

On almost small and almost large super-Vandermonde sets in GF(q)

A. Blokhuis¹ · G. Marino² · F. Mazzocca² · O. Polyerino²

Received: 3 March 2016 / Accepted: 8 July 2016 / Published online: 4 August 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract A set $T \subset GF(q)$, $q = p^h$ is a *super-Vandermonde set* if $\sum_{y \in T} y^k = 0$ for 0 < k < |T|. We determine the structure of super-Vandermonde sets of size p + 1 (almost small) and size q/p - 1 (almost large).

Keywords Finite geometry · Finite fields · Vandermonde set

Mathematics Subject Classification 05E · 51E

1 Introduction

A super-Vandermonde set (short: an sV-set) in GF(q), $q = p^h$, p a prime, is a set T of size 1 < t < q such that

$$\pi_k(T) := \sum_{y \in T} y^k = 0 ,$$

for 0 < k < t. It follows from the non-singularity of the Vandermonde matrices $(y^k)_{yk}$, $y \in T$ and $k \in [0, t)$ resp. $k \in (0, t]$ that $0 \notin T$ and that $\pi_t(T) \neq 0$ (in particular $p \nmid t$). The Newton identities relating the power sums $\pi_k(T)$ and the elementary symmetric polynomials

This is one of several papers published in *Designs, Codes and Cryptography* comprising the special issue in honor of Andries Brouwer's 65th birthday.

Dipartimento di Matematica e Fisica, Seconda Università degli Studi di Napoli, Caserta, Italy

Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands

198 A. Blokhuis et al.

 $\sigma_k(T)$ imply that in the polynomial

$$f(Z) := \prod_{y \in T} (Z - y) = \sum_{y \in T} (-1)^k \sigma_k(T) Z^{t-k}$$
,

the only possible nonzero coefficients are the constant term $(-1)^t \sigma_t$ and the coefficient of Z^{t-k} : $(-1)^k \sigma_k$ with $k = 0 \mod p$. The Newton-identities are given by:

$$k\sigma_k = \sum_{m=1}^k (-1)^{m-1} \pi_m \sigma_{k-m}$$
,

and we see that indeed $\sigma_k = 0$ if k is not divisible by p (and less than t).

In terms of the inverses of the elements in T, we get that being sV is equivalent to

$$\phi(Y) := \prod_{y \in T} (Y - y^{-1}) = Y^t + g(Y) ,$$

with g a p-th power.

The underlying notion of Vandermonde set was introduced by Gács and Weiner in [1]. They appear at several places in the investigation of special point sets in finite projective planes. More about this, as well as many examples, can be found in Chapter 1 of the thesis of Takáts [2], or in her paper [3] with Péter Sziklai, which also classifies small and large sV-sets. Here small means t < p, and small sV-sets are cosets of multiplicative subgroups of $GF(q)^*$: in this case the polynomial g is constant, so

$$\phi(Y) = \prod_{y \in T} (Y - y^{-1}) = Y^t - c ,$$

where $t \mid q-1$ and c is a t-th power, so that T is a coset of the group of t-th roots of unity.

By large we mean t > q/p and again we get cosets of multiplicative subgroups, corresponding to the case that g = -c is constant. The proof in this case is much more involved, but in the final section we will give a simpler proof.

2 Super-Vandermonde sets of size p + 1

If T is an sV-set of size p+1, then the polynomial $\prod_{y\in T}(Z-y)$ is of the form $f(Z)=Z^{p+1}+aZ+b$, so our problem is to classify the polynomials of this form that are fully reducible over GF(q). Notice that two different polynomials of this form have a gcd of degree at most one, so that two elements of GF(q) are contained in at most one sV-set of size p+1. We will see in fact that two elements are contained in an sV-set of this size precisely when they have the same GF(p)-norm. We will prove in the next theorem that they can all be obtained from 2-dimensional GF(p)-vector subspaces of GF(q).

Theorem 2.1 Let T be an sV-set in GF(q), $q = p^h$, p prime, of size p + 1. Then there exists $\alpha \in GF(q)^*$ such that

$$T = \{\alpha x_1^{p-1}, \dots, \alpha x_{p+1}^{p-1}\},\tag{1}$$

where $\{x_1, \ldots, x_{p+1}\}$ represent the 1-dimensional subspaces of a 2-dimensional GF(p)-vector subspace of GF(q).

Conversely, every 2-dimensional GF(p)-vector subspace of GF(q) defines a family of q-1 sV-sets of type (1). In particular, the elements of an sV-set of size p+1 have the same norm over GF(p).

Proof We first observe that if $T = \{y_1, \ldots, y_t\}$ is an sV-set, then for each $\gamma \in GF(q)^*$, the set $\gamma T = \{\gamma y_1, \ldots, \gamma y_t\}$ is an sV-set as well (and of the same size of course). We first show that 2-dimensional subspaces give rise to sV-sets. Let U be a 2-dimensional GF(p)-vector subspace of GF(q), then U is the set of zeros of a polynomial of the form

$$X^{p^2} + aX^p + bX, (2)$$

for some $a, b \in GF(q)$. If x_1 and x_2 are two nonzero roots of (2) which are not proportional over GF(p), then x_1^{p-1} and x_2^{p-1} are two different roots of the polynomial $Z^{p+1} + aZ + b$, which turns out to be fully reducible over GF(q). It follows that for each $\alpha \in GF(q)^*$

$$\alpha T = {\alpha x^{p-1} : x \text{ is a nonzero root of (2)}}$$

is an sV-set of size p + 1.

On the other hand let $T = \{y_1, \dots, y_{p+1}\}$ be an sV-set of size p + 1 and let

$$f(Z) = Z^{p+1} + aZ + b (3)$$

be the associated polynomial. Then, there exist y_i , $y_j \in T$, with the same GF(p)-norm δ . Let α be an element of $GF(q)^*$ with norm $N(\alpha) = \delta$ and set $z_k := y_k/\alpha$, for $k \in \{1, \ldots, p+1\}$. Then

$$\frac{1}{\alpha}T := \{z_1, \dots, z_{p+1}\},\$$

is an sV-set of size p + 1 with $N(z_i) = N(z_j) = 1$ and its associated polynomial is

$$Z^{p+1} + \frac{a}{\alpha^p}Z + \frac{b}{\alpha^{p+1}}$$
.

Denoting by x_i and x_j the elements of $GF(q)^*$ such that $z_i = x_i^{p-1}$ and $z_j = x_j^{p-1}$, then x_i and x_j are independent over GF(p) and so $U := \langle x_i, x_j \rangle$ is a 2-dimensional GF(p)-vector subspace of GF(q), whose elements are the zeros of the polynomial

$$X^{p^2} + \frac{a}{\alpha^p} X^p + \frac{b}{\alpha^{p+1}} X.$$

It follows that the elements of $\frac{1}{\alpha}T$ are of the form x^{p-1} . This completes the proof.

3 Super-Vandermonde sets of size q/p-1

Consider the polynomial $\operatorname{Tr}_{q \longrightarrow p}(aZ) = aZ + a^p Z^p + \cdots + a^{p^{h-1}} Z^{p^{h-1}}$, the trace from GF(q) to GF(p). It is clearly fully reducible over GF(q), and we see that the nonzero roots form an sV-set of size q/p-1. The aim of this section is to prove the converse:

Proposition 3.1 Let T be an sV-set in GF(q), of size q/p-1, $(q=p^h)$ then

$$\prod_{y \in T} (Z - y) = (a_{h-1}Z)^{-1} Tr_{q \longrightarrow p}(aZ)$$

for some $a \in GF(q)^*$.

200 A. Blokhuis et al.

Proof Consider as before the polynomial

$$\phi(Y) = \prod_{y \in T} (Y - y^{-1}) = Y^{q/p-1} + g(Y) ,$$

where g is a p-th power. Let T_a be the sV-set corresponding to the hyperplane ${\rm Tr}(aZ)=0$ with

$$\phi_a(Y) := \prod_{y \in T_a} (Y - y^{-1}) = Y^{q/p-1} + g_a(Y).$$

The greatest common divisor of ϕ and ϕ_a divides $(g(Y) - g_a(Y))^{1/p}$ of degree at most $q/p^2 - 1$. So we find that T has at most $q/p^2 - 1$ points in every hyperplane, unless it coincides with it. Since the average size of the intersection of T with a hyperplane equals

$$\frac{q/p-1}{q-1}\cdot \left(\frac{q}{p}-1\right) > \frac{q}{p^2}-1 \ ,$$

we see that for some a, T coincides with T_a .

4 Large super-Vandermonde sets

Proposition 4.1 Let T be an sV-set in GF(q), $q = p^h$ of size t > q/p, then

$$\prod_{y \in T} (Y - y^{-1}) = Y^t - c$$

for some t-th power $c \in GF(q)^*$, so T is coset of a multiplicative subgroup.

Proof As before $\phi(Y) = \prod_{y \in T} (Y - y^{-1}) = Y^t + g(Y)$, where g is a p-th power. Since this polynomial is fully reducible we may write:

$$(Y^t + g)(h_0 + Yh_1 + \dots + Y^{p-1}h_{p-1}) = Y^q - Y, \quad q = p^h,$$

where also the polynomials h_i are p-th powers. We now equate left and right the terms of degree $d \mod p$, d = 0, p - 1, ..., 1, writing e = t - q/p and E = q/p:

We look at the divisibility by Y. From the last equation we see that h_1 is not divisible by Y, in particular $h_1 \neq 0$, then we see from the other equation involving h_1 that h_{1+e} is divisible by Y^E , next h_{1+2e} by Y^{2E} , (where of course we take indices mod p) and so on until finally $h_{1+(p-1)e} = h_{p-e+1}$ is divisible by $Y^{(p-1)E} = Y^{q-q/p}$. If h_{p-e+1} is nonzero then the total degree of the left hand side will be at least t+1+q-q/p>q, a contradiction, so $h_{p-e+1}=0$ and now the last equation tells us that g is constant.

Acknowledgements This research was supported by the Italian national research project *Geometrie di Galois e Strutture di Incidenza* (COFIN 2012), by the *Dipartimento di Matematica e Fisica* of the Seconda Università degli Studi di Napoli and by GNSAGA of the Italian *Istituto Nazionale di Alta Matematica*.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- 1. Gács A., Weiner Z.: On (q + t, t)-arcs of type (0, 2, t). Des. Codes Cryptogr. **29**, 131–139 (2003).
- Takáts M.: Directions and other topics in Galois Geometries. Thesis. Department of Computer Science, Institute of Mathematics Eötvös Loránd University (2014).
- Sziklai P., Takáts M.: Vandermonde sets and super-Vandermonde sets. Finite Fields appl. 14, 1056–1067 (2008).

