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Abstract A set T ⊂ GF(q), q = ph is a super-Vandermonde set if
∑

y∈T yk = 0 for
0 < k < |T |. We determine the structure of super-Vandermonde sets of size p + 1 (almost
small) and size q/p − 1 (almost large).
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1 Introduction

A super-Vandermonde set (short: an sV-set) in GF(q), q = ph , p a prime, is a set T of size
1 < t < q such that

πk(T ) :=
∑

y∈T
yk = 0 ,

for 0 < k < t . It follows from the non-singularity of the Vandermonde matrices (yk)yk ,
y ∈ T and k ∈ [0, t) resp. k ∈ (0, t] that 0 /∈ T and that πt (T ) �= 0 (in particular p � | t). The
Newton identities relating the power sums πk(T ) and the elementary symmetric polynomials
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σk(T ) imply that in the polynomial

f (Z) :=
∏

y∈T
(Z − y) =

∑
(−1)kσk(T )Zt−k ,

the only possible nonzero coefficients are the constant term (−1)tσt and the coefficient of
Zt−k : (−1)kσk with k = 0 mod p. The Newton-identities are given by:

kσk =
k∑

m=1

(−1)m−1πmσk−m ,

and we see that indeed σk = 0 if k is not divisible by p (and less than t).
In terms of the inverses of the elements in T , we get that being sV is equivalent to

φ(Y ) :=
∏

y∈T
(Y − y−1) = Y t + g(Y ) ,

with g a p-th power.
The underlying notion of Vandermonde set was introduced by Gács and Weiner in [1].

They appear at several places in the investigation of special point sets in finite projective
planes. More about this, as well as many examples, can be found in Chapter 1 of the thesis
of Takáts [2], or in her paper [3] with Péter Sziklai, which also classifies small and large
sV-sets. Here small means t < p, and small sV-sets are cosets of multiplicative subgroups
of GF(q)∗: in this case the polynomial g is constant, so

φ(Y ) =
∏

y∈T
(Y − y−1) = Y t − c ,

where t | q − 1 and c is a t-th power, so that T is a coset of the group of t-th roots of unity.
By large we mean t > q/p and again we get cosets of multiplicative subgroups, corre-

sponding to the case that g = −c is constant. The proof in this case is much more involved,
but in the final section we will give a simpler proof.

2 Super-Vandermonde sets of size p+ 1

If T is an sV-set of size p + 1, then the polynomial
∏

y∈T (Z − y) is of the form f (Z) =
Z p+1 + aZ + b, so our problem is to classify the polynomials of this form that are fully
reducible over GF(q). Notice that two different polynomials of this form have a gcd of
degree at most one, so that two elements ofGF(q) are contained in at most one sV-set of size
p + 1. We will see in fact that two elements are contained in an sV-set of this size precisely
when they have the same GF(p)-norm. We will prove in the next theorem that they can all
be obtained from 2-dimensional GF(p)-vector subspaces of GF(q).

Theorem 2.1 Let T be an sV-set in GF(q), q = ph, p prime, of size p+1. Then there exists
α ∈ GF(q)∗ such that

T = {αx p−1
1 , . . . , αx p−1

p+1 }, (1)

where {x1, . . . , xp+1} represent the 1-dimensional subspaces of a 2-dimensional GF(p)-
vector subspace of GF(q).

Conversely, every 2-dimensional GF(p)-vector subspace of GF(q) defines a family of
q − 1 sV-sets of type (1). In particular, the elements of an sV-set of size p + 1 have the same
norm over GF(p).
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Proof We first observe that if T = {y1, . . . , yt } is an sV-set, then for each γ ∈ GF(q)∗, the
set γ T = {γ y1, . . . , γ yt } is an sV-set as well (and of the same size of course). We first show
that 2-dimensional subspaces give rise to sV-sets. Let U be a 2-dimensional GF(p)-vector
subspace of GF(q), then U is the set of zeros of a polynomial of the form

X p2 + aX p + bX, (2)

for some a, b ∈ GF(q). If x1 and x2 are two nonzero roots of (2) which are not proportional
over GF(p), then x p−1

1 and x p−1
2 are two different roots of the polynomial Z p+1 + aZ + b,

which turns out to be fully reducible over GF(q). It follows that for each α ∈ GF(q)∗

αT = {αx p−1 : x is a nonzero root of (2)}
is an sV-set of size p + 1.

On the other hand let T = {y1, . . . , yp+1} be an sV-set of size p + 1 and let

f (Z) = Z p+1 + aZ + b (3)

be the associated polynomial. Then, there exist yi , y j ∈ T , with the sameGF(p)-norm δ. Let
α be an element of GF(q)∗ with norm N (α) = δ and set zk := yk/α, for k ∈ {1, . . . , p+1}.
Then

1

α
T := {z1, . . . , z p+1},

is an sV-set of size p + 1 with N (zi ) = N (z j ) = 1 and its associated polynomial is

Z p+1 + a

α p
Z + b

α p+1 .

Denoting by xi and x j the elements of GF(q)∗ such that zi = x p−1
i and z j = x p−1

j , then xi
and x j are independent over GF(p) and so U := 〈xi , x j 〉 is a 2-dimensional GF(p)-vector
subspace of GF(q), whose elements are the zeros of the polynomial

X p2 + a

α p
X p + b

α p+1 X.

It follows that the elements of 1
α
T are of the form x p−1. This completes the proof. �	

3 Super-Vandermonde sets of size q/ p− 1

Consider the polynomial Trq−→p(aZ) = aZ + a p Z p + · · · + a ph−1
Z ph−1

, the trace from
GF(q) to GF(p). It is clearly fully reducible over GF(q), and we see that the nonzero roots
form an sV-set of size q/p − 1. The aim of this section is to prove the converse:

Proposition 3.1 Let T be an sV-set in GF(q), of size q/p − 1, (q = ph) then
∏

y∈T
(Z − y) = (ah−1Z)−1Trq−→p(aZ)

for some a ∈ GF(q)∗.
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Proof Consider as before the polynomial

φ(Y ) =
∏

y∈T
(Y − y−1) = Yq/p−1 + g(Y ) ,

where g is a p-th power. Let Ta be the sV-set corresponding to the hyperplane Tr(aZ) = 0
with

φa(Y ) :=
∏

y∈Ta
(Y − y−1) = Yq/p−1 + ga(Y ).

The greatest common divisor of φ and φa divides (g(Y ) − ga(Y ))1/p of degree at most
q/p2 − 1. So we find that T has at most q/p2 − 1 points in every hyperplane, unless it
coincides with it. Since the average size of the intersection of T with a hyperplane equals

q/p − 1

q − 1
·
(
q

p
− 1

)

>
q

p2
− 1 ,

we see that for some a, T coincides with Ta . �	

4 Large super-Vandermonde sets

Proposition 4.1 Let T be an sV-set in GF(q), q = ph of size t > q/p, then
∏

y∈T
(Y − y−1) = Y t − c

for some t-th power c ∈ GF(q)∗, so T is coset of a multiplicative subgroup.

Proof As before φ(Y ) = ∏
y∈T (Y − y−1) = Y t + g(Y ), where g is a p-th power. Since this

polynomial is fully reducible we may write:

(Y t + g)(h0 + Yh1 + · · · + Y p−1h p−1) = Yq − Y, q = ph,

where also the polynomials hi are p-th powers. We now equate left and right the terms of
degree d mod p, d = 0, p − 1, . . . , 1, writing e = t − q/p and E = q/p:

gh0 +Y E h p−e Y p=Yq

gh p−1+Y Eh p−e−1 =0
· · ·

ghe+1 +Y E h1 =0
ghe +Y E h0 =0
ghe−1 +Y E h p−1 Y p=0
ghe−2 +Y E h p−2 Y p=0

· · ·
gh2 +Y Eh p−e+2Y p=0
gh1 +Y Eh p−e+1Y p=−1

We look at the divisibility by Y . From the last equation we see that h1 is not divisible by Y ,
in particular h1 �= 0, then we see from the other equation involving h1 that h1+e is divisible
by Y E , next h1+2e by Y 2E , (where of course we take indices mod p) and so on until finally
h1+(p−1)e = h p−e+1 is divisible by Y (p−1)E = Yq−q/p . If h p−e+1 is nonzero then the
total degree of the left hand side will be at least t + 1 + q − q/p > q , a contradiction, so
h p−e+1 = 0 and now the last equation tells us that g is constant. �	
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