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Abstract This paper presents a new approach to the functional approximation
of the M/G/1/N built on a Taylor series approach. Specifically, we establish an
approximative expression for the remainder term of the Taylor series that can be
computed in an efficient manner. As we will illustrate with numerical examples, the
resulting Taylor series approximation turns out to be of practical value.

Keywords Series expansion approach - Taylor series - M/G/1/N queue -
Performance measures - Deviation matrix

1 Introduction

Queueing models are a well-established tool for the analysis of stochastic systems
from areas as divers as manufacturing, telecommunication, transport and the service
industry. Typically, a queueing model is a simplified representation of the real-world
system under consideration. In addition, often there is not sufficient statistical data
to determine the service and interarrival time distribution, or, in case the type of
distribution is known, there is statical uncertainty on the exact values of the parame-
ters of the distribution. For these reasons, perturbation analysis of queueing systems
(PAQS) has been developed. PAQS studies the dependence of the performance of
a given queueing system on the underlying distributional assumptions. This paper is
concerned with PAQS for the finite capacity single server queue, where we assume
that the arrival stream is of Poisson type, an assumption which is often justified in
applications, see Chen and Xia (2011).
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In this paper we present a new approach to PAQS. We develop the performance
of the system under consideration into a Taylor series with respect to the parameter
of interest, where we make use of a fundamental result on Taylor series for Markov
chains, see Heidergott and Hordijk (2003). The usefulness of any Taylor series based
approach relies on two factors:

1. Fast convergence of the series (a Taylor polynomial of small order yields already
a satisfying approximation).

2. The ability of computing the remainder term of the Taylor series in an efficient
way so that the order of the Taylor polynomial that is sufficient to achieve a
desired precision of the approximation can be decided a priori.

The contribution of the paper is as follows. We investigate the use of Taylor
polynomials for the numerical evaluation of the M/G/1/N queue. Specifically, our
numerical studies show that already a Taylor series of small order yields good
approximations (this addresses topic (1) above); and that a simplified and easily com-
putable expression bounding the remainder of the Taylor series can be established
(this addresses topic (2) above).

The paper is organized as follows. The embedded Markov chain of the M/G/1/N
model is presented in Section 2. Our series expansions approach is detailed in
Section 3. Numerical examples are provided in Section 4 for the case of the M/D/1/N
queue. A more detailed version of this paper is available as technical report (Abbas
et al. 2011), which contains more numerical material on the M/D/1 queue, and, as an
additional example, a perturbation analysis of the M/W/1/N queue, with W denoting
the Weibull distribution is presented.

We conclude the introduction with a brief discussion of implications of our
approach to the numerical approximation of the M/G/1/00 queue. Numerical approx-
imations for the M/G/1/N queue have a long tradition, and we refer to the excellent
survey in Smith (2004). The approach presented in this paper is different from the
standard approaches as it is also feasible for traffic loads larger than one. In addition,
our approach yields an approximation of a performance functional on an entire
interval and allows for an error bound of the approximation that holds uniformly
on an interval.

2 The M/G/1/N queue

Consider the M/G/1/N queue, where customers arrive according to a Poisson
process with rate & and demand an independent and identically distributed service
time with common distribution function B(¢) with mean 1/u. There can at most be
N customers be present at the queue (including the one in service), and customers
attempting to enter the queue when there are already N customers present are lost.
The service discipline is FCFS.

Let X (¢) denote the number of customers in the M/G/1/N queue at time ¢, for
t > 0. Note that the queue-length processes {X () : t > 0} of the M/G/1/N system
fails to be a Markov process because the service time distribution does not have
the memoryless property. Since we have assumed that customers that do not find
an empty buffer place upon their arrival are lost, the stationary distribution of
{X(t) : t > 0}, denoted by *, exists (independent of the traffic rate). Let { X, : n € N}
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denote the queue-length process embedded right after the departure of the nth
customer, see Gross and Harris (1985) and Kendall (1953). Note that X, has state-
space {0, ..., N — 1} as after the departure of a customer the system cannot be full.
Then {X,, : n € N} is a Markov chain with transition matrix

N-2
dap a; ap Ll3~'-LlN_21—ZL1k
k=0
N—2
dap a; ap a3~~aN_21—Zak
k=0
N-3
Pp=|0a a a--ays31—3 a|, (1)
k=0
N—4
0 0ayar -—-an-al—73 a
k=0
00O0O0--- ap l—a()
where
00 )\lk
ak:f (k’) e™dB(), k=0,...,N-2. 2)
0 .

In words, ay is the probability of k& Poisson arrivals during an B(-) distributed
service time.

It is well known that 7* can be expressed via the stationary distribution of
the Markov chain embedded at departure points of customers, denoted by .
Specifically, let p denote the traffic rate, then it holds that

25 = O

= i=0,...N—1, 3
20 +p ®)

and

n*(N):%<p_1+ 7(0) )_n(0)+p—1

= ; 4)
7(0)+ p 7(0)+p

see Gross and Harris (1985) for details.

For the PAQS presented in this paper we consider 7* as a mapping of some real-
valued parameter 6, in notation n;. For example, # may denote the mean service
time of the queue. We are interested in obtaining the functional dependence of
7*(0) on 6 in a simplified form. For our approach we will compute =z, for some
parameter value # numerically. However, then we will approximate the function
7*(0 + A) on some A-interval. More specifically, we will approximate 7*(6 + A) by
a polynomial in A. To achieve this we will use the Taylor series expansion approach
established in Heidergott and Hordijk (2003). More specifically, let 74 denote the
stationary distribution of the queue-length process embedded at departure epoches
in the M/G/1/N queue, where 6§ € R denotes a control parameter. Under quite
general conditions it holds that my, A can be developed into a Taylor series of the
following from

o0

n
N A
To+A = ;ﬂg )
n=0 '
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where 77;" denotes the n-th order derivative of 775 with respect to 6. We call

k n

A
Hy(k, A) =" an”) (5)

n=0
the k-th order Taylor approximation of 7y, 4 at 6, and
ro(k, A) = mgia — Hp(k, A)

the k-th order remainder term at 6.

3 The Taylor series expansion approach

In this section, we present the Taylor series approximation for the M/G/1/N queue.
Let B(-) have density mapping b (-). Let ® = (a,b) CR,for0 <a < b < oo.

(A) For 0<k<N-=2 it holds that ay is n-times differentiable with respect
to 6 on ©.

Under (A) it holds that the first n derivatives of P exists. Let P% denote the kth
order derivative of P with respect to 6, then it holds that

(k)

co_dvh .
POG ) = PG D, 0<ij<N-1,

or, more specifically,
N-2
ao(k) a1 (k) ax(k) az(k) --- an_(k) =) a;(k)
j=0
N-2
ao(k) a1 (k) ax(k) az(k) --- an_(k) =) a;(k)
j=0
N-3
PR = 0 aok) ai(k) ax(k) --- ay_s(k) =} ajk) (6)
=0

N—4
0 0 ayk)ai(k)---an-a(k) =) aj(k)
j=0

0 0 0. 0 . ao(k) —a.o(k)

where
dk

Example 1 Consider the M/D/1 queue with arrival rate A and deterministic service
rate c. Then, ax is given by the probability to see k arrivals in an time interval of
length c:

()"C)k —Ac
ay = pE e .
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Let 7y denote the stationary distribution of the embedded chain, where 6 denotes
the parameter of interest, and denote the deviation matrix by D, defined by

b (7).
n=0

where Ty is a square matrix with rows equal to 7, , with x" denoting the transposed
of vector x. As shown in Heidergott et al. (2007), for any finite-state aperiodic
Markov chain the deviation matrix exists.

Theorem 1 (Theorem 4 in Heidergott and Hordijk (2003)) Let 6 € © and let ©y C
® a closed interval with 6 be an interior point such that the queue is stable on ©.
Provided that the entries of P are n-times dif ferentiable with respect to 9, let

K= 3 " o 11(P0 D).

1<m<n k=1
1<l <n
li++l,=n
Then it holds that
72'9(") = Ty Kg(l’l) .

Proof We prove the theorem by induction. For n = 1, we have to show that 7, =
79 Py Dy. By simple algebra, it holds that for A such that § + A € © that

Tg+n — 9 = To+a (Poya — Py) Do,
see, e.g., Heidergott et al. (2007) for a proof, which yields
1 1 1
x Tora = 70) = 7o — (Pora = Po) Do + (Mo4a — 76) - (Posa — Po) Ds. (7)

Element-wise differentiability of P implies that
. 1 ,
i%”@X(P9+A_P0)D9=7T9P9D9~ (8)

Since © is a compact neighborhood of 6, and r is finite for any 6 € ©,, it holds that
SUpyce, |7ol is finite. Moreover,

*(P9+A — Py)Dy| < sup |my] *(P9+A — Py) Dy .

96@0

0 < |(mg1a — 7o)l

Element-wise differentiability of P then yields

. 1
ilglo‘X(P9+A — Py)Dy| =0

which implies that the term on the righthand side of Eq. 7 tends to zero as A tends
to zero. Hence, taking the limit for A to zero in Eq. 7 reduces to Eq. 8, which proves
the claim forn = 1.

The proof for the general case follows by induction with respect to n like in
conventional analysis. O
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Example 2 For ease of reference we will provide in the following an explicit repre-
sentation of the first derivatives of 7y, where have simplified the expression by simple
algebra:

n) =mg Py Dy, wy =my Py Do + 21" Py Dy
and 7 = 7y Py’ Dy + 37" P Dy + 37" P Dy.

A Taylor polynomial yields an approximation and the error introduced by this
approximation can be expressed by the Lagrange form of the remainder as follows

ro(k, A) = / o 28D dx. ©)

From a numerical point of view the above expression is rather pointless as, by
Theorem 1, it holds that

779({?,;1) = o Koix(k+ 1)
which implies that for computing the remainder we already have to know the very
entity we want to approximate, namely, =, for n € [0,0 + n]. To overcome this
drawback we will present an alternative form for the remainder term.

The basic idea is that analyticity of my implies that of ng(k) for all k and we can
again use a Taylor series to approximate n(k“) in Eq. 9. By doing so we initiate the
Taylor series in the tail of original Taylor series, and we expect that the error of this
second Taylor approximation step is negligibly small. We explain this approach in
the following in more details.

Let
LA
n
Golk,m,8) = 7
n=0
denote the Taylor polynomial of order m for n(k“) ie.,

k+1)
st~ Gylk, m, §)

for m sufficiently large. Inserting the above approximation into Eq. 9 yields

Ak
ro(k, A) %/ —Gg(k m, x) dx
0

m
_ (k+1+n)
- / K Z nl dx
m 1 k A
D — = +1+n)/ kg
n=0 0

Ak+n+l

(k+1+4n)
= E - . 10
prt Knlk+n+1)? (10)
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We denote by
Ak+n+l

(k+1+4n)
A 11
Zk'n‘(k+n+l)n (1)

86 (k7 m, A)

the expression for the approximation of the remainder term obtained from Eq. 10.
Provided that |gy(k, m, A) — rg(k, A)| is small for m small, we will use gy (k, m, A)
in our Taylor series approach to determine the order of the polynomial that is
sufficient for achieving the desired precision of the approximation. As the following
theorem shows, gy(k, m, A) is of order cA™ry(k, A) for some small constant c¢. In
other words, letting, for example, A = 0.1 and choosing m = 3, the error introduced
by our approximation of the remainder term at k is typically smaller than 10-6+0),

In order to state the precise statement, we introduce the norm ||x|| = Y i, |x;
on R”.

Theorem 2 Let 0 € ® be an interior point of ©® and let A > 0 be such that 6 + A € ©.
Assume that the entries of P are (k + m + 2)-times continuously dif ferentiable with
respect to 6 on ©. Suppose that a finite constant d exists such that

d> sup | |n(k+2+m) | ’

xe[0,60+A]

then
A(m+k+2

k A)—rotk,N| <d—————.
lgo(k, m, A) —rg(k, A)| < kT k+2)

Proof Note that the Lagrange form of the remainder for Gy (k, m, §) reads

du” (k+m+2)
+m+
/(; ’ T[9+u d

Applying the norm || - || and using the bound d, yields

(km2)
[ a
A Lk X
sd/ ad (/ u—du)dx
0 k‘ 0 m!

Am+k+2

|g9(kam7 A) _r('}(kv A)' 5

B
mlkl(m+k+2)’

which proves the claim. O

In the numerical examples presented in the following sections, we will show
that choosing m = 2 already yields a sufficient precision for approximating the
remainder term.

Remark 1 Taylor series approaches for performance approximation have been stud-
ied in the literature before, see, e.g. Girish and Hu (1996, 1997) and Gong and Hu
(1992). However, no a priori knowledge on the quality of the approximation of these
approach could be established.

@ Springer



100 Discrete Event Dyn Syst (2013) 23:93-104

The Taylor series approximation developed above applies to differentiable
Markov kernels. This extends the case of linear § dependence that has been studied
in the literature so far; see, for example, Cao (1998), Heidergott et al. (2010),
Kirkland et al. (1998), Leder et al. (2010) and Schweitzer (1968). An interesting
property of the linear-dependence case is that the remainder term can be bounded
in an efficient way, see Heidergott et al. (2007).

4 Applications to the M/D/1/N queue

In this section we present numerical examples. Let the distribution of the service
times be deterministic, with 6 denoting the deterministic service time. As perfor-
mance measure we focus on the blocking probability s;(N), which is due the fact
that customers arrive according to a Poisson arrival stream, equal to the probability
that an arriving customer is lost due to no available free waiting space. Let E[B(6)]
denote the mean service time depending on 6 and assume that the arrival rate A is
independent of 6. Then, the traffic rate is given by

p(0) = A E[B(0)].
Recall, that by Eq. 4, it holds that

To+a(0) +p(0 +A) -1
7944 (0) + p(0 + A)

T A(N) = (12)
Inserting our Taylor series expansion for 7y, (0) provided in Eq. 5 into the above
expression yields a functional representation of 7, , (V) as function in A. Elaborat-
ing on Eq. 4, a similar procedure leads to a functional representation of the mean
queue length and via Little’s law to one of the stationary waiting time.

Consider the M/D/1/5 queue with arrival rate A and deterministic service time
¢ = 0. The elements of P are provided in Example 1.

Lemma 1 The transition probability matrix P of the embedded chain of the M/D/1/N
queue is infinitely often dif ferentiable with respect to c.

Proof By Eq. 6 differentiability properties of P can be deduced from that of the
«; entries. By Example 1, all higher-order derivatives exist for a;, which proves the
claim. u]

We now turn to the blocking probability. Starting point is the expression for
the loss probability in Eq. 12. The traffic rate is given by p(0 + A) = A(6 + A)
and my44(0) is approximated via a Taylor series polynomial of degree k, i.e., we
replace w4 (0) by Hy(k, A)(0); see Eq. 5. As can be seen from the Table 1, the
approximation yields a satisfying precision in predicting the loss probability 7, , (V)
as a mapping of A in a range of A being 10% of 6.

We conclude the discussion of the M/D/1/N queue by providing a bound on the
error of the Taylor series approximation for 7, , (N).
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Table 1 The relative absolute error in predicting the loss probability for various traffic rates

A p=050=2) p=160=1) p =120 =0.833)
k=2 k=3 k=2 k=3 k=2 k=3
1073 x 104 %
0.01 0.000155 0.000002 0.000001 0.000054 0.000001 0.000024
0.02 0.001114 0.000028 0.000014 0.000823 0.000011 0.000403
0.03 0.003385 0.000130 0.000046 0.003922 0.000037 0.002087
0.04 0.007237 0.000356 0.000107 0.011670 0.000085 0.006719
0.05 0.012774 0.000796 0.000204 0.026837 0.000161 0.016646
0.06 0.019988 0.001475 0.000346 0.052442 0.000268 0.034916
0.07 0.028795 0.002446 0.000536 0.091600 0.000410 0.065248
0.09 0.039068 0.003742 0.000782 0.147396 0.000590 0.112003
0.09 0.050650 0.005381 0.001089 0.222798 0.000810 0.180128
0.1 0.063373 0.007376 0.001456 0.320589 0.001073 0.275112

Lemma 2 Consider the M/D/1/N queue with arrival rate A and deterministic service
time 0. Suppose that for k it holds for |A| < § that

|7o+4(0) — Hy(k, A)| < Ry(k, 5),

then

oy ot M) £ 20+ A 1] 2R, (k. §)
s |To+a Hotk, M)+ A6+ D) |~ 220 —8) — (Ry(k. 8))2

Proof Replacing 7y 4(0) in Eq. 4 or Eq. 12 by Hy(k, A) and noting that p(6 + A) =
A0 + AX, implies thus that the true value for 77, , (N) is bounded by

Hy(k, A) = R+210+ AL —1 N Hg(k,A)+ R+ 10+ Ax—1
5”9+A(N)S
Hy(k,A) — R+ 210 + Ax Hy(k, A) + R+ 20 + Ax

The numerical error can thus be bounded by
Hy(k, A)+ R+10+Ax—1 Hyp(k,A) — R+10+ Ar—1
Hg(k, A) + R+ A6 + AA Hg(k, A) — R+ A6 + A

2R
- (Ho(k, A) + R+ 210 + AL)(Hy(k, A) — R+ A0 + AX)

noting that Hy(k, A) > 0 for all A, yields

- 2R B 2R
T(R+AM+AN(—R+210+ AL 2200 — A2 — R?

and from |A| < § it follows

2R
< —-—
=220 -8 - R?
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Table 2 The remainder term A Remainder

vs. the bound for the

remainder at p = 1 for k =2 Bound True

and m =2 1073 x 1073x
0.01 0.000257 0.000242
0.02 0.002241 0.001995
0.03 0.008188 0.006927
0.04 0.020899 0.016862
0.05 0.043757 0.033776
0.06 0.080739 0.059782
0.07 0.136433 0.097121
0.08 0.216045 0.148148
0.09 0.325420 0.215323
0.1 0.471053 0.301201

We conclude this section with a discussion of the numerical bound on the error
provided in Lemma 2 and Theorem 2. To this end we consider the Taylor series
approximation of degree k = 2 for the blocking probability. Table 2 compares the
true remainder term with the approximation of the remainder term obtained from
replacing Ry (k, ) in the bound put forward in Theorem 2 by gy (k, m, §) defined in
Eq. 11, where we have chosen m = 2. As can be seen from Table 2, the approximation
of the remainder term yields good results for small values of A. For example, the
approximative remainder term indicates that a Taylor series of degree 2 for A = 0.1
yields a maximal error of 5 x 10~* in predicting the blocking probability, whereas the
true error is no greater than 3 x 107%.

5 Conclusion

We have presented a new approach to the functional approximation of finite queues.
As illustrated by the numerical examples for the M/D/1/N queue, the convergence
rate of the Taylor series is such that already a Taylor polynomial of degree 2 or
3 yields good numerical results. We established an approximation for the remainder
term of the Taylor series that provides an efficient way of computing (approximately)
the remainder term and thereby provides an algorithmic way of deciding which
order of the Taylor polynomial is sufficient to achieve a desired precision of the
approximation. This implies that the proposed Taylor series approximation can be
of practical value. Future research will be on investigating the behavior of the series
expansion for multi-server queues.

Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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