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Abstract On September 19, 2008, the Large Hadron Collider (LHC) at CERN,

Switzerland, began the world’s highest energy experiments as a probe into the

structure of matter and forces of nature. Just nine days after the gala start-up, an

explosion occurred in the LHC tunnel that brought the epic collider to a complete

standstill. In light of the catastrophic incident that disrupted the operation of the

LHC, the paper investigates the relation of temporality to the cycle of work in

science, and raises the question: What kind of methodological value should we

ascribe to events such as crises or breakdowns? Drawing upon and integrating

classical anthropological themes with two and a half years of fieldwork at the LHC

particle accelerator complex, the paper explores how the incident in September,

which affected the instrument, acquaints us with the distribution of work in the

laboratory. The incident discloses that the organization of science is not a

homogenous ensemble, but marked by an enormous diversity of tasks and per-

sonnel, at the heart of which lies the opposition of theory and practice, or pure and

applied. This opposition not only forms the source and sanction of the intricate

division of labor found in high-energy physics, but also provides a satisfactory

answer to every question involving the interface of experimental science and

engineering skill.

Keywords Periodization � Liminality � Division of labor � Material culture �
Theory and practice � Highenergy physics

In September 2008, the Large Hadron Collider (LHC) at CERN, Switzerland, began

the world’s highest energy experiments as a probe into the structure of matter and

forces of nature. Amidst great fanfare and publicity on Friday, September 10th, at
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10:28 a.m. the first beam of protons was sent into circulation around the full 27 kms

of the underground accelerator. The circulation of the first beam of protons in the

LHC marked the culmination of a decade-and-a-half of effort by scientists and

engineers to build the most ambitious high-energy physics experiment to date. Just

nine days after the gala start-up, however, an explosion occurred in the LHC tunnel,

which brought the epic collider to a grinding halt. Inquiries were launched to look

into the causes of the explosion and the resulting damage. The occasion led to soul

searching within the physics community to apprehend if it was a technical fault or a

human error, an unforeseen accident or a routine event. While these concerns

suggest the familiar recognition that whatever scope science may realize, it is

constituted by limitations, a decisive question meets us in a distinctive and original

form here: What constitutes the ‘‘normal’’ work life of a scientific laboratory? In

other words, are breakdowns and crises integral to the cycle of work or exceptional

events? This question provides us not only with a description of the physical profile

or the ‘‘organization’’ of scientific industrial work life, but also with an explanation

into its inner character. Such an explanation consists in determining the character of

instrumentation and its conditions of existence, establishing the significance of

temporality in laboratory research, and clarifying the relation between work and

norms in modern science and technology.

In Chapter 10 of Capital, ‘‘The Working Day,’’ Marx discovers the mechanisms

of capitalist exploitation in the rhythm of daily work, particularly, in the length of

the working day. The formulation of a working day is the outcome of a relentless

struggle: the rights of the capitalist to prolong the working day to its maximum

length, and the rights of the proletariat to reduce it to a reasonable or ‘‘normal’’

duration. Marx then reviews the historical data to establish the correlation between

the accumulation of capital and the length of the working day. Examining the

evidence of the English Factory Acts from 1833 to 1864, he shows how an

intrinsically dynamic or variable working day is set to a definite, a normal, working

day through the struggle of capital and labor. However, the absolute limits to the

working day are set by the (a) physical and (b) social bounds of the labor force. The

labor force can only work so many hours in a day and needs physical rest to

replenish itself. Besides these physical limitations, the extension of the working day

encounters social, moral or intellectual bounds. These intellectual demands, which

must be satisfied in order to be alive, are determined by the social conditions of the

time (Marx and Engels 1967).

Now if we set aside the overwhelming issue of the conflict between the

bourgeoisie and the proletariat, we succeed in extracting from Marx’s analysis of a

working day, the snapshot of a complex relation between productivity of labor and

norms of social life. The recognition of the relation between physical output and

social norms is only an element in a great comprehensive analysis which, however,

far from being exhausted or obliterated in relation to the total content of his analysis,

serves as an indispensable methodological tool especially when we apply it to the

technical procedures of science. It allows us to problematize the temporal

dimensions of scientific industrial work life. To be sure, temporality in the sense

of duration is a basic component and tendency of all scientific industrial work. So

considered, temporality remains a prerequisite for every description and analysis
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(Pickering 1984; Traweek 1988). However, to isolate the concept as a measure of

social life (of science), we must investigate the external marks of temporality in the

morphology and development of tasks undertaken in the laboratory. From this

perspective, what matters is (a) the material culture of the laboratory, such as the

commissioning and operation of complex instrumentation, (b) to trace it to its

intellectual nerve, the procedures and principles that issue from the domain of

engineering, which assure us of the integrity, reliability and significance of all

instrumentation and (c) the comprehensive culture of high-energy physics, including

the institutionalized division of labor among theory, experiment and instrumentation

(Galison 1997; Knorr-Cetina 1999).

The paper explores the temporal dimensions of techno-scientific work life in the

light of the catastrophic incident that disrupted the operation of the LHC in

September 2008. The incident and the resulting suspension of the machine invite us

to examine a critical question, and upon whose decision our interpretation of the

normative character of science rests: What kind of methodological value should we

ascribe to events such as crises or breakdowns? Do they merely have a functional

import? Or do they disclose some systematic feature of science? The urge to address

these questions will take into account the empirical, with which the paper begins,

but also the possibility of an epistemological conception, where at stake is the

deeper problem of how temporal events and processes are connected to general

principles of knowledge and classification (Bourdieu 1977; Gell 1992; Munn 1992).

The roots of these principles and classification can be found in the material culture

of the laboratory, the discussion of which the second section takes up. The third

section examines, by way of contrast, the responses of physicists and engineers to

the September incident and shows how the mishap inscribed the symbolic

opposition of theory and practice. The fourth section analyzes the specificity of

the September incident—as an instance of ‘‘transition’’—through anthropological

concepts of periodization and liminality. What the transition consists in and how it

connects to the division of labor found in high-energy physics is explored in the

final part of the paper. The paper concludes that even if it is recognized that the

primary purpose of the division of labor is functional coordination, the functional

calculus rests upon a structural opposition, the opposition of theory and practice,

and so the consideration of function leads us back to form.

The paper is a case-centered inquiry and based on two and a half years of

ethnographic fieldwork at the site of the accelerator complex at CERN. CERN, or

Conseil Européen pour la Recherche Nucléaire, is the largest high-energy physics

experimental facility in the world. The LHC is the flagship project of CERN.1 Built at a

staggering cost of 3.5 billion Swiss Francs, spread over 15 years, the LHC is the

highest energy particle accelerator in the world. At a record energy of 14 trillion

electron volts, two counter-rotating proton beams collide head-on with each other

every 25 nanoseconds (ns). Particle acceleration and collision is based on the principle

of mass-energy conversion (E = mc2) in which fast-moving particles are collided with

1 The term ‘‘hadron’’ refers to composite particles, or particles composed of more elementary matter

called ‘‘quarks.’’ The best known hadrons are protons and neutrons. The LHC accelerates and collides two

counter-rotating beams of protons around 27 km, hence its name, the Large Hadron Collider.
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each other so that some of their energy is converted into the creation of exotic new

particles. These material collisions and interactions on the LHC are expected to yield

extraordinary discoveries into the nature of our universe, including the origin of

matter, the explanation of ‘‘dark’’ or invisible matter, uncovering hidden symmetries

of the universe, and even finding the possibility of extra dimensions of space.

The collider is housed in a 27-km underground tunnel (Fig. 1). The facility straddles

across the French–Swiss border but is officially neither under Swiss nor French

jurisdiction. It is privileged with the status of diplomatic immunity. The total personnel

employed by CERN is 2,250, out of which approximately 20 are from ‘‘Theoretical

Physics,’’ some 50 are designated as ‘‘Research Physicists,’’ that is, experimentalists

who do the job of data analysis, 300 are ‘‘Applied Physicists’’ involved with R&D (or

‘‘research and development’’), construction, installation and commissioning pertaining

to specific experiments, and over 1,000 engineers, physicists, technicians and

mechanics associated with the development and operation of the accelerator itself.

The bulk of the workforce, however, does not come directly from CERN but from

worldwide universities and research centers that are participating on the various

experiments at CERN. Some 8,000 scientists and engineers, representing 580

universities and 85 nationalities, flock here for their research. These features altogether

make CERN a rather unique organization. Although an academic establishment—with

most people who pass through it holding doctorates—it has the underpinnings of an

international corporation with markers of worldly power, success and prestige. Given at

once to relatively esoteric concerns of knowledge, truth and endeavor, it is equally

savvy with media blitz or ‘‘CD’’ plated cars.2

Fig. 1 A cross section of the LHC, showing the dipole magnets, in the underground tunnel

2 Vehicles bearing license plates with the letters ‘‘CD’’ that stands for the French term Corps
Diplomatique, enjoy a certain level of diplomatic immunity. Generally belonging to vehicles attached to

foreign missions, CD car plates are also given to privileged personnel belonging to international

organizations such as senior physicists from CERN as a measure of their importance and rank.
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Since August 2007 (until December 2009), I had been conducting anthropolog-

ical research at CERN in standard participant-observation fashion, interacting and

interlocuting with over 100 physicists and engineers. When the mishap occurred on

September 19, 2008, I had spent over a year in the physics community and was

privy to some of the debates and discussions that took place at the time. Curiously

enough, the word ‘‘accident’’ was never used in CERN’s press releases or in the

media reports to describe the electrical fault and the resulting explosion, presumably

because there were no casualties, or because the word accident is more alarming

than the term incident. I will keep to the term ‘‘incident’’ consistently throughout to

isolate an interesting feature of diachrony of laboratory life, which will disclose the

classification of science in its most elementary constitution.

The normal and the exceptional

On the morning of Friday, September 19, 2008, an electrical connection between

two magnets failed during a routine circuit test in sector 3–4 of the LHC ring. At the

time, a current of 8.7 Kilo Amperes was being pushed through the superconducting

cables. One of the ‘‘interconnect splices’’ linking the cables between two magnets

all of a sudden developed resistance and disintegrated—producing an electrical

arc—which punctured the containers of liquid helium that keep the magnets in their

1.9 K (or -271 �C) operating temperature (Fig. 2). Two metric tons of helium gas

was instantly released in the LHC tunnel and with such a force that a number of

magnets broke their anchors to the concrete floor, and were displaced and damaged

beyond recognition (Fig. 3). The release of helium gas tripped the emergency stop

thus immediately switching off all electrical power and services from sector 3–4 of

the accelerator.3

Fig. 2 A badly damaged
interconnect splice

3 The LHC circular accelerator is not a perfect circle but is split into eight distinct parts—or sectors—

comprising of eight arcs and eight straight sections. The sectors are the working units of the LHC: magnet

installation, hardware commissioning, powering, etc., all take place sector by sector.
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As soon as preliminary news of the incident trickled in, speculations started on

the causes and the extent of damage, the amount of time required for the repairs and

what that meant for the schedule of the collider’s operation. In the first few days

surrounding the incident, CERN’s management released little information that

created some discontentment among sections of scientists. An internal mail from

Director General, Robert Aymar, on September 20, 2008, with the subject ‘‘incident

in LHC sector 3–4’’ spoke vaguely of ‘‘a large helium leak’’ and ‘‘a faulty electrical

connection’’ between two magnets, which ‘‘probably melted at high current leading

to mechanical failure.’’ A few physicists grumbled that CERN was a research

organization—not a diplomatic or a military establishment—and members of the

personnel, that is the scientists, had a right to know what had caused the incident

since their schedules were going to be affected. They argued how could there be

secrecy in an academic environment? Yet others believed that secrecy was

necessary so as not to dampen the general morale, or the management must have

good reasons for withholding details of the damage, which it would disclose at an

opportune moment, or more simply that in an organization so big, everyone cannot

know everything right away.

Soon, intense rumors began circulating on the causes and the extent of the

damage done to the accelerator. Masco (2002) has spoken insightfully, ‘‘secrecy,

however, is also wildly productive: it creates not only hierarchies of power and

repression, but also unpredictable social effects, including new kinds of desire,

fantasy, paranoia, and—above all—gossip’’ (451). And gossip does not occur in a

vacuum, ‘‘it is almost always ‘plugged in’ to social drama’’ (Turner 1980: 149).

Conjectures and speculations on what had led to the calamity, what kind of quality

tests had been performed on the ‘‘interconnect splices,’’ or why were enough spare

parts not available which would hasten the pace of repairs, prefigured most lunch-

time conversations as my field notes indicate. It was not uncommon in that period to

observe the more aloof theoretical physicists striking conversations with engineers

and accelerator physicists in the cafeteria, who had a better idea of what had

befallen the accelerator, in attempts to extract information on the status of repairs

than was officially available.

Fig. 3 A broken magnet
support
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Eventually, the Director General’s office released a short report to all CERN

personnel on the September incident, received via email on October 16, 2008:

Dear Colleagues, We have today issued an analysis of the 19 September

incident at the LHC. Investigations have confirmed that cause of the incident

was a faulty electrical connection in a region between two of the accelerator’s

magnets, which resulted in mechanical damage and release of helium from the

magnet cold mass into the tunnel. Proper safety procedures were in force, the

safety systems performed as expected, and no one was put at risk. Sufficient

spare components are in hand to ensure that the LHC is able to restart in 2009,

and measures to prevent a similar incident in the future are being put in place.

This incident was unforeseen, but I am now confident that we can make the

necessary repairs, ensure that a similar incident cannot happen in the future

and move forward to achieving our research objectives. The full report is

available here.

https://edms.cern.ch/file/973073/1/Report_on_080919_incident_at_LHC__2_.pdf

Best Regards,

Robert Aymar4

The Director General’s mail and the report disclosed the full extent of the

damage to the LHC and immediately led to a general air of depression. The ‘‘faulty

electrical connection,’’ which had induced the catastrophe, was nothing more than

poor soldering! ‘‘During repair work in the damaged sector, inspection of the joints

revealed systematic voids caused by the welding procedure’’ Mike Lamont

lamented.5 It also became clear to everyone that the otherwise minor incident

was going to cause a major delay in the reoperation of the machine. The reasons for

the delay were the following: 24 of the ‘‘dipole’’ magnets and five ‘‘quadrupole’’

damaged magnets needed to be taken out of the tunnel and sent for repairs. The

‘‘interconnect splices’’ had to be inspected in the remaining sectors. Soot and debris

had to be cleaned from the beam pipe. New safety systems and enhanced warning

systems had to be installed to prevent similar incidents from happening again. The

chief reason for the delay, however, was that the damaged sectors 3–4 of the LHC

would have to be warmed up for the inspections and the repairs to take place. Since

the LHC is a ‘‘superconducting’’ accelerator that operates at a horribly low

temperature of 1.9 K or -271 �C, it takes months for the entire 27-km underground

tunnel area to regain room temperature, before which maintenance or repair staff

cannot enter the tunnel. For a similar fault, not uncommon in a normally conducting

accelerator, the repair time would merely be a matter of days. All these factors at the

time suggested a minimum of six months downtime for the LHC operation.

4 This email was sent by Robert Aymar to all CERN personnel with the subject: Report on 19th Sept

2008 incident at LHC—rapport sur l’incident du 19 Sept 2008 au LHC.
5 The ‘‘LHC status report’’ was presented by Mike Lamont on April 23, 2010. Lamont is the Leader of

the Operations Group (Beams Department) who is responsible for the overall technical infrastructure and

operation of all CERN present and future accelerators.
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The engineering constraints, which decided the timeline of the repairs and the

renewed operation, were going to affect the physics situation adversely. The key

factor motivating the endless rounds of discussions on spares and repairs was the

question mark placed on the LHC physics program and what that meant for the

prospects of the rival collider, the Tevatron, at Fermi National Accelerator

Laboratory, or Fermilab, Illinois, USA. Any setback in the LHC schedule implied

an immediate advantage for the rival collider, the Tevatron. Operating since 1987,

the Tevatron was working at peak performance and the September incident

suddenly created a palpable possibility that it could overtake the LHC in staking the

first claims to a discovery, such as the discovery of the Higgs particle. The BBC ran

an interesting article with the title, ‘‘Race for God Particle Heats Up.’’ When the

news trickled in March 2009 that the Tevatron had excluded the Higgs mass in the

window of 160–170 GeV, it created a commotion at CERN. Could the Americans

snatch the prize of the Higgs right under the noses of the Europeans? The Tevatron

had a head start, their technology was stable, and with three inverse femtobarns of

collision data—the scientific unit that scientists use to count the number of

collisions—they could use it to blow the LHC out of the water. ‘‘Coming

immediately after the very successful start of LHC operation on 10 September, this

is undoubtedly a psychological blow,’’ bemoaned CERN’s Director General, Robert

Aymar.

The trans-Atlantic competition between the colliders is fast and furious. The

competition shows that the LHC is not a leap into the void but rather a development

and continuity of systematic, ongoing efforts. From this point of view, it becomes

clear that a laboratory is best considered within a system of laboratories and not in

isolation as an atomistic or self-contained unit, as a number of outstanding studies

have shown (Collins 2004; Galison 1997; Knorr-Cetina 1999; Latour and Woolgar

1986; Traweek 1988). With the impetus of outward competition, the thrust of inner

cooperation could not be far behind. The sense of helplessness gave way to that of

urgency. The schedule and the strategy of repairing the damaged accelerator took

the spotlight. The CERN web pages began publishing daily updates on the repair

status.

Here a landscape starts emerging, which opens a window onto key anthropo-

logical concerns structured around the relation of temporality and the cycle of

work. It compels us to ask if a breakdown might contain the possibility of

discovering the logical determination of material activity in science. Marx showed

that the objectivity of material production did not reside in its materiality, but in

its form (Baudrillard 1981). The same recognition must be extended to the

consideration of a laboratory. Any analysis of the interior world of the laboratory

must not be based solely upon an inventory of objects, but on the distribution of

work, the organization of labor, in relation to instrumentation. The next section

outlines some of the key elements of expertise, manpower, equipment, technology

and intellectual specifications of the instrument in reference, the LHC, together

with the requirements for its initial operation, which acquaint us with the

distribution of work in the laboratory and the conditions under which science is

produced.
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Machine parameters and accelerator physics

The LHC Project was ratified by the CERN Council, the highest authority of the

organization comprised of 20 European Member States, in 1994, with approval for

the construction of the 14-TeV accelerator coming through in December 1996.

The substantial resources required in building the colossal accelerator led to the

involvement of nations outside of CERN member states including Canada, India,

Japan, Russia and the United States. The Conceptual Design Report, or the

‘‘Yellow Book,’’ specifying the chief parameters of the machine such as the

superconducting magnets, RF and beam feedback, collimation and other systems,

was brought out in 1995. While the basic design of the Yellow Book remains

unaltered, substantial modifications in engineering and hardware were introduced

over the years as accelerator science and technology kept advancing in energy

regimes, precision, performance and complexity (Bruning et al. 2004; Evans

2009).6

When we consider the chronology of accelerator development, we observe an

interesting feature that opens up a perspective on the relation between intellectual

demands of science and the material conditions of instrumentation (Chao and Chou

2008; Livingston and Blewett 1962; Sessler and Wilson 2007). In the particle

physics community, the LHC is often referred to as a ‘‘discovery’’ machine,

designed to push the energy frontier and gain new insights into the sub-nuclear

world. In contrast, the proposed next-generation collider, the Compact Linear

Collider, or CLIC, is termed a ‘‘precision’’ machine, which would explore in depth

and substantiate in detail what the LHC discovers. The collider at CERN prior to the

LHC, the Large Electron–Positron Collider, or LEP, had been designed to measure

the masses of W and Z particles to an extremely high accuracy. The W and Z

particles themselves had been discovered in 1983 at an earlier CERN collider, the

Super Proton Synchrotron or SPS.

In a nutshell, the development of accelerator systems shows a very interesting

alternating logic of expansion and consolidation, or discovery and validation.

Mysteries unraveled in one generation of accelerator are exploited for further probe

and precision by the next-generation accelerator (Brunning and Collier 2007;

Giudice 2010). The complementarity of this alternating logic reveals to us the

grounds on which CERN developed the LHC, an instrument that is expected to open

a window onto new discoveries of matter and energy, right after precision

6 Articles appearing in the issues of the CERN Courier, CERN’s monthly journal, provide a systematic

account of different phases of the LHC design and development process, such as ‘‘French green light for

LHC civil engineering’’ (October 1998), ‘‘Model magnet for CERN’s LHC reaches 250 T/m in Japan’’

(April 1999), ‘‘First test beams are delivered for the LHC’’ (September 2000), ‘‘Going into the cold: LHC

systems reach an important milestone’’ (December 2001), ‘‘High-energy accelerators look to R&D’’ (June

2001), ‘‘Last LHC magnets from Siberia reach CERN’’ (September 2001), ‘‘CERN reacts to increased

LHC costs’’ (January/February 2002) and so on. I have relied on issues appearing between 1994 and 2007

of the CERN Courier for much of the history of the LHC accelerator.
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measurements were carried out by the previous accelerator, the Large Electron–

Positron Collider.7

This pulsating logic of discovery and precision leads us to a conception of

knowledge not so much as a vision of fixed forms, ‘‘as a production’’ (Althusser and

Balibar 2009: 24) alive to activity and spontaneity. With this historical background

of accelerator development, it becomes clear how the LHC, a global collaborative

effort dedicated to discoveries, decisively moves in the realm of the possible and

stretches the existing range of technologies to the limit. To begin with, its design

performance envisages roughly 30 million proton-to-proton collisions per second,

spaced by intervals of 25 ns, with center-of-mass collision energies of 14 TeV,

which is seven times larger than those of any previous accelerator. In order to

achieve such rapid acceleration, the machine uses advanced ‘‘radiofrequency

cavities’’ or dynamically changing electric fields at a radio frequency of 400

megahertz (MHz), which push particles to ever-higher energies, much as ocean

waves help a surfer gain speed, until the protons are whirling around the accelerator

at some 11,000 times per second (Breskin and Voss 2009; Evans 2009; LHC Design

Report 2004) (Fig. 4).

While electric fields are used for particle acceleration in the longitudinal plane,

magnetic fields are needed for transverse bending, steering and focusing the particle

beams into very precise orbits with the aim of optimizing collisions (Bruning et al.

2004; Evans 2009). Magnets with transverse fields operating in superfluid helium at

1.9 K (-271 �C) make up the backbone of the LHC. These are known as ‘‘dipole’’

magnets and are used for deflecting or bending the particle beams along the 27-km

circumference (Fig. 5). Although particle motion under the influence of dipole

Fig. 4 Radiofrequency cavities
in the LHC cavern

7 The types of particles used for collisions, such as leptons or hadrons, also play a role in the alternating

and complementary logic of accelerator development. Hadron colliders, using protons or neutrons, are

especially suited for discoveries as they allow for breadth in understanding the inner constitution of

matter. Lepton machines that use electrons, positrons, etc. are more appropriate for precision

measurements and in-depth probe of particles after their discovery. For lack of space, I am unable to

go into the details of particle instrumentation, the history of accelerators, or the link between specific

laboratories and instruments in the field of high-energy physics. For a review of the general principles of

accelerator technology and the growth of accelerators over time, see Chao and Chou 2008; Livingston

1969; Livingston and Blewett 1962; Persico et al. 1968. Laboratory-specific histories of instrumentation

technology are also available involving Fermilab (Hoddeson et al. 2008), Lawrence Berkeley National

Lab (Heilbron et al. 1981) and Oak Ridge National Lab (Johnson and Schaffer 1994), to name a few.
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magnets is largely stable, it needs extra focusing to force the particles to remain on

the ‘‘central’’ trajectory. Magnets used for squeezing or focusing particles closer

together so as to increase the chances of collision are termed ‘‘quadrupoles.’’ In all

there are 858 quadrupole magnets and 1,232 dipole magnets located in the eight arcs

of the LHC ring, with each of the dipoles having a length of 15 m. Interestingly

enough, ‘‘the 15-m physical limit to the dipole length was determined by the

maximum length allowed by regular transport on European roads,’’ while the

maximum operational field was fixed at 8.3 Tesla ‘‘which has its roots in the realm of

quantum mechanics rather than in European Union regulations’’ (Evans 2009: 74).8

Here we arrive at an interesting juncture of the LHC saga, one where we begin to

observe how engineering considerations work alongside local operational conditions

(Evans 2009; Breskin and Voss 2009). These conditions are negative in the sense that

they designate less what the features are than what they are not. The chief problem

facing the Hadron Collider during design and construction was the following: the

maximum energy attainable in a circular accelerator depends on the product of the

bending radius in the dipole magnets and the maximum field strength attainable. In

order to bend two particle beams and generate field strengths in opposite directions, a

large area is required. However, the diameter of the underground tunnel—where the

collider was to be housed—at 3.8 meters posed a severe constraint. Constrained by

the size of the actual tunnel, it was deemed impossible to fit two completely

independent rings of the collider. The problem was daunting. How to confine two

counter-rotating proton beams, that is, two separate magnet apertures, with opposite

field orientations into the 3.8-m diameter of the LHC tunnel?9

Fig. 5 Dipole magnet on a test
bench

8 The construction, transportation and installation of the dipole magnets, which had to cross a number of

logistical, civil engineering, legal and financial hurdles, is a fascinating story in itself. See in particular the

articles from CERN Courier, ‘‘LHC dipole production begins to take off’’ (January 2004), ‘‘LHC dipole

installation gets to half-way mark’’ (September 2006), ‘‘The longest journey: the LHC dipoles arrive on

time’’ (October 2006) and ‘‘The last dipole makes its descent’’ (June 2007), which give a glimpse into the

magnet development process.
9 CERN had taken the decision that the LHC was to be constructed in the LEP tunnel for optimum use of

existing infrastructure and keeping costs down, which posed a number of constraints on the LHC machine

design and layout. See Evans 2009 for more discussion.
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The grave challenge of space limitations in the tunnel, and the need to keep

capital and operating costs down, led the team of accelerator physicists and

engineers spearheaded by Lyn Evans, the celebrated ‘‘LHC Project Leader,’’ to the

adoption of a novel ‘‘two-in-one magnet’’ design for the LHC. The basic idea of a

two-in-one magnet system is that windings for the two beam channels can be

accommodated in a common cold mass cryostat since magnetic flux is circulating in

opposite directions in the two channels (Fig. 6). At the same time, the design

provides a compact structure that fits two separate beam apertures into the relatively

small existing machine tunnel. However, this makes the magnet structure

extraordinarily complicated and challenging because the separation of the two

beams has to be small enough so that they can be coupled both magnetically and

mechanically. In the LHC, the two beam pipes are separated by a mere 19 cm inside

a common iron yoke (which returns the magnetic field) and the cryostat.

This inaugural move made by the LHC is certainly a radical one. As Lyn Evans

explained to me, ‘‘this is the first time that the two-in-one magnet design has been built,

so there is no existing experience to build on. The concept of a two-in-one magnet goes

back to renowned accelerator physicist, Bob [Robert] Palmer, of Brookhaven. But

nobody had used it.… In the late 70s we decided to use it. It made perfect sense for the

LHC because it is a p–p [proton-to-proton] collider and so the magnetic field is up in

one aperture and down in the other aperture. You couldn’t get this to work with p–�p [a

proton–anti-proton collider]. The requirement that the fields must be in opposite

directions in the two apertures [for a proton–proton collider] ensures that there is no

Fig. 6 Cross section of the two-in-one LHC magnet structure
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saturation of the central part of the yoke. This simple geometry of flux lines makes

possible the exquisite design of a two-in-one dipole structure for the LHC.’’ Indeed its

uniqueness among accelerators has earned the LHC the befitting epithet, ‘‘Lord of the

Rings,’’ and Evans has been its principal person in charge for 14 years, involved right

from conception and design through to construction and operation stages. The

evolution of the machine had achieved its goal, with growing consciousness and

success, when it began operation on September 10, 2008.

With this as our point of departure, we can now inquire into the incident of the

sudden helium leak that struck the accelerator barely days after it started operation

in order to see what it foregrounds and what it tends to screen out. Might not one

discover in the unfortunate incident some constituent principle of science? Might

not crises or breakdowns find a positive evaluation in disclosing the intellectual

nerve of instrumentation that connect these with specific principles of knowledge

and classification?10 By calling for a positive evaluation, I do not mean a question

involving the perfection or purposiveness of instrumentation, but the need to isolate

its originality in the multiplicity of activity, to interrogate it as a language, or a

discourse, to find an Archimedean point that discloses something of its intellectual

character and inner force. The objective may seem less mysterious if conceptualized

as a dynamic process, built around the contrast of the normal and the exceptional,

which reveals the configuration of the machine in the interface of temporality and

normativity. This is its interest for ethnography. So if we pick up the thread of our

story where we left off before the general intermission, namely, with the period

immediately after the explosion when repair work on the accelerator took the

spotlight, we are led to a curious moment of rupture, a break, which accentuates the

difference and separation of the various units or sub-cultures of high-energy physics

(Galison 1997; Knorr-Cetina 1999).

Event and structure

The period immediately following the September incident reveals an interesting

moment in the life of a laboratory: while efficient and successful organization of

work accentuates the nature of coordination existing between various specialized

units and groups, a failure or a crisis manifests how the collectivity disperses and

each technical component or unit settles or coheres into its own niche. In saying

this, I am not trying to imply a sense of malfunction or a lack of discord between

distinct units. What is simply meant is that during a breakdown, relations between

various specialized units have decomposed, each functioning separately and

autonomously, and fulfilling the task it is responsible for. Whereas cooperation is

generally carried out in a spirit of self-consciousness and propaganda, the work done

alone is really a legitimate fulfillment of the same impulse, only not glaring to be

somehow perceived by all.

10 Professor Jit Singh Uberoi brought before my attention the critical significance of this moment of crisis

that had affected the laboratory. It is his insight on temporality, and its singular importance to fieldwork

and anthropology, which I have developed in the present essay.
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In other words, cooperation or teamwork is sought as beneficial and propitious; it

promotes harmony and leads to the completion of tasks in the acts of exchange.

However, a crisis, when it occurs, triggers an awareness of the artificiality and the

inadequacy of community and communication. The sense of exigency, the strain of

repair, to seize hold of the details, all justified by an immediate purposiveness or a

goal in sight, made it necessary for individual units of the laboratory to function on

their own with little connection to the whole or to neighboring parts. This interest in

the separation and autonomy of tasks is easily justified when we focus on the period

between September 19, 2008, the day when the collider stopped, and October 23,

2009, when it resumed operation. During this period, each sub-culture of physics,

namely theory, experiment and instrumentation, largely revolved on its own pivot,

as I will show now.

Without exciting new collision data, there was little for theoretical physicists to

do. Their discussions and seminars were carried out without liveliness. The

conveners of the ‘‘Joint EP/PP’’ seminars began organizing talks on issues

peripheral to physics such as ‘‘The Evolution of Religious Beliefs’’ (August 13,

2009) or ‘‘The Strange Friendship of Pauli and Jung—When Physics Met

Psychology’’ (December 10, 2009). Their justification was, as Luis Alavarez-

Gaume, a theoretical physicist and one of the conveners explained, ‘‘Once the LHC

starts, the entertainment would stop.’’ Until then, they claimed, they were aware of

‘‘killing time.’’

Most of the experimental physicists went back disappointedly to Monte Carlo (or

simulation) data and cosmic data. The few days of operation before the incident had

offered them a glimpse of the potentiality of the machine, so they seemed

particularly affected, haunted and dejected by the intervening delay. Their main

concerns were the steady accumulation of data by the rival Tevatron Collider, the

delays in their own and their students’ careers, the possibility of other mishaps

occurring in a machine so big and novel and the dangers of losing support of

funding agencies for the future experiments.

In complete contrast to the theoretical and experimental physicists were the

accelerator physicists and engineers, energetically on their toes, removing,

transporting and repairing the damaged magnets, manually checking over

150-magnet interconnections in the five warm sectors of the LHC, carrying out

cleaning operations in the vacuum chamber in sector 3–4, installing new ‘‘DN200’’

relief valves in half of the machine, and reinforcing the support of 100 main

quadrupoles to provide for their better anchoring to the ground. Key to the

engineering work in this period was the installation of a new magnet ‘‘Quench

Protection System’’ throughout the machine to prevent similar disasters in the

future. All this repair and testing work was being carried out under the scrutinizing

eyes of the whole organization.

During this time, there was no rhetoric, with sentimental overtones of progress

and achievement, advocating the harnessing of work toward a common goal. Instead

what confronts us is the total division and separation between the demands of

physics and engineering. The separation between the demands of physics and

engineering pertains to the performance and safety of the machine. The engineering

point of view expressed doubts and fears regarding the actual operation of the
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instrument, whereas the physics point of view favored the potential of the

instrument, the results to be derived, that is, high-energy collision data for which the

instrument had been assembled. Most experimental physicists seemed in favor of

immediate running of the LHC so that they would have some amount of collision

data to work with and effectively stay in competition with the Tevatron. The

accelerator physicists, on the other hand, had a more cautious approach. The vast

majority of them preferred carrying out exhaustive repairs, before recommissioning

the collider, to rule out the possibility of such incidents occurring in the future.

In February 2009, the annual ‘‘LHC Performance Workshop’’ was held in

Chamonix, France, to critically review the schedule of repair and consolidation

work on the LHC, which involved prominent experimental and accelerator

physicists. The chief question debated at the workshop was: At what beam intensity

should the Hadron Collider be run? Two key alternative scenarios were presented.

Scenario one involved the installation of necessary spare parts, the ‘‘DN 200’’

pressure relief valves, in the 4 (warm) sectors and commencing collisions as quickly

as possible. This, however, meant that the machine could only deliver limited

performance, running in the range of 3.5 TeV energy per beam, instead of the

stipulated 7 TeV per beam. The low energy run would be followed by a yearlong

shutdown to conclude the remaining repairs and installations, and moving onto the

specified energy level of 7 TeV per beam. Scenario two involved installing the relief

valves in all the 8 sectors of the LHC, undertaking diagnostic tests on the whole

machine, going for a delayed start, but at full energy of 7 or 8 TeV per beam. The

motivations to the two scenarios cut across various issues such as: Was it possible to

minimize the impact of the delay and stay in competition with the Tevatron? How

could machine safety be weighed against the need for experimental data? Could the

collider be protected against future incidents in a foolproof way?

The alternative scenarios were thoroughly discussed at the Chamonix workshop.

On the whole, experimental physicists favored the first scenario, namely, a limited

run with reduced energy in the immediate, followed by a longer shutdown. On the

other hand, accelerator physicists pleaded for time and caution to undertake

comprehensive repairs and checks. They tended to emphasize the ‘‘lessons learnt’’

from the September incident and came up with intricate lists of priority issues that

needed to be addressed before recommissioning the LHC in any haste.11 Needless to

say in a situation so complex, the lines of fission and fusion were not completely

rigidly drawn. Speaking right after the workshop, the Director of Accelerators and

Technology, Steve Myers, remarked that midway through the workshop he grew

skeptical and switched from favoring the second scenario to the first and again back!

Significantly, the workshop ended, as Meyers reported, with ‘‘no consensus in

Chamonix.’’

The controversy is interesting because it shows that the organization of science is

not a homogenous ensemble, but marked by a sharp division between theory,

experiment and instrumentation, at the heart of which lies the institutionalized

opposition of pure and applied, or science and engineering. It is this opposition and

the consequent legitimacy of each respective domain’s demands that makes it

11 From Steve Myers’ presentation on 24th February 2009 summarizing the Chamonix Workshop.
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possible to identify the meaning and the use to which the instrument is put. The

assessment of the possible research outcomes (meaning) for which the instrument

has been assembled falls under the purview of physics. The conditions, which must

be obtained before the instrument can be exploited for research potential (use),

belong to the domain of engineering. Before elaborating this distinction or its

interpretation as a general fact, two observations are in place. First, the distinction of

pure and applied must be analyzed in structural as well as in functional terms

(Habermas 1973; Heidegger 1977). In fact, the functional consequences that arise

from the division between pure and applied often conceal the more structural

aspects of the distinction. This will be examined in a later section.

The second observation pertains to the recognition of diachrony and the

developmental cycle of instrumentation. Any assessment of the general organization

of labor in high-energy physics is inadequate without an approach that incorporates

the tempo of laboratory work, especially its transition moments, which have

something interesting to reveal. Transition moments help us understand the critical

link between general principles and immediate problems (Marx 1964; Althusser and

Balibar 2009). This inquiry into diachrony and transition, not simply as an

ingredient of narrative or a description of reality, but as a component of conception

and analysis, I will pursue next.

Transition and the new normal

The section attempts to probe the following question: How should we interpret the

incident in September and the resulting suspension of the machine? In effect we are

asking what is the specificity of this event? A question about specificity implies

difference, such as what makes this period different from other periods? I will use

the concept of periodization developed by Marxist scholars, Althusser and Balibar

(2009), which presents us with a framework alternative to the continuity of

evolution, with the transition of structures, their inner tendencies and contradictions,

and their relative autonomy. The period just after the September 19 incident cannot

be interpreted as a mere unfolding of a succession of events, but forms a great

inward drama to which one can unequivocally apply the term ‘‘transition’’ or

‘‘liminal.’’ It expresses an orientation—precisely that of a transition from one mode

to another. A serious analysis must take into account the distinct phases and the

tempo of work, in and through which units and actions cohere or go apart, with the

temporal direction being critical in which the structuring of events takes place:

events such as before, after or transition.

The importance of temporality and periodization in the sense of Marx’s

‘‘development of form’’ (1964) can also be substantiated from the concept of

liminality, made familiar to us from the study of religion and ritual. A great deal of

anthropological writing has been concerned with elaborating the scheme outlined by

van Gennep (1960) of the phases of ritual action in terms of separation, liminality

and reaggregation. A ‘‘betwixt and between’’ moment, liminality represents a

midpoint, a transition in a sequence of events. It forms a socially and structurally

ambiguous stage, which heralds the restoration of social order. People in liminal
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moments often feel disconnect with the preceding and succeeding moments.

Although the attributes of the liminal phase are necessarily ambiguous, since they

elude through normal classifications, it is a phase that is ‘‘institutionalized and

preordained’’ (Turner 1969).

In availing the concept of liminality, I am trying to suggest that in discussing

scientific work life, it is essential to be aware of the distinct stages that mark the

developmental cycle of instrumentation, especially the transitional stages. For the

characteristic feature of the transitional stage is that it possesses the source and

substance of a system. According to Turner, ‘‘liminality may perhaps be regarded as

the Nay to all positive structural assertions, but as in some sense the source of them

all, and, more than that, as a realm of pure possibility whence novel configurations

of ideas and relations may arise’’ (1967: 97). Thus understood, Turner’s account of

the liminal as disclosing the kernel of a system suggests an extraordinarily

ambitious program of meaning and analysis. However, as opposed to Turner, I am

arguing that the liminal need not be a manifestation of ‘‘blurred boundaries,’’ one

where structural bonds have dissolved and homogeneity prevails. On the contrary—

and this is important—the transitional period can express with remarkable clarity

the boundaries and separations between events, actions and persons. That I am still

using the term liminality as an aid to grasp the scheme of science is not forsaking

the term of its chief merit. The liminal, in the sense of emphasizing the theme of

inversion, clearly marks the period just after the incident in September 2008.

Prior to the incident, the distinct sub-cultures of physics exemplified concerted

action; feedback from each distinct unit of the laboratory was seen as aiding and

enabling the work of another. This element of conjunction and coordination is well

recognized (Traweek 1988). However, during the suspension of the accelerator, the

boundaries and the separation between the units became visibly accentuated: theory,

experiment and instrumentation dispersed into their respective niches. During this

time interval, many new features to the machine were discovered, including hitherto

unforeseen flaws, which could critically disrupt the future operation of the

accelerator. Stock was taken of some of these, and others were set aside for later

when the LHC would require substantial upgrades for running at optimum energy of

7 TeV per beam (CERN 2008). After the incident, repairs and subsequent

consolidation work took nearly a year to complete.

The year 2009 was the year of transition in the life of LHC when unstinting

engineering efforts on repairs, consolidation, hardware commissioning and prep-

arations for the beams finally came to an end and physics took the thrust. On

October 23, 2009, particles entered the LHC for the first time since the September

incident, and soon after the collisions began. On November 30, 2009, the LHC

became the world’s highest energy particle accelerator when protons in each beam

reached an energy of 1.18 TeV. This exceeded the previous world record of 0.98

TeV, which had been held since 2001 by the Tevatron Collider at the Fermi

National Accelerator Laboratory, USA. By the end of the year 2009, the transition

had successfully been made from repair and commissioning of the accelerator to its

exploitation for physics. A switch had taken place. For the community as a whole,

now physics took the spotlight, with the accelerator receding to the background.
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In rich and substantiated ways, the emerging field of study called STS, or Science

and Technology Studies, has drawn our attention to the significance of periodization

and temporality in mapping the material culture of a laboratory. A particularly

interesting analysis of periodization in instrumentation is found in Pickering’s

works (1984, 1995). He insists on the recognition of temporal emergence and

historicity of knowledge in evaluating the pursuits of science. In particular, he raises

the question: ‘‘How should we conceptualize temporally emergent phenomena?’’

(1993: 561). Peter Galison provides an excellent narrative of critical episodes in

physics where the decision to end an experiment is motivated by a complex of

interlaced factors. He uses the term ‘‘intercalated periodization’’ (1999) to describe

the various factors, like theoretical presuppositions, elimination of background or

calculation of systematic errors, all of which critically influence the decision to

accept a result and end an experiment. Allan Franklin’s account of the discovery of

parity non-conservation highlights the uneven temporality of experimental

outcomes and theoretical activity (1986). The idea that science develops in neat,

regular or predictable ways receives a drubbing in the works of most serious

historians of science.

While these approaches have given careful consideration to issues of temporality

in high-energy physics, especially to moments of emergence and end (Galison 1987;

Pickering 1984), they have shed little light on the liminal stage as an autonomous

periodization worthy of study. As I have attempted to suggest, in discussing

scientific work life we should pause and reflect on an incident’s specificity, which

accommodates its liminal status. There is a great difference between simply

following an event in its temporal course and being able to distinguish the different

phases of temporality and understanding them conceptually (Althusser and Balibar

2009). In analyzing the organization of science, we are not dealing with the study of

merely empirical questions, for indeed the empirical validity of different phases is

well recognized by informants themselves, but rather with the epistemological

problem of what conditions underlie the operation of work in science?

As long as we are given to the contemplation of temporality as an empirical

generalization, as a flow of events, the direction of movement in science cannot be

discerned, and analysis remains at the level of description. When we focus on time,

not as duration, but as a paradigmatic ordering of events, that is to say its content is

grounded in specific cultural or normative constructs, we observe the production or

mutation of knowledge not solely as products or as results of a movement, but as

‘‘the appropriation of the real world by different practices, theoretical, asthetic,

religious, ethical, technical, etc.’’ (Althusser and Balibar 2009: 71). In other words,

time is not an isolated or even an intrinsic feature, but part of a broader cultural

determination and subject to structural social relations (Bourdieu 1977; Turner

1969).

The key conclusion that follows from this conception of time and periodization is

that it not only allows us to escape the linearity of time, but also helps to destroy

time ‘‘as a framework or common support for every possible historical determi-

nation’’ (Althusser and Balibar 2009: 329, italics in original). Once we refuse the

obviousness of time, or to presuppose a reference to time as an a priori, the space

opens up for transition periods to appear in their specific forms, and the variations of
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these forms, as constituted by abstraction and structural relations (2009: 337). Such

a model of temporality and periodization allows us to grasp the uniqueness of

distinct temporal frames or phases by engaging with material and social conditions

internal to the object of study, such as distribution of work, mobilization of labor,

etc., without eliminating general concepts and principles of knowledge and

classification.

Focusing on the accelerator in the interim period, that is, just after the September

2008 incident and before being recommissioned for operation in the year 2010, we

find the total division and separation between the domains of science and

engineering, as I indicated above. The question now arises where does the period of

transition stand vis-à-vis the complex structure of high-energy physics and what

does the division of science and engineering express about its inner constitution. To

address this question, we must take recourse to the division of labor that governs the

organization of tasks and capacities in contemporary particle physics, which I have

alluded to in the discussion but not elaborated upon so far. The exposition of the

division of labor is the subject of our attention in the following pages. With this we

enter the final stage of analysis.

The division of labor

To comment on the division of labor is difficult now when everything has already

been examined on this topic and a saturation point is nearly reached (Gouldner

1954; Rueschemeyer 1986; Smelser 1963; Sullivan 1995). Instead of dwelling on its

more general aspects, I wish to consider a very specific question: In what way does

the division of labor follow from the demarcation and separation of the spheres of

mental labor and manual labor, or theory and practice? As Marx et al. suggest, the

‘‘division of labor only becomes truly such from the moment when a division of

material and mental labor appears’’ (1947: 20). In this respect, it is worth examining

how the opposition of mental labor and material labor, or theory and practice,

expresses itself in the institutionalized division of labor and is bound up with the

technical operations of a laboratory.

At present CERN is sub-divided into eight departments. These are listed below

with the names of the department heads alongside:

PH Physics: Philippe Bloch

IT Information Technology: Frederic Hemmer

BE Beams: Paul Collier

TE Technology: Frédérick Bordry

EN Engineering: Roberto Saban

HR Human Resources: Anne-Sylvie Catherin

FP Finance and Procurement: Thierry Lagrange

GS General Infrastructure Services: Thomas Pettersson

The preeminent department is Physics. It carries out basic scientific research in

theoretical and experimental physics. The departments of Beams, Technology and

Engineering are responsible for the hardware of the accelerator, such as the
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production and testing of magnets, cryogenics, beam instrumentation, etc. The other

departments, like Human Resources or Finance and Procurement, provide

infrastructure support and services. Myriad gradations of personnel are found in

any stream or branch. People who design ‘‘detectors’’ are distinguished from those

involved with computing or data analysis; those working on the magnets of the

accelerator are far removed from the elaborations of string theory, and so on. While

immediate observations may lead us to emphasize the heterogeneity of tasks, now it

remains to say something about their internal coherence. To be sure, broad

generalizations about the distribution of work may appear dangerous because

exceptions can be found to any aspect of classification. However, when we fall upon

the evidence of sustained fieldwork, a few distinctive principles are discernible. One

of these principles, and its intellectual force and meaning, I will try to identify from

my own fieldwork data to show how it forms a possibility condition of laboratory

science, and which allows for the interpretation of events in their singularity, in their

movement and in their effects.

During fieldwork, I observed most informants attesting to an implicit hierarchy at

the root of the intricate diversity of tasks and personnel with theoretical physics

more or less at the top of this informal hierarchy, with experimental physics a close

second, followed by accelerator physics and engineering, and the technical and the

administrative workforce widely perceived as auxiliary staff. Although I received

indirect answers from informants as to why theoretical physics should rank higher

than accelerator physics or experimental physics lower than theoretical physics, I

was gradually able to piece together their main ideas on the apparent hierarchy to

look beneath to the power which fashions it, the operative demarcation of pure and

applied, or between those who ‘‘think’’ and ‘‘those who use their hands,’’ as one of

my engineering informants, Francesco Bertinelli, put it. While the anti-intellectu-

alism of engineering is somewhat exaggerated by Bertinelli, who is himself an

astute intellectual, the economy and repetition with which I encountered the

institutionalized distinction of pure and applied in the everyday organization of

work, in the division of labor, is an indication that it has an intelligible pattern and

methodological validity.

Since the full role and scope of this distinction lies in everyday work, without

whose description it is not made clear, let me consider that at once. For instance, in

the field of theoretical physics, those who develop models, theoretical frameworks

or mathematical techniques, are defined by most informants as engaged in ‘‘model

building’’ or ‘‘pure theory,’’ and are distinguished from those who specialize in

‘‘computations,’’ the implementation of algorithms necessary for model building

work or ‘‘phenomenology,’’ where predicted values from theory are compared with

experimental data. Phenomenology or computations are distinctly perceived by

most informants to be in the zone of ‘‘application.’’

In the experimental physics community, which is numerically preponderant than

the theory group, a distinction is commonly observed between those involved with

installation, commissioning and operation of hardware or the detectors, designated

as ‘‘applied physicists,’’ and those involved with data preparation and analysis

termed ‘‘research physicists.’’ Processing and analyzing physics data is deemed

more interesting than constructing detectors or installing cables. The attribution of
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differential values to mental and manual labor is often conveyed in the anxiety of a

number of informants working on the hardware of experiments if they could make a

transition to the more exciting task of data analysis in the course of their careers. In

2009, after 19 years of working on the ‘‘end-cap B’’ of the CMS detector, David

Cockerill, of Rutherford Appleton Laboratory, was both happy and anxious that the

detector was completed and sealed. He was happy because he had contributed in no

small measure toward its completion. Anxious because what does he do now? When

I met him a year later, he cheerfully told me, ‘‘I have moved to data analysis…not

easy, I have done it.’’

In the accelerator sector, likewise it was impressed upon me that ‘‘TE’’

(Technology Department) was the leading arm since it involves research and

conceptualization of the star project, the LHC and the future projects, while the

‘‘EN’’ (Engineering) department provides technical coordination and infrastructure

support to the accelerator and the various experiments. Coordination, training and

safety were considered ‘‘lower-end jobs, or what one does close to retirement,’’ as a

magnets engineer, whose name I shall not disclose, told me with some bitterness.

‘‘When one is young, one likes to think about the mysteries of the universe, play

with ideas,’’ he remarked. Conceptualization and development of technology is

perceived as being more challenging or rigorous than implementation of safety

procedures or finding ‘‘applications’’ of a given technology.

Having said this much, I hasten to add that the feature of hierarchy itself is the

least of my concerns. I have a rudimentary idea of the hierarchy without anything

substantial to offer by way of analysis. My particular interest lies in surveying the

division of labor from the standpoint of the classification of knowledge where the

opposition of theory and practice, or pure and applied, comes to form the heart of

the division of labor, as it was disclosed to me during fieldwork. Far from being

accidental to the activity of high-energy physics, the opposition of theory and

practice functions in the institutionalized division of labor as its indispensable

constitutive principle and defines principal aspects in which creativity is exercised

and work is discharged. In other words, talents and tasks are a source, which in the

course of time, must evolve into a distinction of manual activity or mental activity,

that is, those who work with their hands, and those who use their minds, or

multifariously into modeling, theorizing, designing or manufacturing.

My interest in the value of this distinction lies not in its achievements or

consequences for the organization, but in what it signifies as an instrument and

symbol of knowledge. As Habermas succinctly argues, ‘‘The technical and practical

interests of knowledge are not regulators of cognition which have to be eliminated

for the sake of the objectivity of knowledge; instead they themselves determine the

aspect under which reality is objectified, and can thus be made accessible to

experience to begin with’’ (1973: 9). Since informants in the community perceive

the opposition of theory and practice as important, I have taken it up at some length.

Above all, the instrument is an embodiment of the values of this opposition, and to

which it is dedicated. The fact that I have isolated instrumentation as the site to

expose the critical divides of mental and material, expressive and instrumental or

real and possible, does not mean that it is the only one available for reflecting on the

complexity of science. I have considered it because material culture is a key concern

Science and the Large Hadron Collider 311

123



of anthropology (Keane 2003; Tilley 2006) and provides fertile grounds for

comprehending analytical divides with practical activity.

Ian Hacking (1983) has famously commented on the ‘‘disunity of science’’ owing

to the proliferation of specializations that we find in it, where every material

phenomenon or artifact is produced by different tools and techniques. Stable

laboratory science arises, he maintains, when theories, materials and laboratory

equipment evolve in such a way that they match each other and are mutually self-

vindicating. Such ‘‘symbiosis’’ is a held to be a contingent fact about people, our

scientific organizations and nature (Cartwright 1983; Duprè 1993; Galison and

Stump 1996; Pickering 1984). The medley of local and transitory coordinations

encountered in science has generated arguments that tend to emphasize its fluid and

elastic character. Pickering (1995) finds the structure of scientific practice to be a

‘‘mangle,’’ which extends from instruments, substances, materials, to actors and

practices. Galison (1997) invokes the language analogy—of pidgins and creoles and

their ‘‘trading zone’’—in the recognition of how ‘‘two groups can agree on rules of

exchange even if they ascribe utterly different significance to the objects being

exchanged; they may even disagree on the meaning of the exchange process itself.

Nonetheless, the trading partners can hammer out a local coordination, despite vast

global differences’’ (783). In this mode of reasoning, contingency prevails, but not

in any drastic way for it is counterbalanced by functional coordination.

However, outside of historical contingency or functional coordination, if we still

wished to know what relation do everyday practices or outstanding events bear to

general principles of knowledge and classification, there is a possibility of an

answer, one that requires attending to the relations of symbol and instrument,

abstraction and perspective, concept and object (Marx and Engels 1967; Althusser

and Balibar 2009; Uberoi 2002). For indeed an initial impulse may lead to the ready

conclusion that science is wholly heterogeneous and without a center. But a

sustained reflection discloses—and as the discussion revolving around the

September 19th incident is meant to emphasize—that the opposition of pure and

applied, or theory and practice, forms the source and the sanction of the

institutionalized division of labor prevailing in high-energy physics. Without this

recognition, the concrete ethnographic fact involving the September incident,

namely that those branches of physics that deal with theory or analysis had little role

to play when the collider was suspended while the engineering work moved round-

the-clock, would not make sense. The claim of ‘‘disunity of science’’ (Duprè 1993;

Hacking 1983; Galison and Stump 1996) passes over in silence the mechanisms and

the sources of this disunity, and is forced to fall back on descriptions such as

hybridity, symbiosis, contingency, etc. in characterizing scientific activity (Galison

1997; Pickering 1984), which explain nothing, as Marx would urge, of the internal

determination or the specific form that science takes.

From weekly colloquia to staff picnics, as I observed over two and a half years at

CERN, the division of tasks is axiomatically maintained, especially the division of

pure and applied or theory and practice. Far from reproaching or defending the way

in which instrumentation is organized in the laboratory, I have merely wanted to

examine what it tells us about the principles of high-energy physics. The unforeseen

incident owing to the electrical fault and the resulting suspension of the Hadron
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Collider invite us to examine a fundamental problem in the classification of

knowledge: How does a singular event, such as a crisis, express the distribution of

knowledge in the laboratory? Unforeseen or singular events do not escape the

regularity of established conditions but combine with them to exhibit the unqualified

normativity of social thought and conduct (Douglas 1999; Gluckman 1958; Turner

1969). During routine operation, the distinct sub-cultures of physics work self-

consciously in tandem, alongside each other. However, during a crisis or a

breakdown, the organization devolves into identifiable niches, with each functioning

largely on its own pivot. It is not astonishing that the nature of distinctions should

appear more strikingly during ‘‘betwixt and between’’ or transition phases, such as

the period immediately following the incident in September 2008, and before

renewed operation in 2010. Therefore, any analysis of the mutual relations of the

different sub-cultures of physics must consider the different phases of temporality

conceptually in order to extract the source, and mechanisms, by which the division

of labor is organized in the laboratory.

Conclusions

The progressive transformation of nature according to the prescriptions of physis
(knowledge), put into practice by techne (craft), which modern science demands,

has led to the rich material culture and complex division of labor found in high-

energy physics today. The conception, plan, design and construction of the LHC,

and the four main detectors, took nearly two decades. The incident in September

2008, occurring just nine days after a successful start, plunged the physics

community in a pall of gloom. Most of the accelerator physicists and engineers I

spoke to during this period stated that the incident had given them a jolt. The

incident had introduced to them the fragility and complexity of a Hadron Collider.

‘‘We always know that there is a lingering possibility that some technical problem,

maybe even very small, can threaten operation anytime. The September incident

was a critical and a painful lesson but not without useful consequences,’’ thought

Gijsbert de Rijk, from the MSC group (Magnets, Superconductors and Cryostats),

CERN, and my key informant in the area of accelerator physics.

It would be a mistake, however, to read into this crisis or a breakdown merely a

negative sense of malfunction or even a positive sense of what it accomplished for

the organization. The viewpoint of functional coordination is much too narrow. Nor

does the argument of structural disunity (of science) advance beyond the category of

contingency. A scientific laboratory is neither simple nor enduring. It is a work

space which provisions for the conduct of experiments, coordinates the testing,

manufacturing and assembling of instrumentation, facilitates collaboration on the

use of materials, models and techniques and develops initiatives on the R&D of

future projects. Without fetishizing it, we may say that the instrument forms a

symbol, which orchestrates the conjunction and disjunction of the three main sub-

cultures of high-energy physics. Both these aspects of conjunction and separation—

of tasks and personnel—belong to the same logic, only manifesting at different

phases in the cycle of work, as I have tried to show. The separation of tasks came to
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a vivid expression when the colossal collider suffered a breakdown. On the other

hand, the conjunction of tasks finds expression in the routine and successful order of

everyday work.

What is interesting from the point of view of anthropological fieldwork is that

while most informants bemoaned the suspension of work following the incident, the

ethnographer had gained a remarkable opportunity, to observe nothing less than the

source of rhythms and routines of techno-scientific work life. The September

incident at the LHC directs our attention to the issue of diachrony or temporality,

not as a phenomenon of irreversible succession or a juxtaposition of events, but

rather to the recognition that all temporality has its roots in principles of social

classification (Althusser and Balibar 2009; Uberoi 2002). In framing my inquiry into

the material culture of science, I have adhered to this fundamental insight on the

social character of classification and conduct. My task, the way I conceived it, was

to traverse the inner relationship between principles of classification and everyday

problems in order to clarify the form of knowledge that science stakes. By isolating

the September incident that disrupted CERN’s LHC, the essay arrives at a key

moment in the life of the laboratory when the division and separation of theory and

practice stand critically exposed.
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