This

concludes the induction step for case (b).

For our specific use-case, we now seek for an equivalence relation on Q = M × C that
is (a) at least as fine as the behaviour equivalence and that (b) obviously leads to a finite
quotient automaton. To this end, our conjecture is that we can limit the value ct of each
entry in the clock component by the corresponding duration parameter τt without affecting
the future behaviour. This is expressed by the following candidate equivalence.

Definition 9 Consider the automaton G = (Q,T , {(M0, C0)}, δ) derived from a timed
Petri net (G, τ ) as in Section 5.1 and with state set Q = M × C. A pair of states

(M,C), (M̃, C̃) ∈ Q is called clock equivalent, denoted by (M,C)
clk∼ (M̃, C̃), if and only

if

M = M̃ and ∀t ∈ T : min(τt , ct ) = min(τt , c̃t ) (51)

In other words, two states are declared clock equivalent if their marking matches and if
all clock entries either match exactly or are both at least as high as the corresponding timing
parameter, i.e., the clock entries can only differ for two transitions which are both eligible
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to fire. For integer valued timing parameters, the quotient automaton w.r.t. clock equiva-

lence
clk∼ is obviously finite. As with pure race-semantics, this carries over to rational timing

parameters by suitable scaling. The following technical lemma is in support of our main
result, in which we establish that clock equivalence is indeed at least as fine as behaviour
equivalence.

Lemma 3 Consider the automaton G = (Q,T , {(M0, C0)}, δ) derived from a timed Petri
net (G, τ ) as in Section 5.1 and with state set Q = M × C. Let (M,C), (M, C̃) ∈ Q

be a pair of clock equivalent states, i.e., (M,C)
clk∼ (M, C̃). Then, for any w ∈ T ∗, d ∈

R≥0, (M ′, C′) ∈ Q such that

(M,C)
w/d−−→ (M ′, C′),

there exists some C̃′ ∈ C such that (M ′, C′) clk∼ (M ′, C̃′) and such that

(M, C̃)
w/d−−→ (M ′, C̃′).

Proof We will proof Lemma 3 by induction over the length of w.
Initial case: Let w = λ. Then we have d = 0 by definition and we can choose C̃′ =

C′ = C as a qualifying clock component.
Induction hypothesis: Suppose for some specific w ∈ T ∗, d ∈ R≥0, (M ′, C′) ∈ Q with

(M,C)
w/d−−→ (M ′, C′) , (52)

there exists C̃′ ∈ C such that (M ′, C′) clk∼ (M ′, C̃′) and

(M, C̃)
w/d−−→ (M ′, C̃′). (53)

Induction step:We now consider any a ∈ T , d2 ∈ R≥0 and (M ′′, C′′) ∈ Q such that

(M,C)
wa/d2−−−→ (M ′′, C′′) . (54)

By the iterative definition of the weighted transitions for words this implies the existence of
d1 ∈ R≥0 such that

(M ′, C′) a/d1−−→ (M ′′, C′′) , (55)

and, more specifically, that we must have d2 = d+d1. Turning to the definition of individual
transitions, we observe that conditions (i)–(vi) in Eq. 50 are to be satisfied, e.g., we clearly
have that a ∈ En(M ′). We now seek to establish a corresponding transition from state
(M ′, C̃′). For an argument by contradiction, assume that transition a cannot fire in state
(M ′, C̃′). Inspecting again conditions (i)–(vi) in Eq. 50, and recalling that a ∈ En(M ′), this
implies that condition (ii’) is violated, i.e., transition a is not fast enough. Then, there exists
a transition t ∈ En(M ′)∩Tu such that τt − c̃′

t < τa − c̃′
a . Since t is uncontrollable, its firing

cannot be delayed or disabled and thus corresponds to race policy behaviour. With regard to

Lemma 1 we conclude that c̃′
t is bounded by τt . Utilizing (M ′, C′) clk∼ (M ′, C̃′) we obtain

c̃′
t = c′

t . Additionally

0 ≤ τt − c̃′
t < τa − c̃′

a =⇒ τa − c̃′
a > 0 (56)

and as such c̃′
a = min(τa, c̃

′
a) = min(τa, c

′
a) = c′

a . Thus, we have τt − c′
t < τa − c′

a , and,
hence, a contradiction to Eq. 55, more specifically to condition (ii’) in Eq. 50.
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This concludes our argument by contradiction, and hence there must exist some some
d̃1 ∈ R≥0 and C̃′′ ∈ C with

(M ′, C̃′) a/d̃1−−→ (M ′′, C̃′′) . (57)

To show that both durations d1 and d̃1 match, we refer to Eq. 50, condition (iii’), and indeed
obtain by utilizing (51)

d1 = max(τa − c′
a, 0)

= τa − min(τa, c
′
a)

= τa − min(τa, c̃
′
a)

= max(τa − c̃′
a, 0)

= d̃1 ,

and, hence,

(M ′, C̃′) a/d1−−→ (M ′′, C̃′′) . (58)

This in turn implies

(M,C)
wa/d2−−−→ (M ′′, C̃′′) . (59)

Observe that incrementing both clock vectors C′ and C̃′, see Eqs. 17 and 50, condition (iv),
with the same d1 ∈ R≥0 retains clock equivalency. Furthermore, as the marking component
initially is M ′ in both transitions the effect of the operators Reset and Sub, see Eqs. 19 and

20, is the same on C′ and C̃′. Thus we obtain (M ′′, C′′) clk∼ (M ′′, C̃′′). This concludes the
induction step.

As a consequence of Lemma 3 we can now formulate the main result of this section and
identify classes of behaviour equivalent states.

Theorem 2 Consider the automaton G = (Q,T , {(M0, C0)}, δ) derived from a timed Petri
net (G, τ ) as in Section 5.1 and with state set Q = M × C. Then for any pair of states
(M,C), (M, C̃) ∈ Q we have that

(M,C)
clk∼ (M, C̃) =⇒ (M,C)

bhv∼ (M, C̃) , (60)

i.e., clock equivalence is at least as fine as behaviour equivalence.

Proof We denote r = (M,C) and s = (M, C̃) and consider any w ∈ T ∗. In the case of
yGr (w) = d ∈ R≥0, we refer to Lemma 3 and choose r ′, s′ ∈ Q such that

r
w/d−−→ r ′ and s

w/d−−→ s′ , (61)

and, hence, yGs (w) = d = yGr (w). If, on the other hand, yGr (w) = ε we must also have
yGs (w) = ε, since yGs (w) �= ε by Lemma 3 would imply yGr (w) = yGs (w) ∈ R≥0. In
both cases, we have obtained yGs (w) = yGr (w). This constitutes behaviour equivalence of
r and s.

As a consequence the quotient automaton Gclk∼ realizes the same behaviour as G while

having a finite set of states. The resulting upper bound on the number of states is the same
as in the race policy considerations.
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5.3 Algorithmic procedure

Akin to the first procedure we now present an equivalent representation in the form of
an algorithm; see Procedure 2. In the iterative construction process we choose for each
equivalence class one state as a representative. This is done in line 12 by imposing the
transition durations as an upper bound. Note that Procedure 2 yields the same result as
Procedure 1, if no transitions are considered controllable, i.e., if T = Tu.

6 Example in the context of supervisor design

In the situation where the timed Petri net represents a plant model and if its behaviour fails
to satisfy a prescribed specification, we seek a supervisory controller to enforce the spec-
ification in closed-loop configuration. As with conventional controllers, a supervisor can
only restrict the plant behaviour. Hence, the latter must be given as an open-loop behaviour
to serve the purpose of controller design. In this section we demonstrate by a simple engi-
neering application how max-plus automata obtained from timed Petri nets under open-loop
race policy forms an adequate basis for the design of a supervisor.

Consider the timed Petri net (G, τ ) given by Fig. 3 as the model of a thermal cycle, where
work pieces are alternatively heated or cooled. The work pieces are represented by tokens
in the left loop. In compliance with single server semantics only one work piece can be
processed at a time. In this regard the heating process b is only possible if a work piece has
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Fig. 3 A thermal cycle application modelled by (G, τ ) with Tc = {a, c} and Tu = {b}

arrived and the waste heat valve is closed for two time units, indicated by a token in P3 used
by b. Thereafter the work piece has reached its desired temperature and has to leave the oven
in order to avoid damage, i.e., the supervisor shall not disable transition b, hence our choice
of b ∈ Tu. As a means to reset the temperature in the oven, waste heat can be removed over
one time unit to be used for other purposes. The token in P3 acting as a shared resource
implements this aspect of the physical plant. Furthermore, a work piece getting cooled for
longer than three time units does no harm and the valve position can be set as desired, i.e.
a, c ∈ Tc. To this end, our transitions are partitioned by Tc = {a, c} and Tu = {b}.

We now invoke Procedure 2 to build a max-plus automaton with timed behaviour that
represents all feasible sequences of transitions in the timed Petri net under open-loop race
policy. The resulting max-plus automaton G∗ = (Q,T , Q0, δ) is depicted in Fig. 4. For

Fig. 4 max-plus automaton G∗
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easier identification, the states of G∗ are additionally labelled with Roman numerals. A path
in G∗ represents a firing sequence of transitions and the associated duration in the timed
Petri net. For the given input data we observe a greatly increased behaviour compared to
Procedure 1, addressing plain race policy, as in this case only transition c would ever be
able to fire.

To further illustrate the usage of the constructed automaton we consider the following
additional requirements:

1) the cooling station can only accommodate one work piece, i.e., capacity of P1 is one;
2) two work pieces have to remain in the left loop at all times;
3) the heating and cooling processes have to alternate and complete two iterations;
4) the process is to be executed with minimal duration.

Requirement 2) is achieved by virtue of the chosen initial marking. Upholding 3) automati-
cally implies that 1) is guaranteed. Time optimality and 4) will be attended after the logical
requirements are met. Thus, at this stage we are left to address a purely logical closed-loop
language-inclusion specification given by the upper bound Lspec = (c∗bc∗ac∗)2, i.e., we
require two cycles of transitions b followed by a and do not need to care about c. Techni-
cally, this can be expressed by the plain automaton Gspec = (X,Σ, x0, f, Xm) with state
set X = {A,B,C, D, E}, alphabet Σ = {a, b}, initial state x0 = A, partial transition
function f : X × Σ → X and set of marked states Xm = {E}; see Fig. 5 for a graphical
representation.

We can now use the parallel composition of G∗ and Gspec to obtain all paths in G∗ that
satisfy the language-inclusion specification, technically defined by

G∗ ‖ Gspec := (Q × X,T ∪ Σ, (Q0, x0), 	, Q × Xm) (62)

where

	((q, x), a, (q ′, x′)) =

⎧⎪⎨
⎪⎩

δ(q, a, q ′), if a ∈ Σ and x′ = f (x, a)

δ(q, a, q ′), if a /∈ Σ and x′ = x

ε, else.

(63)

The result of this operation is represented in Fig. 6. The accepted language of G∗ ‖ Gspec
consists of all possible open-loop sequences of transitions that fulfil the specification. Note
that at this stage a supervisor at instances can also disable uncontrollable transitions by
prioritising a faster alternative transition. E.g., in state II a supervisor may schedule the
faster transition c and thereby disable the uncontrollabale transition b. At a final stage, we
may apply Dijkstra’s algorithm in order to find time optimal solutions. In this context we
are interested in the path with the lowest weight from the initial state to any accepted state.
For this example, we obtain the following five time optimal paths

w1 = bcabca, yG∗||Gspec(w1) = 8, (64)

w2 = bcabcac, yG∗||Gspec(w2) = 8, (65)

w3 = bcabcca, yG∗||Gspec(w3) = 8, (66)

w4 = bcabccac, yG∗||Gspec(w4) = 8, (67)

w5 = bcabccca, yG∗||Gspec(w5) = 8. (68)

Fig. 5 Specification automaton Gspec
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Fig. 6 Parallel composition G∗||Gspez (accessible part only)

A supervisor that enforces any of the above sequences of transitions will guarantee that the
given requirements are upheld.

7 Conclusion

The main technical contribution of this paper, Theorems 1 and 2, establishes terminating
procedures for the conversion of a timed Petri net to a deterministic finite max-plus automa-
ton while retaining the timed behaviour. The assumptions imposed on the Petri net are
boundedness, single server semantics, injective labelling, rational timing parameters, and
operation under race policy. Although our argument follows the same line of thought as
Komenda et al. (2016), our result is more general in that we do not need to impose fairness
requirements on the Petri net. Moreover, we optionally account for controllable transitions,
i.e., transitions that can be temporarily disabled by a supervisory controller. For this situa-
tion, our algorithm constructs a deterministic finite max-plus automaton which in open-loop
is behaviour equivalent to the provided timed Petri net. Hence, the automaton representation
is a suitable basis for supervisory controller design. This is demonstrated by example. For
future work, we envisage a more formal discussion of control objectives and the resulting
controller synthesis problem.
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