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Abstract A linear network code is called k-secure if it is secure even if an adversary eaves-
drops at most k edges. In this paper, we show an efficient deterministic construction algorithm
of a linear transformation T that transforms an (insecure) linear network code to a k-secure
one for any k, and extend this algorithm to strong k-security for any k . Our algorithms run in
polynomial time if k is a constant, and these time complexities are explicitly presented. We
also present a concrete size of |F| for strong k-security, where F is the underling finite field.
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1 Introduction

The notion of network code was introduced by Ahlswede et al. [1]. Li et al. [11] proved
that the source node s can multicast n field elements (m1, . . . ,mn) to a set of sink nodes
Sink = {t1, . . . , tq} by using a linear network code if |F| ≥ |Sink|, where

n = min
i

max-flow(s, ti )

and F is a finite field such that mi ∈ F. (Fig. 1 shows an example of a linear network code.)
Jaggi et al. [8] proposed a polynomial time algorithm which can construct a linear network
code from any network instance (G(V, E), s,Sink, n), where G(V, E) is the underlying
network.
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Fig. 1 Linear network coding scheme with n = 3

Fig. 2 1-Secure linear network coding scheme (mod 3)

Consider a model such that the source node s multicasts (m1, . . . ,mn−k, r1, . . . , rk)
instead of (m1, . . . ,mn), where ri is chosen uniformly at random from the fieldF.We say that
a linear network code is k-secure if an adversary learns no information on (m1, . . . ,mn−k)

even by eavesdropping at most k edges.
Figure 2 shows a 1-secure linear network code. For example, d1 = m1 + r is transmitted

on the edge (s, v1). It leaks no information on m1 because the random element r works as
one-time pad.

Cai and Yeung [4] proved that there exists a linear transformation T that makes any linear
network code k-secure if |F| >

(|E|
k

)
, where E is the set of edges. In fact, T is an n × n

nonsingular matrix.
The advantage of this method is that it does not require changing the underlying

linear network code [6]. The source node s only has to multicast (m̃1, . . . , m̃n) =
(m1, . . . ,mn−k, r1, . . . , rk) × T .

Cai and Yeung, however, only showed the existence of T based on a counting argument
(see [4, Sect. V]). They did not show how to construct T efficiently.

Harada and Yamamoto [7] extended the notion of k-security to strong k-security. Consider
any A ⊂ E and any B ⊂ {m1, . . . ,mn} such that |A| = |B| ≤ k. Then a linear network code
is called strongly k-secure if A leaks no information on {m1, . . . ,mn} \ B.
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How to make a linear network code (strongly) secure 561

Fig. 3 Strongly 1-secure linear network coding scheme (mod 5)

Figure 3 shows a strongly 1-secure linear network code. For example, d1 = 2m1+m2+m3

is transmitted on the edge (s, v1) and

– d1 leaks no information on (m1,m2) since m3 works as one-time pad.
– d1 leaks no information on (m2,m3) since 2m1 works as one-time pad.
– d1 leaks no information on (m1,m3) since m2 works as one-time pad.

In this model, it is assumed that each mi is independently random.
Harada andYamamoto proved that for sufficiently large |F|, there exists a strongly k-secure

linear network code for any network instance (G(V, E), s,Sink, n) if k < n. However, they
did not explicitly state the time complexity of their algorithm explicitly. In addition, they did
not suggest a concrete size for |F|, leaving the derivation of a sufficient condition on |F| as
an open problem. (See “open problem” in Table 1 of [7]. They considered strong k′-security
with k′ ≤ k, where � is used instead of k in [7].)

In this paper, we first show an efficient deterministic construction algorithm of a linear
transformation T that transforms an (insecure) linear network code to a k-secure one for any
1 ≤ k < n. We then extend this algorithm for strong k-security for any 1 ≤ k < n. Both of
our algorithms run in polynomial time if k is a constant.

We explicitly present the time complexities of our algorithms. We also present a concrete
size of |F| for strong k-security, thereby solving the open problem of Harada and Yamamoto
[7].

By applying our methods to Fig. 1, we can obtain the 1-secure linear network code shown
in Fig. 2, the strongly 1-secure linear network code shown in Fig. 3 and the strongly 2-secure
linear network code shown in Fig. 4.

1.1 Related works

Rouayheb et al. [5] proposed a direct method to construct a k-secure linear network code from
a network instance (G(V, E), s,Sink, n). This method does not use a linear transformation
T , and therefore requires changes to the underlying linear network code.

Bhattad and Narayanan [2] showed how to construct weakly secure linear network codes.
Silva and Kschischang [14,15] introduced the notion of universal k-secure codes and

universal strongly k-secure codes. Kurihara et al. [9] improved the universal strongly k-
secure codes of [14,15]. In these schemes [9,14,15], a vector (instead of a field element) is
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Fig. 4 Strongly 2-secure linear network coding scheme (mod 11)

transmitted over an edge. Because each element of the vector is transmitted over multiple
time slots, it is assumed that the k tapped edges are fixed during the transmission period.
Shioji et al. [13] considered a stronger eavesdropping model where the adversaries possess
the ability to re-select the tapping edges during the transmission. They then showed that the
scheme in [15] is not secure under this eavesdropping model.

Matsumoto and Hayashi [12] considered a random linear precoder at the source node and
proved that it is strongly secure and universal secure if we allow arbitrary small but nonzero
mutual information on the transmission symbols to the eavesdropper. In their scheme, they
showed that this mutual information is upper bounded by some small quantity.

Tang et al. [16] showed a probabilistic method to construct a linear transformation T that
transforms a linear network code to a k-secure one. (See “Time Complexity” of [16, p. 313].)
However, they did not show the success probability and claimed (without proof) that the time

complexity is
((|E|

k

))
.

2 Preliminaries

Let H(·) denote the Shannon entropy. For a tuple of random variables Λ = (ã1, . . . , ã�) and
a subset A = {i1, . . . , i j } ⊂ {1 . . . �}, define

ΛA = (ãi1 , . . . , ãi� ).

For a vector x = (x1, . . . , xN ), define

support (x) = {i | xi �= 0}.
Let wH (x) denote its Hamming weight and xt denote the transpose of x. For a set A, let |A|
denote the cardinality of A.

For an n × � matrix X , define XA, XA,k and XA,B as follows.

– For A ⊂ {1, . . . , �}, let XA denote an n × |A| submatrix of X such that the columns are
restricted to A.

– For k < n, let XA,k denote a k × |A| submatrix of XA such that the rows are restricted
to the last k rows. Namely

XA =
(
Y
XA,k

)
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How to make a linear network code (strongly) secure 563

for some Y .
– For B ⊂ {1, . . . , n}, XA,B denotes a |B| × |A| submatrix of XA such that the rows are

restricted to B.

Definition 1 For an n × � matrix X , Rank p(X) denotes the set of all A ⊂ {1, . . . �} such
that

|A| = rank(XA) = p.

It is easy to see that the following lemma holds.

Lemma 1 Suppose that T is a n×n nonsingularmatrix T . ThenRank p(T ·X) = Rank p(X)

for p = 1, . . . , n − 1.

I� denotes the � × � identity matrix. F denotes a finite field and, in particular, Fp denotes
a finite field of order p.

3 k-Secure linear network code

3.1 Linear network code

We define a network instance by (G(V, E), s,Sink, n):

– G(V, E) is a directed acyclic network such that each edge e ∈ E has a unit capacity, i.e.,
each edge can transmit one field element per time unit. G may include multiple parallel
edges.

– s ∈ V is a source node.
– Sink = {t1, . . . , tq} ⊂ V is a set of sink nodes.
– n is defined as n = minimax-flow(s, ti ), where max-flow(s, ti ) denotes the maximum

flow from s to ti ∈ Sink.

A linear network code for a network instance (G(V, E), s,Sink, n) is defined by an n×|E|
linear network coding matrix U such that

(m1, . . . ,mn) ×U = (d1, . . . , d|E|), (1)

where (m1, . . . ,mn) is the message that s multicasts to Sink, and di is the field element that
is transmitted on an edge ei ∈ E . For example,

U =
⎛

⎝
100110000101100
010001100111111
001000011010011

⎞

⎠ (2)

is the linear network coding matrix used in Fig. 1.
Formally we say that an n × |E| matrix U = (u1, . . . , u|E|) over F is a linear network

coding matrix for a network instance (G(V, E), s,Sink, n) if the following conditions are
satisfied, where each ui is indexed by an edge ei ∈ E .
1. If ei ∈ E is an outgoing edge of a node v(�= s) and v has incoming edges ei1 , . . . , ei j ,

then ui is a linear combination of ui1 , . . . , ui j .
2. Let {ei1 , . . . , ei j } be the set of incoming edges of a sink node ti ∈ Sink. Then

Rank(ui1 , . . . , ui j ) = n for each ti ∈ Sink. This condition guarantees that ti can
reconstruct (m1, . . . ,mn).
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564 K. Kurosawa et al.

Proposition 1 [8] There exists a polynomial time algorithm which can construct a linear
network coding matrix U from a network instance (G, s,Sink, n) if |F| ≥ |Sink|.
Proposition 2 [6, Sect. 3] Suppose that U is a linear network coding matrix for a network
instance (G, s,Sink, n). Then for any n × n nonsingular matrix T , T × U is also a linear
network coding matrix for (G, s,Sink, n).

Proposition 2 results from

(m1, . . . ,mn) × T ·U = (m̃1, . . . , m̃n) ×U,

where (m̃1, . . . , m̃n) = (m1, . . . ,mn) × T . Namely using T · U as a linear network coding
matrix is equivalent to using U as a linear network coding matrix such that s multicasts
(m̃1, . . . , m̃n). Each ti can reconstruct (m1, . . . ,mn) because T is nonsingular.

3.2 k-Secure linear network code

Consider the use of a linear network coding matrix U such that

(m1, . . . ,mn−k, r1, . . . , rk) ×U = (d1, . . . , d|E|), (3)

where (m1, . . . ,mn−k) is chosen according to some probability distribution, and each ri is
independently and uniformly chosen from F. Then, we say that U is k-secure if any k edges
leak no information on (m1, . . . ,mn−k).

More formally, let M̃ = (m̃1, . . . , m̃n−k), where m̃i is the random variable induced bymi

for i = 1, . . . , n − k, and let D̃ = (d̃1, . . . , d̃|E|), where d̃ j is the random variable induced
by d j for j = 1, . . . , |E|. Then
Definition 2 A linear network coding matrixU is k-secure if for any probability distribution
on (m1, . . . ,mn−k), it holds that

H(M̃ | D̃A) = H(M̃)

for any A ⊂ {1 . . . |E|} such that |A| = k.

Proposition 3 [3, Lemma 3.1] A linear network coding matrix U = (ui, j ) is k-secure if and
only if

rank(UA) = rank(UA,k)

for any A ⊆ {1, . . . , |E|} such that |A| ≤ k.

In particular, U is 1-secure if and only if un,i �= 0 for all i .
Cai and Yeung proved the following proposition.

Proposition 4 [4, Theorem 2] Suppose that |F| >
(|E|
k

)
. Then for any n×|E| linear network

codingmatrixU, there exists an n×n nonsingular matrix T such that V = T ×U is k-secure.

The advantage of this proposition is that no changes toU are required. The source node s
only has to multicast (m̃1, . . . , m̃n) = (m1, . . . ,mn−k, r1, . . . , rk) × T . (See the paragraph
at the end of Sect. 3.1.)

Cai and Yeung, however, only showed the existence of T based on a counting argument
(see [4, Sect. V]). They did not show how to efficiently construct T .
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How to make a linear network code (strongly) secure 565

4 Tools

4.1 Reduced coding matrix

We say that a matrix A = (a1, . . . , ah) is pairwise column independent if each pair of
columns (ai , a j ) are linearly independent.

For an n × |E| linear coding matrixU , we say that an n × L matrix Ũ is a reduced coding
matrix of U if Ũ is a maximal submatrix of U such that Ũ is pairwise column independent.
This is formally define as follows.

Definition 3 Ũ = (ũ1, . . . , ũL) is a reduced coding matrix of U = (u1, . . . , u|E|) if

– {ũ1, . . . , ũL } ⊂ {u1, . . . , u|E|},
– Ũ is pairwise column independent, and
– For any ui , there exists some ũ j such that ui = β ũ j for some β �= 0.

We say that L is the reduced size of U .

For example, the following matrix is a reduced coding matrix of U given by Eq. (2)

Ũ =
⎛

⎝
10010
01011
00101

⎞

⎠ (4)

and L = 5 is the reduced size of U .

Lemma 2 Wecan compute (Ũ , L) fromU = (u1, . . . , u|E|) in time O(n|E|2·poly(log |F |)).

Proof Wecan check if ui and u j are linearly independent in O(n·poly(log |F |)) time. (Addi-
tion, subtraction, multiplication and devision in F takes O(poly(log |F |)) times.) Therefore
we can compute (Ũ , L) in O(n|E|2 · poly(log |F |)) time. 	


It is easy to see that the following lemma holds.

Lemma 3 Suppose that T is an n × n nonsingular matrix. Then, T · Ũ is a reduced coding
matrix of T ·U if and only if Ũ is a reduced coding matrix of U.

It is clear that the following corollaries hold from Proposition 3.

Corollary 1 A linear network coding matrix U is k-secure if and only if

rank(ŨA) = rank(ŨA,k)

for any A ⊂ {1, . . . , L} such that |A| ≤ k.

Corollary 2 A linear network coding matrix U is k-secure if and only if for i = 1, . . . , k,
rank(ŨA,i ) = i for any Ai ∈ Ranki (Ũ ).

Corollary 3 A linear network coding matrix U is 1-secure if and only if the last element of
ũi is nonzero for each column vector ũi of Ũ .
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4.2 How to increase Hamming weight

For two vectors x = (x1, . . . , xN ) and y = (y1, . . . , yN ), we present an algorithm
MaxWeight(x, y) that finds α such that

support (αx + y) = support (x) ∪ support ( y)

in O(N ) time. To do so, we first show an algorithm that finds α /∈ S in O(|S|) time, where
S ⊂ F.
Procedure: Outside(S).

Let the elements of F be a0, a1, . . ..

1. Set c(0) = · · · = c(|S|) = 0.
2. For each a ∈ S, do:
3. If a = ai for some i ≤ |S|, then set c(i) = 1.
4. Let i0 be the least i such that c(i) = 0. Return ai0 as α.

For example,

– If S = {a0, a1, a2}, then c(0) = c(1) = c(2) = 1 and c(3) = 0. Hence the above
procedure returns α = a3.

– If S = {a0, a1, a4}, then c(0) = c(1) = 1 and c(2) = c(3) = 0. Hence the above
procedure returns α = a2.

It is easy to prove the following lemma.

Lemma 4 If |F| > |S|, then Outside(S) returns α ∈ F such that α /∈ S in O(|S|) time.
We present the procedure forMaxWeight(x, y) as follows.

Procedure: MaxWeight (x, y).
Let x = (x1, . . . , xN ) and y = (y1, . . . , yN ).

1. Let S0 = {−yi/xi | xi �= 0}.
2. α ← Outside(S0).
3. Return α.

Lemma 5 For two vectors x = (x1, . . . , xN ) and y = (y1, . . . , yN ), MaxWeight(x, y)
returns α such that

support (αx + y) = support (x) ∪ support ( y) (5)

in O(N · poly(log |F |)) if |F| > N time.

Proof Suppose that |F| > N . Then because |F| > N ≥ |S0|, we have α /∈ S0 at line 2 of the
above procedure according to Lemma 4. This means that αxi + yi �= 0 if xi �= 0.

Hence if αxi + yi = 0, then xi = 0. This means yi = 0. Conversely if xi = yi = 0,
then αxi + yi = 0. Therefore αxi + yi = 0 if and only if xi = yi = 0. In other words,
αxi + yi �= 0 if and only if xi �= 0 or yi �= 0. Consequently we obtain Eq. (5).

Line 1 of the above procedure takes O(N · poly(log |F |)) time because computing yi/xi
needs O(poly(log |F |)) time. At line 2, Outside(S0) runs in O(N ) time from Lemma 4.
Therefore the algorithm runs in O(N · poly(log |F |)) time. 	


For example, consider x = (1, 1, 1, 0) and y = (0, 4, 2, 3) over F5. Then S0 =
{0,−4,−2} = {0, 1, 3} at line 1. At line 2, we obtain α = 2 /∈ S0. Then

αx + y = 2 × (1, 1, 1, 0) + (0, 4, 2, 3) = (2, 1, 4, 3).

Thus Eq. (5) is satisfied.
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How to make a linear network code (strongly) secure 567

4.3 Making a nonzero row

Let X and Y be two n × � matrices. Let xi denote the i th row of X and yi denote the i th row
of Y for i = 1, . . . , n. For c ∈ {1, . . . , n}, we write

Y ∼=except(c) X

if yi = xi for all i �= c. We also write

Y ∼=nonzero(c) X

if wH ( yc) = � and yi = xi for all i �= c. We present a deterministic polynomial time
algorithm that outputs an n × n nonsingular matrix T such that

T · X ∼=nonzero(c) X

for X that does not contain a column vector (0, . . . , 0)t and

T · Y ∼=except(c) Y

for any Y .
Procedure: NonZeroRow(X,c)

Let xi denote the i th row of X for i = 1, . . . , n.

1. y :← xc.
2. αc ← 0.
3. For i = 1, . . . , n, do:
4. If i �= c, do:
5. αi ← MaxWeight(xi , y).
6. y ← αi xi + y.
7. Let Q be an n × n matrix such that the i th row is

qi =
{

(α1, . . . , αn) if i = c
(0, . . . , 0) if i �= c

8. T ← In + Q.
9. Return T .

Theorem 1 Let X be an n × � matrix that does not contain a column vector (0, . . . , 0)t .
Then the above algorithm outputs nonsingular matrix T such that

T · X ∼=nonzero(c) X

and

T · Y ∼=except(c) Y

for any matrix Y in O(n� · poly(log |F |)) time if |F| > �.

Proof Let yi denote the i th row of T · X for i = 1, . . . , n. Note that

T · X = (I + Q) · X = X + Q · X.

Therefore yi = xi for i �= c and yc is given as follows.

yc = xc +
n∑

i=1

αi xi

= (. . . ((xc + α1x1) + α2x2) + . . .) + αnxn
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Suppose that |F| > �. Then,MaxWeight outputsαi correctly at line 5 according to Lemma
5. Therefore

wH ( yc) = |support ( yc)| = | ∪n
i=1 support (xi )| = �

because X does not include (0, . . . , 0)t . Therefore

T · X ∼=nonzero(c) X.

By the same argument, it is easy to see that

T · Y ∼=except(c) Y

for any matrix Y .
Furthermore, it is clear that T is nonsingular. Finally, line 5 takes O(� · poly(log |F |))

time according to Lemma 5. Line 6 also takes O(� · poly(log |F |)) time. Hence the algorithm
runs in O(n� · poly(log |F |)) time. 	


5 Making a linear network coding matrix k-secure

In this section, we propose the first efficient deterministic algorithm to compute a nonsingular
matrix T such that T × U is k-secure from a given linear network coding matrix U . Our
algorithm runs in polynomial time if k is a constant.

Furthermore, our algorithm succeeds if |F| >
(L
k

)
, where L is the reduced size ofU . Note

that |F| >
(|E|
k

)
in Proposition 4 and |E| ≥ L . Therefore our sufficient condition on |F| is

usually much smaller than that of Proposition 4.
Let Ũ be a reduced coding matrix of U .

5.1 Making a linear network coding matrix 1-secure

We begin by showing a polynomial time algorithm to compute an n × n nonsingular matrix
T such that T ·U is 1-secure. Our algorithm outputs T such that the last row of T · Ũ consists
of nonzero elements. Then, T ·U is 1-secure according to Corollary 3.
Algorithm: 1-Secure(Ũ ).1

1. T ← NonZeroRow(Ũ , n).
2. Return T .

Theorem 2 The above algorithm outputs a nonsingular matrix T such that the last row of
T · Ũ consists of nonzero elements in O(nL · poly(log |F |)) time if |F| > L, where Ũ is an
n × L matrix.

Proof Follows from Theorem 1. Note that no column vector of Ũ is (0, . . . , 0)t . 	


Corollary 4 We can construct a nonsingular matrix T such that T ·U is 1-secure from any
n × |E| linear coding matrix U in O(n|E|2 · poly(log |F |)) time if |F| > L, where L is the
reduced size of U.

1 A similar idea was used in [16, p. 309]. However, they did not show how to find α that appears in
MaxWeight(x, y) in polynomial time. They did not extend it to k ≥ 2 like this paper, either.
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How to make a linear network code (strongly) secure 569

Proof Suppose that |F| > L and let T be the output of 1-Secure (Ũ ). Note that T · Ũ is a
reduced coding matrix of T ·U according to Lemma 3. Therefore T ·U is 1-secure according
to Theorem 2 and Corollary 3.

We can compute Ũ from U = (u1, . . . , u|E|) in O(n|E|2 · poly(log |F |)) time according
to Lemma 2. Note that max(n|E|2, nL) = n|E|2. Therefore we can compute T from U in
O(n|E|2 · poly(log |F |)) time. 	


We now transform the insecure linear network code of Fig. 1 into a 1-secure one. By
applying the above algorithm to Ũ of Eq. (4), we obtain.2

T =
⎛

⎝
1 0 0
0 1 0
1 1 1

⎞

⎠ over F3.

The linear network coding matrix of Fig. 2 is T · U , where U is given by Eq. (2). Namely
Fig. 2 is 1-secure.3

5.2 Making a linear network coding matrix 2-secure

We now show a polynomial time algorithm to compute an n × n nonsingular matrix T such
that V = T ·U is 2-secure.

Lemma 6 For an n × L matrix X, suppose that

rank(XB,h−1) = h − 1

for any B ∈ Rankh−1(X). Then for any A ∈ Rankh(X), we can find a nonzero vector a of
length h such that

X A · a = (c, 0h−1)t

for some c in O(h3 · poly(log |F |)) time. Furthermore,
rank(XA,h) = h

if and only if the last element of c is nonzero.

Proof Suppose that rank(XB,h−1) = h − 1 for any B ∈ Rankh−1(X). Fix A ⊂ {1, . . . , L}
such that A ∈ Rankh(X) arbitrarily. Then an h×h matrix XA,h includes an (h−1)×(h−1)
submatrix XB,h−1 such that rank(XB,h−1) = h − 1. Therefore rank(VA,h) = h or h − 1.

Let

XA =
(
Y1
XA,h−1

)
=

(
Y2
XA,h

)
,

where XA,h−1 is an (h − 1) × h submatrix and XA,h is an h × h submatrix. For a vector a
of length h, we have

XA · a =
(
Y1 · a
XA,h−1 · a

)
=

(
Y2 · a
XA,h · a

)
.

2 We can often compute T with smaller |F| than the sufficient condition stated in Corollary 4 (see Sect. 8.)
3 We cannot use F2 instead of F3 because m1 + m2 + 2r = m1 + m2 mod 2. Hence Fig. 2 is not 1-secure
if we use F2.
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It is easy to see that rank(XA,h−1) = h − 1 according to our assumption. Therefore we can
find a nonzero vector a of length h such that

XA,h−1 · a = (0, . . . , 0)t

in O(h3 · poly(log |F |)) time. We then have

XA · a = (c, 0h−1)t ,

where c = Y1 · a. Let the last element of c be c0. Hence

XA,h · a = (c0, 0, . . . , 0)
t .

1. If c0 = 0, then it is clear that rank(XA,h) = h − 1.
2. Suppose that rank(XA,h) = h − 1. Then for some B ⊂ A such that |B| = h − 1, there

exists a vector b of length h − 1 such that

XB,h · b = XA,h · a = (c0, 0, . . . , 0)
t . (6)

This means that

XB,h−1 · b = (0, . . . , 0)t .

However, rank(XB,h−1) = h − 1 according to our assumption. Hence we have b =
(0, . . . , 0)t . This means that c0 = 0 according to Eq. (6).

Therefore c0 = 0 if and only if rank(XA,h) = h − 1. Hence c0 �= 0 if and only if
rank(XA,h) = h. 	

Algorithm: 2-Secure(Ũ ).

1. T1 ← NonZeroRow(Ũ , n).
2. V1 ← T1 · Ũ .
3. For each Ai ∈ Rank2(Ũ ), find a nonzero vector ai of length 2 such that

yi = (V1)Ai · ai = (ci , 0)t (7)

for some ci .
4. Let X = ( y1, y2, . . .).
5. T2 ← NonZeroRow(X, n − 1).
6. T ← T2 · T1.
7. Return T .

As an example, suppose that Ũ is a 3 × 2 matrix such that rank(Ũ ) = 2.

(1) At step 2, we obtain V1 such that

V1 = T1 · Ũ =
⎛

⎝
∗ ∗
∗ ∗
nonzero nonzero

⎞

⎠

because T1 makes the last row of Ũ nonzero according to Theorem 1.
(2) At step 3, we find (a1, a2) �= (0, 0) such that

y = V1 ·
(
a1
a2

)
=

⎛

⎝
c1
c2
0

⎞

⎠

for some c1, c2.
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(3) At step 5, we compute T2 such that

T2 · y =
⎛

⎝
c1
nonzero
0

⎞

⎠ ,

where T2 makes the second element of y nonzero and does not change the other elements
according to Theorem 1.

Now let

V2 =
⎛

⎝
v11 v12
v21 v22
v31 v32

⎞

⎠ = T · Ũ = T2 · T1 · Ũ .

Then

(a) First we have

V2 = T2 · (T1 · Ũ ) = T2 ·
⎛

⎝
∗ ∗
∗ ∗
nonzero nonzero

⎞

⎠ =
⎛

⎝
∗ ∗
∗′ ∗′
nonzero nonzero

⎞

⎠ .

because T2 does not changes the third row of T1 · Ũ according to Theorem 1. Hence,

v31 �= 0 and v32 �= 0 (8)

(b) Second we have

V2 ·
(
a1
a2

)
= T2 · V1 ·

(
a1
a2

)
= T2 · y =

⎛

⎝
c1
nonzero
0

⎞

⎠

Therefore

rank

((
v21 v22
v31 v32

))
= 2 (9)

according to Lemma 6.

– Thus V2 satisfies the condition of Corollary 2 from Eqs. (8) and (9).
– Furthermore, V2 = T · Ũ is a reduced coding matrix of T · U from Lemma 3, where U

is the underlying linear network coding matrix.
– Consequently T ·U is 2-secure from Corollary 2.

Theorem 3 Let Ũ be an n × L matrix. If |F| >
(L
2

)
, then the above algorithm outputs a

nonsingular matrix T in O(nL2 · poly(log |F |)) time as follows. Let V2 = T · Ũ . Then

(1) rank((V2)A,1) = 1 for any A ∈ Rank1(V2), and
(2) rank((V2)A,2) = 2 for any A ∈ Rank2(V2)

Proof Suppose that |F| >
(L
2

)
. At line 4 of 2-Secure(Ũ ), the number of columns of X is

equal to
(L
2

)
. Therefore, according to Theorem 1, NonZeroRow outputs T2 correctly at line

5. Namely, T2 makes the (n − 1)th row of X = ( y1, y2, . . .) nonzero and does not change
the other rows. Also, NonZeroRow outputs T1 correctly at line 1.

Note that V1 = T1 · Ũ and

V2 = T · Ũ = T2 · T1 · Ũ = T2 · V1.
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Therefore
Rank p(V2) = Rank p(V1) = Rank p(Ũ ) (10)

for any p according to Lemma 1. We can thus write A ∈ Rank p instead of A ∈ Rank p(Ũ ).

(a) The last row of V1 = T1 · Ũ consists of nonzero elements according to Theorem 1. This
means that rank((V1)A,1) = 1 for any A ∈ Rank1.

(b) The last row of V2 = T2 · V1 also consists of nonzero elements because T2 does not
change the last row of V1 according to Theorem 1. Therefore rank((V2)A,1) = 1 for
any A ∈ Rank1.

(c) Consider Ai ∈ Rank2 at step 3. From Lemma 6 and (a), we can find a nonzero vector
ai that satisfies Eq. (7). Then we have

(V2)Ai · ai = (T2 · V1)Ai · ai
= T2 · ((V1)Ai · ai )
= T2 · yi
= T2 · (ci , 0)t

= (c′i , 0)t

for some c′i . The last equality holds because T2 does not change the last element of
(ci , 0)t .

(d) The last element of c′i is nonzero because T2 makes the (n−1)th element of yi = (c′i , 0)t
nonzero. Thus we have rank((V2)Ai ,2) = 2 for any Ai ∈ Rank2 from Lemma 6.

From (b) and (e), we see that (1) and (2) of this theorem hold.
It is clear that T is nonsingular. Finally themost time consuming part is line 5. The number

of columns of X is O(L2). Hence line 5 runs in O(nL2 · poly(log |F |)) time according to
Theorem 1. Therefore the algorithm runs in O(nL2 · poly(log |F |)) time. 	

Corollary 5 We can construct a nonsingular matrix T such that T ·U is 2-secure from any
n × |E| linear coding matrix U in O(n|E|2 · poly(log |F |)) time if |F| >

(L
2

)
, where L is the

reduced size of U.

Proof Suppose that |F| >
(L
2

)
and let T be the output of 2-Secure (Ũ ). Then T · Ũ is a

reduced coding matrix of T ·U according to Lemma 3. Therefore, T ·U is 2-secure according
to Theorem 2 and Corollary 2.

According to Lemma 2, we can compute Ũ from U = (u1, . . . , u|E|) in O(n|E|2 ·
poly(log |F |)) time. Note that max(n|E|2, nL2) = n|E|2. Therefore we can compute T
in O(n|E|2 · poly(log |F |)) time from U . 	

5.3 Making a linear network coding matrix k-secure

Finally we show an efficient deterministic algorithm to compute an n×n nonsingular matrix
T such that V = T ·U is k-secure for 3 ≤ k < n.
Algorithm: k-Secure(Ũ ).

1. T1 ← NonZeroRow(Ũ , n).
2. V1 ← T1 · Ũ .
3. For h = 2, . . . , k, do:
4. For each Ai ∈ Rankh(Ũ ), find a nonzero vector ai of length h such that

yi = (Vh−1)Ai · ai = (ci , 0h−1)t
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for some ci .
5. Let X = ( y1, y2, . . .).
6. Th ← NonZeroRow(X, n − h + 1).
7. Vh ← Th · Vh−1.
8. T ← Tk . . . T1.
9. Return T .

Theorem 4 Let Ũ be an n × L matrix. If |F| >
(L
k

)
, then the above algorithm outputs a

nonsingular matrix T in O(knLk · poly(log |F |)) time as follows. Let Vk = T · Ũ . Then

rank((Vk)A,h) = h (11)

for any A ∈ Rankh(Vk) for h = 1, . . . , k.

Proof Suppose that |F| >
(L
k

)
. At line 5 of k-Secure(Ũ ), the number of columns of X

is at most
(L
k

)
. Therefore from Theorem 1, NonZeroRow outputs Th correctly at line 6.

Furthermore NonZeroRow also outputs T1 correctly at line 1.
We say that an n × L matrix V is bottom h full independent if rank(VA,i ) = i for any

A ∈ Ranki (V ) for i = 1, . . . , h. Suppose that T is an n × n nonsingular matrix. Then T · V
is bottom h full independent if V is bottom h full independent.

V1 = T1 · Ũ is bottom 1 full independent from the property of T1. Suppose that Vh is
bottom h full independent. By applying the same argument as in the proof of Theorem 3, we
can see that Vh+1 is bottom h+1 full independent. Therefore Vk is bottom k full independent
by induction. Hence Eq. (11) holds for any A ∈ Rankh(Vk) for h = 1, . . . , k.

It is clear that T is nonsingular. Finally themost time consuming part is line 6. The number
of columns of X is O(Lk). Hence line 6 runs in time O(nLk · poly(log |F |)) from Theorem
1. Therefore the algorithm runs in in time O(knLk · poly(log |F |)). 	

Corollary 6 We can construct a nonsingular matrix T such that T ·U is k-secure from any
n×|E| linear coding matrix U in time O((n|E|2+knLk) · poly(log |F |)) if |F| >

(L
k

)
, where

L is the reduced size of U.

Proof Similar to the proof of Corollary 5. 	


6 Strongly k-secure network coding scheme

In Eq. (1), suppose that each mi is independently and uniformly distributed over F. Let m̃i

denote this random variable induced by mi for i = 1, . . . , n, and let d̃ j denote the random
variable induced by d j for j = 1, . . . , |E|. For B ⊂ {1, . . . , n}, let B = {1, . . . , n} \ B. Then
we define a strongly k-secure network coding matrix as follows.

Definition 4 A linear network coding matrix U is strongly k-secure if

H((m̃1, . . . , m̃n)B | (d̃1, . . . , d̃|E|)A) = H((m̃1, . . . , m̃n)B) (12)

for any A ⊂ {1, . . . |E|} and any B ⊂ {1 . . . n} such that |A| = |B| ≤ k.

Harada and Yamamoto [7] proved the following proposition.

Proposition 5 [7, Theorem 3] For sufficiently large |F|, there exists a strongly k-secure
linear network coding matrix for any network instance (G, s,Sink, n) if k < n.
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However, they did not show the time complexity of their algorithm explicitly. They did
not present a concrete size of |F| either. Indeed, they left it as an open problem to derive a
sufficient condition on |F|. (See “open problem” in Table 1 of [7]. They considered strong
k′-security with k′ ≤ k, where � is used instead of k in [7].)

6.1 Necessary and sufficient condition

We can generalize Proposition 3 to strong k-security as follows.

Lemma 7 Consider A ⊂ {1, . . . |E|} and B ⊂ {1 . . . n} such that |A| = |B|. Then Eq. (12)
holds if and only if

rank(UA) = rank(UA,B). (13)

The proof is similar to that of Proposition 3 [3, Lemma 3.1].

Proof Without loss of generality, let A = B = {1, . . . , k}. Then we have

(d1, . . . , dk) = (m1, . . . ,mn) ·UA

= (m1, . . . ,mk) ·UA,B + (mk+1, . . . ,mn) ·UA,B

= (r1, . . . , rk) + (sk+1, . . . , sn)

where

(r1, . . . , rk) = (m1, . . . ,mk) ·UA,B

(sk+1, . . . , sn) = (mk+1, . . . ,mn) ·UA,B

Let L0 be the image space of UA and L1 be the image space of UA,B .

Case 1 Suppose that rank(UA,B) = rank(UA). Then L1 = L0. Since (m1, . . . ,mk) is
a random vector, (r1, . . . , rk) is uniformly distributed over L1 = L0. Therefore
(r1, . . . , rk) works as one-time pad to mask (sk+1, . . . , sn). Hence Eq. (12) holds
because one-time pad implies perfect secrecy.

Case 2 Suppose that rank(UA,B) < rank(UA). Then L1 ⊂ L0 and there exists some
y ∈ L \ L1. Let r̃i denote the random variable induced by ri for i = 1, . . . , k, and
s̃i denote the random variable induced by si for i = k + 1, . . . , n. Then we have

Pr((d̃1, . . . , d̃k) = y | (s̃1, . . . , s̃k) = (0, . . . , 0))

= Pr((r̃1, . . . , r̃k) = y)

= 0

On the other hand, Pr((d̃1, . . . , d̃k) = y) > 0 because each mi is independently
random. Therefore

Pr((d̃1, . . . , d̃k) = y | (s̃1, . . . , s̃k) = (0, . . . , 0)) �= Pr((d̃1, . . . , d̃k) = y)

Hence (d̃1, . . . , d̃k) and (s̃1, . . . , s̃k) are not independent. This means that Eq. (12)
does not hold.

	

Theorem 5 A linear network coding matrix U = (ui, j ) is strongly k-secure if and only if

rank(UA) = rank(UA,B)

for any A ⊂ {1, . . . , |E|} and any B ⊂ {1, . . . , n} such that |A| = |B| ≤ k.

Proof From Lemma 7. 	
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6.2 Relation to reduced coding matrix

Corollary 7 A linear network codingmatrixU is strongly 1-secure if and only if each element
of Ũ is nonzero, where Ũ be a reduced coding matrix of U.

Corollary 8 A linear network coding matrix U is strongly k-secure if and only if

rank(ŨA) = rank(ŨA,B)

for any A ∈ Rank p(Ũ ) and any B ⊂ {1, . . . , n} such that |B| = p for p = 1, . . . , k, where
Ũ be a reduced coding matrix of U.

7 How to make a linear network coding matrix strongly 1-secure

In this section, we show the first efficient deterministic algorithm which computes a non-
singular matrix T such that T × U is strongly k-secure from a given linear network coding
matrix U . In particular, it runs in polynomial time if k is a constant.

Let Ũ be a reduced coding matrix of U and let L be the reduced size of U . Then our
algorithm succeeds if

|F| > L +
k−1∑

i=1

(
n − 1

i

)(
L

i + 1

)
.

7.1 How to make a linear network coding matrix strongly 1-secure

We first show a polynomial time algorithm which computes an n × n nonsingular matrix T
such that T ·U is strongly 1-secure. In fact, our algorithm outputs T such that each element
of T · Ũ is nonzero. Then T ·U is strongly 1-secure from Corollary 7.
Algorithm: Strongly 1-Secure(Ũ ).

1. T0 ← NonZeroRow(Ũ , n).
2. V ← T0 · Ũ .

Let xi be the i th row of V .
3. For i = 1, . . . , n − 1, do:
4. βi ← MaxWeight(xn, xi ).
5. Let

T1 ←

⎛

⎜⎜⎜
⎝

β1

In−1
...

βn−1

0 · · · 0 1

⎞

⎟⎟⎟
⎠

6. Return T = T1 × T0.

Theorem 6 Let Ũ be an n × L matrix. Then the above algorithm outputs a nonsingular
matrix T such that each element of T ·Ũ is nonzero in time O(nL · poly(log |F |)) if |F| > L.
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Proof Note that

T · Ũ = T1 · T0 · Ũ = T1 · V =

⎛

⎜
⎜
⎜
⎝

β1xn + x1
...

βn−1xn + xn−1

xn

⎞

⎟
⎟
⎟
⎠

Suppose that |F| > L . Then from Theorem 1, we have wH (xn) = L at line 2. Then from
Lemma 5, we have wH (βi xn + xi ) = L for i = 1, . . . , n − 1. Therefore each element of
T · Ũ is nonzero.

Further it is clear thatT is nonsingular. Finally, line 1 takes timeO(nL·poly(log |F |)) from
Theorem 2, line 2 takes time O(nL · poly(log |F |)), line 4 takes time O(L · poly(log |F |))
from Lemma 5 and line 6 takes time O(n2 · poly(log |F |)). Hence the algorithm runs in time
O(nL · poly(log |F |)). 	

Corollary 9 We can construct a nonsingular matrix T such that T · U is strongly 1-secure
from any n × |E| linear coding matrix U in time O(n|E|2 · poly(log |F |)) if |F| > L, where
L is the reduced size of U.

Proof Similar to the proof of Corollary 5 where we use Corollary 7. 	

We transform the insecure linear network code of Fig. 1 into a strongly 1-secure one. By

applying the above algorithm to Ũ of Eq. (4), we obtain4

T =
⎛

⎝
2 1 1
1 2 1
1 1 1

⎞

⎠ over F5.

The linear network coding matrix of Fig. 3 is T · U , where U is given by Eq. (2). Namely
Fig. 3 is strongly 1-secure.5

7.2 How to make a linear network coding matrix strongly 2-secure

We next show a polynomial time algorithm which computes an n × n nonsingular matrix T
such that V = T ·U is strongly 2-secure.

Definition 5 For a subset D ⊂ {1, . . . , n} and an n × � matrix E , we say that a vector
y = (y1, . . . , yn)t is a D-zero image of E if (1) y = E · a for some nonzero vector a and
(2) yi = 0 for each i ∈ D.

For example,

y = E · a = (0, y2, . . . , yn)
t

is a {1}-zero image of E .

Lemma 8 For a p × p matrix X, suppose that

rank(XB,{1,...,p−1}) = p − 1

4 We can often compute T with smaller |F| than the sufficient condition stated in Corollary 9. See Sect. 8.
5 We cannot use F3 instead of F5 because 3m1 + 3m2 + 2m3 = m3 mod 3. Hence Fig. 3 is not strongly
1-secure if we use F3.
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for any B ∈ Rankp−1(X). Then we can find a nonzero vector a of length p such that

X · a = (0p−1, c)t

for some c in time O(p3 · poly(log |F |)). Further
rank(X) = p

if and only if c is nonzero.

Proof Similar to the proof of Lemma 6. 	

Algorithm: Strongly 2-Secure(Ũ ).

1. T0 ← NonZeroRow(Ũ , 1).
2. V0 ← T0 · Ũ .
3. For h = 1, . . . , n − 1, do:
4. For each Ai ∈ Rank2(Ũ ), find a {h}-zero image yi of (Vh−1)Ai .
5. Wh ← ( y1, y2, . . .).
6. Th ← NonZeroRow((Vh−1,W1, . . . ,Wh), h + 1).
7. Vh ← Th · Vh−1.
8. W1 ← Th · W1.

9.
...

10. Wh ← Th · Wh .
11. T ← Tn−1 · . . . · T0.
12. Return T .

We illustrate how the algorithm proceeds for n = 3.

1. At line 2:

V0 = T0Ũ
non-zero

***
***

2. In the first loop, at line 5,

V0 = T0Ũ W1

non-zero 0, . . . , 0
*** ***
*** ***

3. In the first loop, after line 8,

V1 = T1T0Ũ W1

non-zero 0, . . . , 0
non-zero non-zero

*** ***

4. In the second loop, at line 5,

V1 = T1T0Ũ W1 W2

non-zero 0, . . . , 0 ***
non-zero non-zero 0, . . . , 0

*** *** ***
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5. In the second loop, after line 10,

V2 = T2T1T0Ũ W1 W2

non-zero 0, . . . , 0 ***
non-zero non-zero 0, . . . , 0
non-zero non-zero non-zero

We can see the following from the last table.

– Each element of V2 is nonzero.
– From Lemma 8, for any Ai ∈ Rank2(V2),

– rank((V2)Ai ,B) = 2 for B = {1, 2} and B = {1, 3}.
– rank((V2)Ai ,B) = 2 for B = {2, 3}.

Hence V = (T2T1T0)U is strongly 2-secure from Corollarys 7 and 8.

Theorem 7 Let Ũ be an n × L matrix. Define

λ = L + (n − 1)

(
L

2

)
.

If |F| > λ. then the above algorithm outputs an n × n nonsingular matrix T in time O(n2λ ·
poly(log |F |)) such as fllows. Let Vn−1 = T · Ũ . Then

(1) each element of Vn−1 is nonzero and
(2)

rank((Vn−1)A,B) = 2 (14)

for any A ∈ Rank2(Vn−1) and any B ⊂ {1, . . . , n} such that |B| = 2.

Proof Suppose that |F| > λ. At line 6, the number of columns of (Vh−1,W1, . . . ,Wh) is
at most λ. Hence NonZeroRow outputs Th correctly from Theorem 1. Namely Th makes
the (h + 1)th row of (Vh−1,W1, . . . ,Wh) nonzero and does not change the other rows. Also
NonZeroRow outputs T0 correctly at line 1, too.

For 1 ≤ j ≤ n − 1, it holds that

Rank2(Vj ) = Rank2(Ũ ) (15)

from Lemma 1 because Vj = Tj . . . T0 · Ũ . In this sense, we write A ∈ Rank2 instead of
A ∈ Rank2(Ũ ).

(a) The first row of V0 = T0 · Ũ consists of nonzero elements from Theorem 1.
(b) Suppose that

– the first h rows of Vh−1 consists of nonzero elements, and
– rank((Vh−1)A,B) = 2 for any A ∈ Rank2 and any B ⊂ {1, . . . , h} such that |B| = 2.

Then we will show that

– the first h + 1 rows of Vh consists of nonzero elements, and
– rank((Vh)A,B) = 2 for any A ∈ Rank2 and any B ⊂ {1, . . . , h + 1} such that

|B| = 2.

(c) Th makes the (h + 1)th row of (Vh−1,W1, . . . ,Wh) nonzero and does not change the
other rows. Therefore the first h+1 rows of Vh = Th ·Vh−1 consists of nonzero elements
from our assumption.
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Since Th does not change the first h rows, we have rank((Vh)A,B) = 2 for any A ∈ Rank2
and any B ⊂ {1, . . . , h} such that |B| = 2 from our assumption.

Now consider B = { j, h + 1} such that j ∈ {1, . . . , h}.
– Each column vector yi ofWh is a {h}-image of (Vh−1)Ai , where Ai ∈ Rank2. Therefore

yi = ( yi,10, yh+1,i , yi,2)
t = (Vh−1)Ai · ai ,

for some nonzero vector ai , where

yi,1 = (y1,i , . . . , yh−1,i )

yi,2 = (yh+2,i , . . . , yn,i )

Multiply Th to the both hand sides. Then we have

Th · yi = ( yi,10, nonzero, yi,2)
t

= (Th · Vh−1)Ai · ai
= (Vh)Ai · ai

because Th only makes the (h + 1)th element of yi nonzero. Therefore we have

(Vh)Ai · ai = ( yi,10, nonzero, yi,2)
t .

Then from Lemma 8, we have rank((Vh)Ai ,B) = 2 for B = {h, h+1} and Ai ∈ Rank2.
– By applying the same argument to W1, . . . ,Wh−1, we can see that rank((Vh)A,B) = 2

for any A ∈ Rank2 and B = { j, h + 1} such that j ∈ {1, . . . , h − 1}.
Therefore rank((Vh)A,B) = 2 for any A ∈ Rank2 and any B ⊂ {1, . . . , h + 1} such that
|B| = 2.

Consequently (1) and (2) of this theorem hold by induction.
It is clear that T is nonsingular. Finally, the most time consuming part is line 6. It takes

time O(nλ · poly(log |F |)) from Theorem 1. Hence the algorithm runs in time O(n2λ ·
poly(log |F |)). 	

Corollary 10 We can construct a nonsingular matrix T such that T ·U is strongly 2-secure
from any n×|E| linear coding matrix U in time O((n|E|2 +n2λ) · poly(log |F |)) if |F| > λ,
where

λ = L + (n − 1)

(
L

2

)

and L is the reduced size of U.

Proof Similar to the proof of Corollary 5, where we use Corollary 8. 	

We transform the insecure linear network code of Fig. 1 into a strongly 2-secure one. By

applying the above algorithm to Ũ of Eq. (4), we obtain6

T =
⎛

⎝
1 1 1
1 2 3
4 5 7

⎞

⎠ over F11.

The linear network coding matrix of Fig. 4 is T · U , where U is given by Eq. (2). Namely
Fig. 4 is strongly 2-secure7

6 We can often compute T with smaller |F| than the sufficient condition stated in Corollary 10. See Sect. 8.
7 We cannot use F7 instead of F11 because m1 + 3m2 + 7m3 = m1 + 3m2 mod 7. Hence Fig. 4 is not
strongly 2-secure if we use F7.
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7.3 How to make a linear network coding matrix strongly k-secure

We finally show an efficient algorithm which computes an n × n nonsingular matrix T such
that V = T ·U is strongly k-secure for 3 ≤ k < n.
Algorithm: Strongly k-Secure (Ũ ).

1. T0 ← NonZeroRow(Ũ , 1).
2. V0 ← T0 · Ũ and X0 ← V0.
3. For h = 1, . . . , n − 1, do:
4. For each Dj ⊂ {1, . . . , h} such that h ∈ Dj and |Dj | < k, do:
5. For each Ai ∈ Rank|Dj |+1(Ũ ), find a Dj -zero image yi of (Vh−1)Ai .
6. WDj ← ( y1, y2, . . .).
7. Th ← NonZeroRow((Vh−1, Xh−1,WD1 ,WD2 , . . .), h + 1).
8. Vh ← Th · Vh−1.
9. Xh ← Th · (Xh−1,WD1 ,WD2 , . . .).

10. T ← Tn−1 · . . . · T0.
11. Return T .

We illustrate how the algorithm proceeds for k = 3 and n = 4.

1. At line 2,

V0 = T0Ũ
non-zero

***
***
***

2. At the end of the 1st loop,

V1 = T1T0Ũ W{1}
non-zero 0, . . . , 0
non-zero non-zero

*** ***
*** ***

3. At the end of the 2nd loop,

V2 = T2T1T0Ũ W{1} W{2} W{1,2}
non-zero 0, . . . , 0 *** 0, . . . , 0
non-zero non-zero 0, . . . , 0 0, . . . , 0
non-zero non-zero non-zero non-zero

*** *** *** ***

4. At the end of the 3rd loop,

V3 = T3 . . . T0Ũ W{1} W{2} W{1,2} W{3} W{1,3} W{2,3}
non-zero 0, . . . , 0 *** 0, . . . , 0 *** 0 . . . 0 ***
non-zero non-zero 0, . . . , 0 0, . . . , 0 *** *** 0 . . . 0
non-zero non-zero non-zero non-zero 0 . . . 0 0 . . . 0 0 . . . 0
non-zero non-zero non-zero non-zero non-zero non-zero non-zero

We can see the following from the last table.
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– Each element of V3 is nonzero.
– By applying Lemma 8 to the columns indexed by W{1},W{2} and W{3}, we can see that
rank((V3)Ai ,B) = 2 for any Ai ∈ Rank2(V3) and for any B ⊂ {1, 2, 3, 4}with |B| = 2.

– By applying Lemma 8 to the columns indexed by W{1,2},W{1,3} and W{2,3}, we can see
that rank((V3)Ai ,B) = 3 for any Ai ∈ Rank3(V3) and for any B ⊂ {1, 2, 3, 4} with
|B| = 3.

ThereforeV = (T3T2T1T0)U is strongly 3-secure from Corollarys 7 and 8.

Theorem 8 Let Ũ be an n × L matrix. Define

λ = L +
k−1∑

i=1

(
n − 1

i

)(
L

i + 1

)
.

If |F| > λ, Then the above algorithm outputs an n× n nonsingular matrix T in time O(n2λ ·
poly(log |F |)) such that

rank((T ·U )A,B) = p (16)

for any A ∈ Rank p(Ũ ) and any B ⊂ {1, . . . , n} with |B| = p for p = 1, . . . , k.

Proof Suppose that |F| > λ. At line 7, the number of columns of thematrix which is the input
to NonZeroRow is at most λ. Hence NonZeroRow outputs Th correctly from Theorem 1.
Further NonZeroRow outputs T0 correctly at line 1, too.

We say that an n × L matrix V is top (h, k) full independent if rank(VA,B) = |B| for
any B ⊂ {1, . . . , h} such that |B| ≤ k and any A ∈ Rank|B|(V ). Suppose that T is an
n × n nonsingular matrix. Then T · V is top (h, k) full independent if V is top (h, k) full
independent.

V0 = T0 · Ũ is top (1, 1) full independent because the first row of V0 consists of nonzero
elements from the property of T0. Suppose that Vh−1 is top (h, k) full independent. By
applying the same argument as in the proof of Theorem 7, we can see that Vh is top (h+1, k)
full independent. Therefore Vn−1 is top (n, k) full independent by induction. Hence Eq. (16)
holds for any A ∈ Rank p(Ũ ) and any B ⊂ {1, . . . , n} with |B| = p for p = 1, . . . , k.

Furthermore, it is clear that T is nonsingular. Finally, the most time consuming part is line
7. It takes O(nλ · poly(log |F |)) time according to Theorem 1. Hence, the algorithm runs in
O(n2λ · poly(log |F |)) time. 	

Corollary 11 We can construct a nonsingular matrix T from any n × |E| linear coding
matrix U such that T · U is strongly k-secure in O((n|E|2 + n2λ) · poly(log |F |)) time if
|F| > λ, where

λ = L +
k−1∑

i=1

(
n − 1

i

)(
L

i + 1

)
.

Proof Similar to the proof of Corollary 5, where we use Corollary 8. 	


8 Summary

We have proposed an efficient deterministic construction algorithm of a linear transformation
T that transforms a linear network code to a k-secure one for any 1 ≤ k < n. We have also
extended this algorithm to strong k-security for any 1 ≤ k < n. Our algorithms run in
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polynomial time if k is a constant, and these time complexities are explicitly presented. We
also have presented a concrete size of |F| for strong k-security,

The condition on |F| in Lemma 5 is a sufficient condition. Therefore MaxWeight(x, y)
succeeds with smaller |F| as long as |F| > |S0|. For example, if the Hamming weight of y
is small, then |S0| is small. Hence |F| can be small. For the same reason, our construction
algorithms for the transformation matrix T may succeed with smaller |F| than the sufficient
condition on |F| that is stated in each theorem.

Further work should explore if there exists a network instance such that our sufficient
condition on |F| is tight.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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