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Abstract The significance of understanding blockcipher security in the multi-key setting is
highlighted by the extensive literature on attacks, and how effective key size can be signif-
icantly reduced. Nevertheless, little attention has been paid in formally understanding the
design of multi-key secure blockciphers. In this work, we formalize the multi-key security of
tweakable blockciphers in case of general key derivation functions. We show an equivalence
between blockcipher multi-key security and tweakable blockcipher security. Our equiva-
lence connects two objects of study, the iterated Even–Mansour (EUROCRYPT 2012) and
the iterated Tweakable Even–Mansour (CRYPTO 2015), which establishes that results in
both areas are, to a certain extent, transferable. Using our novel equivalence relation, we
derive new bounds for both constructions, pave the path towards the solution of two well-
studied conjectures, and show that, contrary to common knowledge, key derivation functions
need not necessarily be pseudorandom functions in order to provide security: for the iterated
Even–Mansour universal hash functions suffice.
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1 Introduction

A necessity for any cryptographic system is the ability to support communication among
many users, for potentially long periods of time. Enabling security in such scenarios requires
distributing many keys, not only per user, but also per unit of time. As a result, understanding
the multi-key security of cryptographic algorithms is important.

In applications where symmetric-key algorithms are used for the bulk of communication,
the difficulty inmaintaining security inmulti-key settings involves not only initially distribut-
ing and managing keys for each pair of communicating parties, but also ensuring that keys
are not used beyond recommended data and time limits. How long a key can be used and
howmuch data it can process is determined via cryptanalysis and security bounds estimating
adversarial success probability. However, until recently, most analysis has been performed
in the single-key setting, even though analyzing cryptographic algorithms in the multi-key
setting has more practical significance.

Nevertheless, the limitations of themulti-key setting arewell-understood for a large variety
of cryptographic algorithms, such as public key encryption [5], key establishment protocols
[9,13], signatures [65], and message authentication codes [6,17]. Blockciphers are no excep-
tion, and have been the subject ofmany attacks taking advantage of the availability ofmultiple
keys. For example, Biham [7] showed that the effective key size of blockciphers can halve
in the multi-key setting, provided sufficiently many keys are employed in the encryption of
a known plaintext. Subsequent attacks used time-memory-key tradeoffs [12,29,34,41] for
improvements.

Despite the multitude of attacks, little exploration has been done concerning the design
of blockciphers in the multi-key setting. This is most likely due to the result stating that the
multi-key security of a blockcipher can be reduced to its single-key security with a security
loss proportional to the number of keys used, a fact which has been formally proven for
public key encryption schemes [5] and message authentication codes [17], among others.
This reduction relies on the fact that all keys are independent and uniformly distributed.
In practice, however, generating keys is often done via the use of key derivation functions
(KDFs), which use a master key to output many different keys. Therefore, to be able to
rely on single-key security, such a KDF must behave like a pseudorandom function, so that
its outputs are computationally indistinguishable from independent, uniformly distributed
values.

1.1 Linking multi-key security with tweakable blockciphers

Our main contribution is drawing a powerful connection between the multi-key security of
blockciphers and the security of tweakable blockciphers. As a first step towards the connec-
tion, we present a generalized definition of multi-key security of (tweakable) blockciphers in
Sect. 3.While earlier definitions, includingMouha and Luykx [64], only considered indepen-
dent, uniformly generated keys, we introduce KDFs in the definition of multi-key security,
and say that the combination of a blockcipher with KDF is secure if it is indistinguishable
from uniform random permutations.
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Connecting tweakable and multi-key blockcipher security 625

By explicitly including KDFs into blockcipher security, and viewing key schedules as a
type of KDF, one can put weak, known, and related key attacks in perspective with multi-key
security. More importantly, due to the explicit inclusion of KDFs, the connection between
multi-key and tweakable blockcipher security (Sect. 4) is immediate. This connection allows
one to use the large body of work on tweakable blockciphers (see Sect. 5) to understand the
multi-key security of blockciphers, and vice versa.

Finally, via the connection with tweakable blockciphers, related-key security of blockci-
phers [10] can also be linked to multi-key security. In more detail, in related-key security, an
attacker may transform the master key via a related-key-deriving function, which could also
be interpreted as deriving a new subkey in the multi-key setting.

1.2 Application to even–mansour and tweakable even–mansour

By identifyingKDFswith key schedules, or rather TWEAKEYschedules [48], which process
both tweak and key input to generate subkeys for use in blockciphers, significant performance
gains can be made depending upon the application. KDFs are usually designed to behave
like pseudorandom functions, which is the optimal choice when blockciphers are treated like
black boxes. However, in order to improve performance blockciphers cannot be treated as
black boxes, and KDFs must be designed with specific blockciphers in mind, which is what
a TWEAKEY schedule is.

Instead of looking at one specific blockcipher, or treating them as black boxes, we take an
intermediate approach and apply our observations to the iterated Even–Mansour construction
EM[r ] [11,30,31] and the Tweakable Even–Mansour construction TEM[r ] [21], which can
be viewed as generic versions of key alternating ciphers [27,28], the design approach to
the AES [28]. As depicted in Fig. 1, both constructions process their input using r ≥ 1
consecutive, independent permutations interleaved with maskings derived from the key; the
main difference between the constructions is that in TEM[r ] the maskings are derived from
the key and the tweak via a universal hash function. See Sect. 5 for a detailed explanation of
the constructions.

Chen and Steinberger [19] proved that EM[r ] achieves asymptotically 2rn/(r+1) single-
key security for arbitrary r ≥ 1. Hoang and Tessaro [42] recently simplified their bound and
improved it by a constant factor. They additionally demonstrated how the results directly
generalize to the multi-key setting based on uniformly random KDF. For TEM[r ], Cogliati
et al. [16] proved 2n/2 single-key security for r = 1, 22n/3 for r = 2, and 2rn/(r+2) for any
even r , and conjectured that it achieves (tight) 2rn/(r+1) single-key security for any r ≥ 1.
These results are summarized in Table 1, with further related work in Sect. 5.

First, we use our new equivalence result as a tool to transfer the EM[r ] multi-key bound
to TEM[r ] in Sect. 5.4, establishing a 2rn/(r+1) bound for any r , as long as the universal hash
function is replaced by a uniform random function, and the adversaries use a limited number
of tweaks. In applications where the number of tweaks can be limited to a small number,
as might, for example, be the case in certain authenticated encryption schemes [2,26,68],
our newly obtained bound on TEM[r ] improves over the state of the art, and even solves the
conjecture by Cogliati et al. in 2015 [21] for the specific case of uniformly random masking.
The replacement of the universal hash function by a uniform random function may in certain
settings by a burden, but this condition allows us to make a first step towards solving this
conjecture for general masking. The new bounds are summarized in Table 1.

As a bonus, the new TEM[r ] bound carries over to its blockcipher-based sibling LRW[r ]
[53,55,56,67]; see Fig. 1 for its depiction, and Sect. 5 for a detailed explanation of the
construction. Our bounds therefore also partially solve the related conjecture by Landecker
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Fig. 1 From top to bottom: r rounds of iterated Even–Mansour, Tweakable Even–Mansour, and Cascaded
LRW. Here, ki and zi are key material, Pi are permutations, E is a blockcipher, and hki are universal hash
functions. All schemes reveal strong similarity, with one caveat: LRW[r ] and TEM[r ] explicitly have r -wise
independent masking, while EM[r ] uses r + 1 keys. However, the state of the art security analysis on EM[r ]
also covers r -wise independent keying [19]

Table 1 State of the art and new results on EM[r ], TEM[r ], and LRW[r ], with n the size of the permutation
or blockcipher, μ the number of users, and � the number of tweaks used

Scheme Model # Rounds Note

1 2 r

EM Single-key 2n/2 22n/3 2
rn
r+1 [19,42]

EM UAXU-multi-key 2n/2 22n/3 2
rn
r+2 New

EM Random-multi-key 2n/2 22n/3 2
rn
r+1 [3,42,64]

TEM (UAXU mask) Single-key 2n/2 22n/3 2
rn
r+2 [16]

TEM (random mask) Single-key 2n/2 22n/3 2
rn
r+1 New

LRW (AXU mask) Single-key 2n/2 22n/3 2
rn
r+2 [53,55,56,67]

LRW (random mask) Single-key 2n/2 22n/3 2
rn
r+1 New

et al. [56] and Lampe and Seurin [55] on LRW[r ], provided the maximum number of tweaks
can be bounded and the masking is random.

Finally, we also consider multi-key security of EM[r ] with a KDF that is not necessarily
random. Using aforementioned equivalence in reverse direction, in Sect. 5.4 we transfer the
results from Cogliati et al. [16] on TEM[r ] to multi-key security bounds of EM[r ] which do
not degrade relative to the number of users, but with the same limitations on r as with the
TEM[r ] bounds (see Table 1). The bound is identical to that of [16]. Interestingly, we are
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Connecting tweakable and multi-key blockcipher security 627

able to conclude that a pseudorandom KDF is not necessary to achieve multi-key security
with the EM[r ] construction. Since the tweaks for TEM[r ] are generated using universal
hash functions, such functions suffice as KDF for EM[r ].
1.3 Performance gains

Besides the necessity of using pseudorandom KDFs when the blockcipher is treated as a
black box, it is also important if the application scenario contains malicious users: it should
be infeasible for one pair of communicating users to guess the keys of other users. Therefore,
weakening the KDFmust be done with care. However, there are applications where the users
are known not to be malicious.

Consider wireless sensor networks for example, which consist of small autonomous sen-
sors used to monitor environmental conditions. Using our connection between multi-key
security and tweakable blockciphers, it is clear that in those settings one could replace the
combination of aKDF and blockcipherwith a single tweakable blockcipher, where the “keys”
for each of the sensors would correspond to different tweaks for the tweakable blockcipher.
Even though each of the sensors could easily compute the “key” of any other sensor, the
main security threat in this scenario are external attackers, not the sensors themselves. This
approach is formalized in Sect. 6.

The only issue would be key compromise of a sensor, which would immediately leak the
key, and therefore security of the entire system would be lost. Even if it is difficult to ensure
that no sensor will leak its key, one can still avoid using pseudorandom KDFs. For example,
an intermediate solution is to group together sensors, and to distribute an independent key
to each group, while communication within the group is performed by changing tweaks.
In Sect. 3.2 we describe another solution, which uses universal hash functions which are
secure against collusion of a group of users, meaning a certain number of sensors could be
compromised without the entire system loosing security.

2 Preliminaries

The set of bit strings of length n ≥ 0 is denoted {0, 1}n . For two sets X ,Y , the set of all
functions from X → Y is denoted Func(X ,Y), the case of X = Y being abbreviated to
Func(X ). The set of permutations on X is denoted Perm(X ). Uniform random drawing of

an element x from X is denoted x
$←− X .

2.1 Blockciphers and tweakable blockciphers

A blockcipher is a mapping E : K × M → M where for every key k ∈ K, the function
E(k, ·) is a permutation on M. Its inverse is denoted E−1(k, ·). A tweakable blockcipher
is a mapping ˜E : K × T × M → M where for every key k ∈ K and every tweak t ∈ T ,
the function ˜E(k, t, ·) is a permutation on M. Its inverse is denoted ˜E−1(k, t, ·). Denote by
TPerm(T ,M) the set of all functions π̃ : T × M → M such that π̃(t, ·) ∈ Perm(M) for
all t ∈ T .

Note that a conventional blockcipher is a tweakable blockcipher with tweak space of size
1, meaning that tweakable blockcipher security definitions can be applied to blockciphers.
Therefore, we will only discuss the security of tweakable ciphers, which will be denoted
explicitly with the use of ‘T’ and ‘∼’. The corresponding notation for conventional blockci-
phers follows by removing the ‘T’s and ‘∼’s.
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628 J. Lee et al.

Let ˜E : K × T × M → M be a tweakable blockcipher that is internally based on r ≥ 1
primitives Π1, . . . , Πr ∈ Prims, where Prims is some set of primitives. Examples include
Prims = Perm(M), which is used in the Even–Mansour constructions, and Prims =
Func(M′), which is used in Feistel networks where M′ is of size smaller than M.

In the following definition we consider a distinguisher D that either interacts in a “real

world”, where it has query access to ˜Ek with secret k
$←− K, or an “ideal world”, where

D interacts with an ideal tweakable permutation π̃
$←− TPerm(T ,M). In both worlds D

gets access to the idealized primitives Π = (Π1, . . . , Πr )
$←− Primsr . The goal of D is to

distinguish the real from the ideal world.

Definition 1 (STPRP security) Consider ˜E : K × T ×M → M based on r ≥ 1 primitives
Π1, . . . , Πr ∈ Prims. The STPRP (strong tweakable pseudorandom permutation) advantage
of a distinguisher D is

Advstprp
˜E

(D) = ΔD(˜Ek,Π ; π̃ ,Π) =
∣

∣

∣Pr
(

D˜Ek ,Π = 1
)

− Pr
(

Dπ̃ ,Π = 1
)

∣

∣

∣ ,

where the probabilities are taken over the random choices of k
$←− K, Π

$←− Primsr , and

π̃
$←− TPerm(T ,M). The distinguisher has two-sided query access to each of its oracles. For

any q, �, p ≥ 0with � ≤ |T |, we defineAdvstprp
˜E

(q, �, p) to be themaximum advantage over
any distinguisher D that makes at most q queries to the construction for at most � different
tweaks, and p queries to each of the primitives.

Inclusion of the parameter � might seem artificial, but it can be set arbitrarily large and
therefore does not limit applicability of the definition. Although it is included to describe
distinguishersmore accurately, it has ameaningful connection to the security bounds ofMAC
functions and authenticated encryption schemes based on blockciphers. In more detail, con-
sider an authenticated encryption scheme based on a tweakable blockcipher, denote by �′ the
maximal message length, and � the number of different tweaks employed in the authenticated
encryption schemes. On the one hand, the parameter �′ often plays a significant role in the
security bounds, while on the other hand, the values � and �′ are often close to each other,
and differ at most by a multiplicative constant. For example, for COPA [2], ELmE [26], and
SCT [68], we have � ≈ 2�′.

2.2 Universal hash functions

Let (Y,⊕) be an abelian group. Let H = {hk : X → Y | k ∈ K} be a family of functions
indexed by a key k ∈ K. We say that H is uniform if for any x ∈ X and y ∈ Y , we have

Pr
(

k
$←− K : hk(x) = y

)

= 1/|Y| .
We say that H is ε-almost-XOR-universal (ε-AXU)1 if for any distinct x, x ′ ∈ X and y ∈ Y ,
we have

Pr
(

k
$←− K : hk(x) ⊕ hk(x

′) = y
)

≤ ε.

We say that H is ε-UAXU if it is uniform and ε-AXU.
A result that we will use later is that a uniform random function is also uniform and AXU.

More formally, define

1 The “almost” is in fact implicit in the term ε, but we will maintain it conform general convention.
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Connecting tweakable and multi-key blockcipher security 629

FX
Y : Func(X ,Y) × X → Y (1)

as a family of functions defined as FX
Y ( f, x) = f (x).

Lemma 1 FX
Y is uniform and |Y|−1-AXU.

Throughout, wewill simplywriteFX
n forFX{0,1}n . Our interest in uniform random functions

is purely in connecting our definition of multi-key security to the conventional definitions.

3 Multi-key security

Mouha and Luykx [64] formalized the notion of multi-key security of blockciphers, and
applied it to one round of Even–Mansour (cf. Sect. 5.1). We introduce the generalization
of this model to (i) tweakable blockcipher constructions and (ii) arbitrary key derivation
functions. The model shows similarity with that of Hoang and Tessaro [42]. As in Sect. 2.1
we will discuss the multi-key security model for tweakable blockciphers, including ‘T’s and
‘∼’s. The multi-key security for conventional blockciphers follows by removing the ‘T’s and
‘∼’s.

In the definition below,μ represents the number of instantiations with which the adversary

interacts. A master key k
$←− K′ is generated for use in the key derivation function (KDF)

F : K′ × X → K, which maps the master key along with what we call an ID in x ∈ X , to a
key inK. Here, the different IDs correspond to the different instances in the multi-key setting.
The adversary can adaptively choose IDs via the oracle ˜EF(k,·), where the ID is input via
F(k, ·). The adversary can instantiate at most μ IDs. The ideal functionality corresponding
to ˜EF(k,·) is π̃(·), which is formalized as a tweakable permutation with tweak space T × X :
the subscript input (·) can be viewed as a tweak input from X which specifies the selected
user, which in turn specifies a particular tweakable permutation to use. Figure 2 depicts the
oracles with which distinguisher D interacts.

Definition 2 (TMK security) Letμ ≥ 1. Consider tweakable blockcipher ˜E : K×T ×M →
M based on r ≥ 1 primitives Π1, . . . ,Πr ∈ Prims, and let F : K′ ×X → K with |X | ≥ μ

be a KDF. The TMK advantage of a distinguisher D is

Advtmk
˜E,F

(D) = ΔD
(

˜EF(k,·),Π ; π̃(·),Π
)

=
∣

∣

∣Pr
(

D˜EF(k,·),Π = 1
)

− Pr
(

Dπ̃(·),Π = 1
)

∣

∣

∣ ,

· · · · · ·· · · · · ·

F

E E π1 πμ ΠΠ

k

k1 kµ

Distinguisher D

Fig. 2 Multi-key security model (Definition 2). k1, . . . , kμ are the μ derived keys

123
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where the probabilities are taken over the random choices of k
$←− K′, Π

$←− Primsr , and

π̃(·)
$←− TPerm(T × X ,M). The distinguisher has two-sided query access to each of its

oracles. For anyμ, q, �, p ≥ 0, we defineAdvtmk
˜E,F

(μ, q, �, p) to be the maximum advantage
over any distinguisher D that makes at most q queries to the μ constructions (in whatever
distribution), for at most � different tweaks per construction, and p queries to each of the
primitives.

3.1 Compatibility with prior definitions

The original multi-key definition of Mouha and Luykx [64] can be viewed as a special case
of Definition 2, by considering non-tweakable blockciphers with keys generated using a
uniformly random KDF, that is, FX

K of (1). Definition 1, conventional STPRP security, is a
special case of Definition 2 as well, seen by putting μ = 1 and taking the KDF to be FX

K
again:

Advtmk
˜E,FXK

(D) = Advstprp
˜E

(D) .

Note that, as with our definition of STPRP security, we explicitly include primitives with
which the adversary can interact. This is in order to capture idealmodel definitions and proofs,
but standard model definitions are also included by only considering adversaries which make
zero queries to the primitives.

Due to the generalized nature of our definition, it is in fact equivalent to the definition of
related-key security of (tweakable) blockciphers [10,21,32], although the applications struc-
turally differ in the types of key derivation functions considered. Particularly, related-key
security targets simple KDFs, often as simple as bitwise XOR or bitwise addition, while for
multi-key security the KDFs are usually stronger primitives, and inmost cases are pseudoran-
dom.Nevertheless, the obvious equivalence between related-key security and our generalized
multi-key security definition hints at the existence of more applications of our work in the
context of related-key security, although this direction is beyond the scope of our work.

3.2 On multi-key-derivation functions

Taking a uniformly random KDF is, naturally, the most secure way of multi-key derivation,
but it requires a lot of randomness. Definition 2 allows us to consider more general KDFs,
including universal hash functions and pseudorandom number generators.

When choosing a KDF which is not pseudorandom, caution is needed to prevent related-
key attacks when users are malicious. Particularly, if too many multi-keys are derived with
the master key, the application may be prone to attacks. For example, taking a counter as
KDF, F(k, x) = k ⊕ x , allows for users to derive each others’ keys without knowledge of
the master key, as for any x, x ′ we have F(k, x ′) = F(k, x) ⊕ x ⊕ x ′. More generally, it
is desirable that F generates multi-keys that have enough entropy, even conditioned on a
small set of other multi-keys. In other words, it should not be possible for a small set of
malicious users to collude and compute the keys of the honest users. One solution to this
issue is via γ -strongly universal hash functions, as introduced by Wegman and Carter [78].
In more detail, let 1 ≤ γ ≤ μ, and consider KDF F : Kγ × X → K defined as

F(k(1)‖k(2)‖ · · · ‖k(γ ), x) =
γ

⊕

i=1

xi · k(i) .
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Connecting tweakable and multi-key blockcipher security 631

It is impossible for any set of γ − 1 colluding users to obtain the keys of the remaining
honest users. On the other hand, any γ colluding users {x1, . . . , xγ } can recover the master
key k(1)‖ · · · ‖k(γ ) by invertibility of the Vandermonde matrix:

⎛

⎜

⎜

⎜

⎜

⎜

⎝

k(1)

k(2)

...

k(γ )

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x11 x21 · · · xγ
1

x12 x22 · · · xγ
2

...
...

. . .
...

x1γ x2γ · · · xγ
γ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

−1
⎛

⎜

⎜

⎜

⎜

⎝

kx1
kx2
...

kxγ

⎞

⎟

⎟

⎟

⎟

⎠

.

Other examples of γ -universal hash functions for general γ include tabulation hashing and
extensions [72,79]. For the specific case of γ = 2, examples abound [8,23,24,40,50,76].

On a more general note, we remark that typically stand-alone key derivation functions
are multi-purpose, with main application the key derivation from passwords and salts. We
refer to Yao and Yin [35], Krawczyk [43,49], and ISO-18033-3 [47] for various designs and
analyses.

4 Tweakable blockciphers versus multi-key security

By introducing KDF’s in the definition of multi-key security of blockciphers, the connection
between multi-key security and tweakable security of blockciphers is nearly immediate: an
ID can be viewed as a tweak, and a tweak can be viewed as an ID. Hence, taking a blockcipher
E : K × M → M and a KDF F : K′ × T → K, we can define the tweakable blockcipher
˜E : K′ × T × M → M which identifies tweaks in T with IDs in X , that is

˜Ek(t,m) = EF(k,t)(m) . (2)

This construction can be seen as a generalization of Minematsu’s tweakable blockcipher
[63], but it has many more applications. In fact, extracting a blockcipher E from a tweakable
blockcipher ˜E by reversing the above construction is sometimes possible as well. For exam-
ple, if E is the Even–Mansour construction of Sect. 5.1, and F is a UAXU family of hash
functions, then ˜E corresponds to the Tweakable Even–Mansour construction of Sect. 5.2.

A distinguisher D1 attacking the MK security of E with respect to F can be converted
into a distinguisher D2 attacking the STPRP security of ˜E , by mapping each ID queried by
D1 into a tweak queried by D2. Conversely, any STPRP distinguisher D2 can be converted
into a MK distinguisher D1 by using the reverse transformation, namely, map each tweak
into a different ID. Formally, we achieve the following theorem.

Theorem 1 Let E : K × M → M be a blockcipher, F : K′ × T → K a KDF, and ˜E the
construction from (2). Let μ ≥ 1 and q, �, p ≥ 0. If μ ≤ �, then,

Advmk
E,F (μ, q, p) ≤ Advstprp

˜E
(q, �, p) .

If � ≤ μ, then,

Advstprp
˜E

(q, �, p) ≤ Advmk
E,F (μ, q, p) .

Proof Let D1 be a MK distinguisher against E with respect to F , and let D2 be described
as above, namely, each input m made to ID t ∈ T is converted into a ˜E-query (t,m) with
tweak t and inputm. All primitive queries andD1’s final decision are forwarded byD2. Note
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632 J. Lee et al.

that EF(k,·) = ˜E (·)
k , where the ID input of E is changed to tweak input for ˜E . Similarly, a

permutation π(·) with ID input, is equivalent to a tweakable permutation π̃ where the IDs are
mapped to tweaks. This means we have,

Advmk
E,F (D1) = ΔD1(EF(k,·),Π ; π(·),Π)

= ΔD2(
˜Ek,Π ; π̃ ,Π) = Advstprp

˜E
(D2) ,

and since μ ≤ �, we establish

Advmk
E,F (μ, q, p) ≤ Advstprp

˜E
(q, �, p) .

The reverse inequality can be obtained similarly. �


5 Application of equivalence of Sect. 4

We briefly summarize the state of the art on iterated Even–Mansour (Sect. 5.1), Tweakable
Even–Mansour (Sect. 5.2), and LRW (Sect. 5.3). Then, we consider the application of the
equivalence of Sect. 4 to these constructions in Sect. 5.4.

5.1 Iterated Even–Mansour

For r ≥ 1, we define the r -round iterated Even–Mansour construction EM[r ] : {0, 1}(r+1)n ×
{0, 1}n → {0, 1}n as (see also Fig. 1)

EM[r ]k1,...,kr+1(m) = Pr (· · · P1(m ⊕ k1) · · · ⊕ kr ) ⊕ kr+1 , (3)

where P = (P1, . . . , Pr ) ∈ Perm({0, 1}n)r are n-bit permutations. The first formal pre-
sentation of this construction is by Even and Mansour at ASIACRYPT ’91 [30,31], who
introduced it for r = 1 and proved that it achieves 2n/2 security. Daemen proved tightness
of this bound [22]. The general construction was introduced by Bogdanov et al. [11]. Fol-
lowing a line of research set, among others, by Dunkelman et al. [25], Lampe et al. [52], and
Steinberger [74], Chen and Steinberger [19] proved that EM[r ] tightly achievesO(2rn/(r+1))

single-key blockcipher security in themodel of Sect. 2.1. This bound is, however, asymptotic,
and Hoang and Tessaro [42] recently improved their bound on EM[r ].
Proposition 1 (Single-Key Security of EM [r] [19,42]) Let r ≥ 1 and q, p ≥ 0. Then,

AdvsprpEM[r ](q, p) ≤ q(4p)r

(2n)r
. (4)

Their bound is in fact a bit more fine-grained, having p separated over all r primitives. It is
important that the results on EM[r ] [19,42] effectively require r -wise independency of the
key, i.e., for any i ∈ {1, . . . , r +1}, (k1, . . . , ki−1, ki+1, . . . , kr+1) has a uniform distribution
on {0, 1}rn [19, p. 329].

Andreeva et al. [3] and Mouha and Luykx [64] considered one round of Even–Mansour
in the multi-key setting, and showed that similar results are achieved.

Proposition 2 (Multi-Key Security of EM[1] [64]) Consider F = FX
n of (1). Let μ ≥ 1

and q, p ≥ 0. Then,

Advmk
EM[1],FXn (μ, q, p) ≤ q2 + 2qp

2n
.
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Hoang and Tessaro [42] derived a strong generic reduction from multi-key to single-key
security and transferred their result (Proposition 1) to the multi-key setting.

Proposition 3 (Multi-Key Security of EM[r] [42]) Consider F = FX
n of (1). Let μ ≥ 1,

r ≥ 1, and q, p ≥ 0. Then,

Advmk
EM[r ],FXn (μ, q, p) ≤ 2q(4(p + rq))r

(2n)r
.

Beyond single-key and multi-key security, further works on EM[r ] cover the related-key
security [21,32], chosen-key security [1,38,54], and security of minimized EM[2] [15].
5.2 Iterated tweakable Even–Mansour

At CRYPTO 2015, Cogliati et al. [16] introduced the generic Tweakable Even–Mansour
construction based on universal hash functions. For a permutation P ∈ Perm({0, 1}n) and a
universal hash function hk : T → {0, 1}n , define

Ψ [P](k, t,m) = hk(t) ⊕ P(m ⊕ hk(t)) .

For r ≥ 1, we define the r -round iterated Tweakable Even–Mansour construction TEM[r ] :
Kr × T × {0, 1}n → {0, 1}n as (see also Fig. 1)

TEM[r ]k1,...,kr (t,m) = Ψ [Pr ](kr , t, · · · Ψ [P1](k1, t,m) · · · )
= Pr (· · · P1(m ⊕ hk1(t)) ⊕ hk1(t) · · · ⊕ hkr (t)) ⊕ hkr (t), (5)

where P = (P1, . . . , Pr ) ∈ Perm({0, 1}n)r are n-bit permutations, and H = {hk : T →
{0, 1}n | k ∈ K} is a uniform almost-XOR-universal hash function family. Cogliati et al. [16]
derived the following security results for TEM[r ].
Proposition 4 (Single-Key Security of TEM[r] [16]) Let H = {hk : T → {0, 1}n | k ∈ K}
be an ε-UAXU family of hash functions. Let r ≥ 1 and q, �, p ≥ 0. Then,

AdvstprpTEM[1](q, �, p) ≤ q2ε + 2qp

2n
,

AdvstprpTEM[2](q, �, p) ≤ 29q1/2 p

2n
+ q1/2 pε + 4q3/2ε + 30q3/2

2n
,

AdvstprpTEM[2r ](q, �, p) ≤ 4q1/2
(

2qε + 2p

2n

)r/2

.

Note that TEM[r ] is in fact the EM[r ] constructionwhere the keys (k1, . . . , kr+1) are replaced
with

hk1(t) , hk1(t) ⊕ hk2(t) , . . . , hkr−1(t) ⊕ hkr (t) , hkr (t) . (6)

In particular, TEM[r ] also has r -wise independent masking, be it of a specific form.
Further constructions related to TEM[r ], and to which our findings can be applied as well,

are XPX [59], MEM [37], and a variant of TEM[4] with linear mixing [20].

5.3 Iterated LRW

The Tweakable Even–Mansour construction is closely related to the iterated LRW construc-
tion [53]. In more detail, the r -round LRW[r ] construction is based on r blockcipher calls
instead of r permutations. It is defined identically as in (5), with P1, . . . , Pr instantiated as
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Ez1 , . . . , Ezr for independent keys z1, . . . , zr .We can likewise use the definition of STPRP
security of Definition 1 where, now, p bounds the total number of evaluations of E a distin-
guisher can make. A security analysis for r = 1 was performed by Liskov et al. [53], r = 2
by Landecker et al. [56] and Procter [67], and for a general number of even rounds by Lampe
and Seurin [55]. These results on LRW[r ] are comparable to the bounds of Proposition 4,
which should not be surprising as

AdvstprpLRW[r ](q, �, p) ≤ AdvstprpTEM[r ](q, �, 0) + r · AdvsprpE (q, p) . (7)

The derivation of this bound is fairly straightforward: first, replace the blockcipher calls
Ez1 , . . . , Ezr by r independent secret permutations P1, . . . , Pr . This step costs at most
r · AdvsprpE (q, p). What remains is the TEM[r ] construction with the difference that the
adversary has no access to the secret underlying permutations, hence we have p = 0:
AdvstprpTEM[r ](q, �, 0). See also [16, Remark 1].

Further constructions related to LRW[1] include the XEX construction [71] and its gener-
alizations [18,37,62], tweakable Feistel schemes [36,60], and tweakable blockciphers with
tweak-dependent rekeying [58,61,63].

5.4 Application of equivalence of Sect. 4

Theorem 1 along with Proposition 4 implies multi-key security of EM[r ] with KDF F :
(K)r × X → {0, 1}(r+1)n defined as (see also (6))

F(k1, . . . , kr , x) = (

hk1(x), hk1(x) ⊕ hk2(x), . . . , hkr−1(x) ⊕ hkr (x), hkr (x)
)

, (8)

where H = {hk : X → {0, 1}n | k ∈ K} is an ε-UAXU family of hash functions. Note
that F is not UAXU itself, but it is still sufficiently strong to achieve multi-key security of
EM[r ]. Although F’s outputs admit a specific type of r -wise independence, it is clear to see
that the result immediately generalizes to any F which outputs r -wise independent keys with
the same joint distribution.

Corollary 1 Consider F of (8). Let μ ≥ 1, r ≥ 1, and q, p ≥ 0. Then,

Advmk
EM[1],F (μ, q, p) ≤ q2ε + 2qp

2n
,

Advmk
EM[2],F (μ, q, p) ≤ 29q1/2 p

2n
+ q1/2 pε + 4q3/2ε + 30q3/2

2n
,

Advmk
EM[2r ],F (μ, q, p) ≤ 4q1/2

(

2qε + 2p

2n

)r/2

.

Note that the result of Proposition 3 is better than that of Corollary 1, but it explicitly requires
random key-derivation while Corollary 1 allows for a more flexible key-derivation.

By using the equivalence reduction of Theorem 1 in reverse direction, we can transfer
Proposition 3 to the security of Tweakable Even–Mansour TEM[r ].
Corollary 2 Consider the 2−n-UAXU family of hash functions FT

n of (1). Let r ≥ 1 and
q, �, p ≥ 0. Then,

AdvstprpTEM[r ](q, �, p) ≤ 2q(4(p + rq))r

(2n)r
.

Similarly, for LRW[r ], we can find via (7) the following corollary.
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Corollary 3 Let E : K × {0, 1}n → {0, 1}n be a blockcipher, and consider the 2−n-UAXU
family of hash functions FT

n of (1). Let r ≥ 1 and q, �, p ≥ 0 such that q + p ≤ 2n/3. Then,

AdvstprpLRW[r ](q, �, p) ≤ 2q(4(p + rq))r

(2n)r
+ r · AdvsprpE (q, p) .

As a matter of fact, the two corollaries apply to TEM[r ] and LRW[r ] for any form of r-wise
independence keying (not just (6)). Clearly, for r = 1 and r = 2, above corollaries do not
improve over the state of the art for LRW[r ] [53,55,56] and TEM[r ] [21]. On the other hand,
for r ≥ 3, the corollaries solve the conjectures on the two schemes for a specific scenario:
the UAXU family of hash functions is FT

n of (1).

6 Tweakable blockciphers versus related-key security

The first formalization of related-key security was by Bellare and Kohno [10]. Cogliati and
Seurin [21] generalized the model to blockciphers and applied it to cascaded Even–Mansour
(cf. Sect. 5.1). Mennink [59] provided a formalism for the case of tweakable blockcipher
constructions.

The definition of related-key security is in fact strongly related to that ofmulti-key security
of Sect. 3. In related-key attacks, a set of related-key-deriving functions Φ is defined prior
to the experiment. The adversary can adaptively choose related-key functions ϕ from Φ that
transform the key under which the query is made: ˜Eϕ(k). As such, one can specifically see
related-key security as multi-key security using key derivation function F : K × Φ → K
defined as F(k, ϕ) = ϕ(k). The ideal functionality corresponding to ˜EF(k,·) is π̃(·), which is
formalized as a tweakable permutation with tweak space T × Φ: the subscript input (·) can
be viewed as a tweak input from Φ which specifies the selected user, which in turn specifies
a particular tweakable permutation to use.

Definition 3 (TRK security) Let Φ be a set of related-key-deriving functions. Consider
tweakable blockcipher ˜E : K × T × M → M based on r ≥ 1 primitives Π1, . . . , Πr ∈
Prims, and let F : K × Φ → K be defined as F(k, ϕ) = ϕ(k). The TRK advantage of a
distinguisher D is

Advtrk
˜E,Φ

(D) = ΔD
(

˜EF(k,·),Π ; π̃(·),Π
)

=
∣

∣

∣Pr
(

D˜EF(k,·),Π = 1
)

− Pr
(

Dπ̃(·),Π = 1
)

∣

∣

∣ ,

where the probabilities are taken over the random choices of k
$←− K, Π

$←− Primsr , and

π̃(·)
$←− TPerm(T × Φ,M). The distinguisher has two-sided query access to each of its

oracles. For any q, �, p ≥ 0, we define Advtrk
˜E,Φ

(q, �, p) to be the maximum advantage over
any distinguisher D that makes at most q queries to the construction for at most � different
related-key-deriving functions per construction, and p queries to each of the primitives.

6.1 On related-key-derivation functions

If Φ simply consists of the identity function, Φ = {ϕ : k �→ k}, Definition 3 boils down to
conventional STPRP security, Definition 1:

Advtrk
˜E,{ϕ:k �→k}(D) = Advstprp

˜E
(D) .
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Two well-known sets of related-key-deriving functions [10,45] are the XOR and additive
differences on the keys:

Φ⊕ = {ϕδ : k �→ k ⊕ δ | δ ∈ K} ,

Φ+ = {ϕδ : k �→ k + δ | δ ∈ K} ,

where + denotes modular addition. More involved sets of related-key-deriving functions
where the functions may depend on the cryptographic primitives are discussed in [4,59].

6.2 Relation

The relation between tweakable blockciphers and the related-key security of conventional
blockciphers was already pointed out by Cogliati et al. [16,20,21]. At a high level, they
suggest that if a blockcipher E : K×M → M is related-key secure for related-key-deriving
functions Φ, then the tweakable blockcipher ˜E : K × T × M → M with T = Φ, that is
defined as

˜Ek(φ,m) = Eφ(k)(m) , (9)

is an equally secure tweakable blockcipher:

Advstprp
˜E

(q, �, p) = AdvrkE,Φ(q, �, p) ,

for any q, �, p. As a matter of fact, Cogliati et al. restrict their observation to XOR-induced
related-key-deriving functions Φ⊕ of Sect. 6.1, but their observation straightforwardly gen-
eralizes. Lucks [57] and Tessaro [77] considered constructions comparable to (9), albeit not
in the context of tweakable blockciphers.

However, the reverse direction appears to be underexposed, despite its seemingly broad
spectrum of potential applications. Assume we have a tweakable blockcipher ˜E : K × T ×
M → M, and define a blockcipher E : (K × T ) × M → M as

Ek‖t (m) = ˜Ek(t,m) . (10)

Then, for the set of related-key-deriving functions

Φid‖⊕ = {ϕδ : k‖t �→ k‖(t ⊕ δ) | δ ∈ T } ,

which can be seen as a set of partially-transforming related-key-deriving functions in the
terminology of Lucks [57], we can derive the following result.

Theorem 2 Let ˜E : K×T ×M → M be a tweakable blockcipher, and E the construction
from (10). Let q, �, p ≥ 0. Then,

AdvrkE,Φid‖⊕(q, �, p) ≤ Advstprp
˜E

(q, �, p) .

Proof Let D1 be a RK distinguisher against E with respect to Φid‖⊕. Let D2 be as follows:
first, it selects a random tweak t . Then, each query (δ,m) made by D1 (we can without loss
of generality describe an element ϕδ ∈ Φid‖⊕ by δ) is transformed into a query (t ⊕ δ,m) to
˜E , and the response is relayed. D1’s final decision is forwarded by D1. By design,
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AdvrkE,Φid‖⊕(D1) = Advstprp
˜E

(D2) ,

and the result is established by maximizing over all distinguishers with complexity (q, �, p).
�


We can use this construction to allow for multiple instances of blockcipher E under related
keys, by keeping the master key k the same, and changing t for all users. For instance, if μ

instances of E are required, these could be generated via the following offsets:

Ek‖t , Ek‖t⊕1 , . . . , Ek‖t⊕μ−1 .

7 Conclusion

Our research illustrates how placing existing security definitions in a different context can
lead to fruitful insights. After extending the definition of blockcipher multi-key security to
include KDFs, the connection with tweakable blockcipher security immediately follows, and
with it the connections to related-key security and the security of blockcipher key schedules.
We applied these connections to illustrate how results on the iterated Even–Mansour and the
iterated Tweakable Even–Mansour can be transferred between each other, resulting in new
theoretical results. Furthermore, our definitions and results pave the way to understanding the
design ofKDFs, in particular, oneswhich are not necessarily PRFs.We sawhow theKDFs can
be implemented as universal hash functions, which could result in efficiency improvements
in practice.
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