
Des. Codes Cryptogr. (2016) 80:635–650
DOI 10.1007/s10623-015-0123-1

A Latin square autotopism secret sharing scheme

Rebecca J. Stones1,2,3 · Ming Su3,4 · Xiaoguang Liu3,4 ·
Gang Wang3,4 · Sheng Lin5

Received: 6 March 2015 / Revised: 20 July 2015 / Accepted: 23 July 2015 /
Published online: 4 August 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We present a novel secret sharing scheme where the secret is an autotopism (a
symmetry) of a Latin square. Previously proposed secret sharing schemes involving Latin
squares have many drawbacks: (a) Latin squares contain n2 entries, which may be too large,
(b) partial information about the secretmaybe directly revealed, (c) a subsequently discovered
subtle “flaw”, (d) difficulty in initialization and reconstruction, (e) difficulty in verification,
and (f) difficulty in generalizing to a multi-level scheme. We carefully analyze the security
of the proposed scheme, and identify how it overcomes all of these problems.

Keywords Autotopism · Latin square · Partial Latin square · Secret sharing scheme

Mathematics Subject Classification 05B15 · 94A62

1 Introduction

Secret sharing schemes describe how to distribute pieces of information, called shares, among
participants so that if the participants cooperate, their collective shares can be used to recover
a secret message, and if too few participants cooperate, then the secret cannot be recovered.

Communicated by C. Blundo.

B Rebecca J. Stones
rebecca.stones82@gmail.com

1 School of Mathematical Sciences and Faculty of Information Technology, Monash University,
Melbourne, Australia

2 Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada

3 College of Computer and Control Engineering, Nankai University, Tianjin, China

4 College of Software, Nankai University, Tianjin, China

5 School of Computer and Communication Engineering, Tianjin University of Technology, Tianjin,
China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-015-0123-1&domain=pdf

636 R. J. Stones et al.

The concept of secret sharing schemes goes back to Shamir [20] and Blakey [1] (see also
[21]). In this work, we present and analyze a secret sharing scheme based on symmetries of
Latin squares.

We will consider the case of when the secret message θ can be reconstructed from knowl-
edge of l shares, which are distributed to the l participants, that is, every participant must
cooperate to recover the secret L . The primary obstacle in attacking this scheme is the huge
number of Latin squares and the huge number of symmetries they might have.

1.1 Latin squares

1.1.1 Introduction

A Latin square of order n is an n × n array L = (li, j) of n symbols such that the symbols
in every row and in every column are distinct. We will index the rows and columns of L by
the elements of Zn and take the symbol set to be Zn . The orthogonal array of L is the set of
ordered triples

O(L) = {
(i, j, li, j) : i, j ∈ Zn

}
.

1.1.2 Symmetries

Let Sn be the symmetric group acting on Zn . We can act on the set of Latin squares L = (li, j)
of order n with θ := (α, β, γ) ∈ Sn × Sn × Sn such that the rows of L are permuted
according to α, the columns of L are permuted according to β, and the symbols of L are
permuted according to γ . In terms of entries, we have

θ
(
(i, j, li, j)

) = (
α(i), β(j), γ (li, j)

)
for all i, j ∈ Zn .

The mapping θ is called an isotopism, we call L and θ(L) isotopic, and the set of Latin
squares isotopic to L is its isotopism class.

If θ(L) = L , then θ is said to be an autotopism of L . Autotopism are the symmetries we
will consider in this paper.

If (i, j, li, j) is an entry in a Latin square that admits an autotopism (α, β, γ), then its orbit
is the set

{(
αk(i), βk(j), γ k(li, j)

) : k ≥ 0
}

of entries of L . An orbit will have size dividing the order of (α, β, γ). Importantly, we can
reconstruct the whole orbit from knowledge of a single entry in the orbit and (α, β, γ).

We will primarily focus on isotopisms in which each component decomposes into two
disjoint (n/2)-cycles, which we will call suitable. The purpose of this restriction is to permit
a simpler security analysis.

1.1.3 Partial Latin squares and contours

A partial Latin square of order n is an n×n array P = (pi, j) of n+1 symbols Zn ∪{·} such
that each symbol in Zn occurs at most once in each row and at most once in each column.
We say an entry (i, j, pi, j) is defined if pi, j ∈ Zn and undefined otherwise. The definitions
of “entry”, “orthogonal array”, and “isotopism” extend naturally to partial Latin squares by
restricting to the defined entries.

123

Autotopism secret sharing scheme 637

Algorithm 1 Generate L from contour C and suitable autotopism θ .
Require: contour C , suitable autotopism θ

set L to be the empty n × n matrix
for each entry e in C do
for t ∈ {0, 1, . . . , n/2 − 1} do
add entry θ t (e) to L

end for
end for
return L

0 · 1
· · 0
· · ·

C

(0, 0, 0) θ→−� (1, 1, 1) θ→−� (2, 2, 2)

(0, 2, 1) θ→−� (1, 0, 2) θ→−� (2, 1, 0)

(1, 2, 0) θ→−� (2, 0, 1) θ→−� (0, 1, 2).

0 2 1
2 1 0
1 0 2

L

Fig. 1 Illustrating how to recover a Latin square L from an example contour C and an autotopism θ =(
(012), (012), (012)

)

We can reconstruct a Latin square L from knowledge of an autotopism θ and a partial
Latin square with exactly one entry in each orbit in O(L) under 〈θ〉 (the group generated by
θ); we call this partial Latin square a contour C . In this case, we say (C, θ) generates L .

Generating the Latin square from (C, θ) Algorithm 1 describes how to generate the Latin
square from (C, θ) for an arbitrary suitable autotopism θ . An example is illustrated in Fig. 1.

Algorithm 1 fills in n2 cells, so takes time O(n2), but it assumes that (C, θ) generates a
Latin square L . Naively, it would take O(n3 log n) time to verify that L is indeed a Latin
square: for each of the O(n) rows and columns, there are O(n2) pairs of entries, and we
compare their symbols for equality, requiring time O(log n).

Verifying (C, θ) generates a Latin squareWhile it takes time O(n3 log n) to verify a matrix
is a Latin square, we can verify that (C, θ), for suitable θ , generates a Latin square (without
constructing it) in time O(n2 log n), as we will now explain.

If θ = (α, β, γ) is a suitable isotopism, and α and β can be written in disjoint cycle
notation (a1a2 · · · an/2)(a′

1a
′
2 · · · a′

n/2) and (b1b2 · · · bn/2)(b′
1b

′
2 · · · b′

n/2), respectively, then

we choose the leading entries �row1 = a1, �row2 = a′
1, �col1 = b1, and �col2 = b′

1. Figure 2
illustrates leading entries via an example.

There is flexibility in the choice of leading entry (based on how we write the cycles), but
to be concrete, we assume �row1 = �col1 = 0 and that �row2 and �col2 are the minimum elements
in their respective cycles. The rows indexed by �row1 and �row2 are the leading rows and the
columns indexed by �col1 and �col2 are the leading columns.

To verify that (C, θ) generates a Latin square, it is sufficient to check that therewould be no
clashes in the leading rows and columns; if there were a clash in a non-leading row or column,
the action of 〈θ〉 would imply one of the leading rows or columns also contains a clash.

Algorithm 2 describes howwe can check the leading rows and columns for clasheswithout
generating the whole Latin square. We can perform this in (worst case) time O(n2 log n): for
each entry we compute the entry in its orbit in row �row1 or �row2 and column �col1 or �col2 , and
check that no clash arises with earlier inspected entries. Thus we check equality (requiring
time O(log n)) of 4

(n
2

) = O(n2) pairs of entries.

123

638 R. J. Stones et al.

Fig. 2 Highlighting the leading
entries �row1 , �row2 , �col1 , and �col2
in an example suitable isotopism

row
1 = 0
row
2 = 2

(041), (253) , (053), (124) , (042), (153)

col
1 = 0
col
2 = 1

Algorithm 2 Verify that a contour C and suitable autotopism θ generate a Latin square.
Require: contour C with 2n entries, suitable autotopism θ

identify leading entries �row1 , �row2 , �col1 , �col2

set R(1)
col = R(2)

col = R(1)
sym = R(2)

sym = C(1)
row = C(2)

row = C(1)
sym = C(2)

sym = (

n
︷ ︸︸ ︷
0, 0, . . . , 0).

for each entry e in C do
find (�rowq , j, k) = θ t (e) for some t ∈ {0, 1, . . . , n/2 − 1}
if R(q)

col [j] = 1 or R(q)
sym[k] = 1 then

return false
else

R(q)
col [j] ← 1 and R(q)

sym[k] ← 1
end if
find (i, �colq , k) = θ t (e) for some t ∈ {0, 1, . . . , n/2 − 1}
if C(q)

row[i] = 1 or C(q)
sym[k] = 1 then

return false
else
C(q)
row[i] ← 1 and C(q)

sym[k] ← 1
end if

end for
return true

1.2 Previous work

1.2.1 Critical set scheme

Cooper et al. [10] proposed a secret sharing scheme based on critical sets of Latin squares.
Related secret sharing schemes were proposed in [5,6,13,19] which use other combinatorial
objects.

A Latin square L = (li, j) is described as a completion of the partial Latin square P =
(pi, j) if, for all i, j ∈ Zn , either pi, j = li, j or pi, j is undefined. A critical set of a Latin
square L is a partial Latin square P that has a unique completion L , and any partial Latin
square P ′ with O(P ′) � O(P) admits more than one completion. Figure 3 gives an example
of a critical set (sourced from [10]).

Fig. 3 A Latin square of order 4
and a critical set 0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

0 1 · ·
· · · 2

· 3 · ·
· · 1 ·

123

Autotopism secret sharing scheme 639

In [10], the secret is a Latin square L of order n. A critical set S is found, and split into l
shares (each of cardinality less than |S|) and one share is given to each of the l participants.
The key idea is that without full knowledge of S, that is, without the cooperation of every
participant, we cannot uniquely recover the Latin square L (since any proper subset of S
admits multiple completions). There have been several issues raised with this secret sharing
scheme, which we list and expand upon below:

Why a Latin square? There have been many proposed secret sharing schemes using a variety
of combinatorial objects as secrets [22]; why would we want a secret Latin square? The
number of Latin squares grows rapidly [17,23] and they have some useful redundancy, but
so do many other combinatorial objects.

Verification If the participants cooperate and recover a Latin square X , how can they be sure
that X = L , the secret Latin square? It may be that one or more of the returned shares is
erroneous due to e.g. transmission error or deceit.

Initialization and reconstruction complexity Typically, it is difficult to find a critical set C ,
and given a critical set C , it is difficult to find the completion of C [8] (determining if a
partial Latin square admits a completion is NP-complete [9]). A possible workaround for
this issue is restricting to certain classes of Latin squares where working with their critical
sets is significantly easier [11]. However, this also makes attacking the scheme easier.

Partial information The shares reveal partial information about the secret Latin square to the
participants.

A subtle “flaw” It was shown in [11] that it is possible that the critical set C could be
discovered if a large proportion of the participants collude (see also [16]). Worse still, it
is conceivable that if enough participants collude, then they could deceive the remaining
participant(s) into believing a false message (such a tactic was raised in [27] regarding
Shamir’s secret sharing scheme).

Additionally, a proper subset of a critical set is assumed only to admit ≥ 2 completions. It
may be possible to find a short list of completions that are consistent with a given collection
of shares.

Multi-level scheme A multi-level version of the critical set scheme was also considered in
[10]. In it, several critical sets are instead distributed to the participants in such away that some
prescribed subsets of the l participants could jointly access some critical set of L without the
cooperation of the remaining participants. However, implementing this generalized scheme
would require careful selection of the Latin square L , its critical sets, and how the critical
sets are partitioned.

1.2.2 Variations on the critical set scheme

Attempts have been made at modifying the critical set scheme to overcome (some of) these
problems.

Chum and Zhang [8] (see also [7]) presented a scheme where cryptographic hash values
can be pooled to recover a secret via a so-called Nostradamus attack; they describe the
application of this method to a secret 10× 10 partial Latin square with a unique completion.

123

640 R. J. Stones et al.

Fitina and Lal [12] instead attempt to overcome some of these problems by using “trans-
formed” critical sets. A related idea of transforming critical sets was mentioned in [8]
involving a modification of a technique of Chaudhry et al. [6] to Latin squares: simply
make the sum of the shares be equal to the critical set.

1.2.3 An earlier autotopism scheme

A secret sharing scheme involving Latin square autotopisms was briefly mentioned by Gan-
fornina [15] (see also [14]). However, implementation, complexity, and security of this
scheme were not analyzed. Moreover, the method we propose differs in two key aspects:
(a) Instead of having a secret Latin square that admits an autotopism, we have a secret
autotopism (and we use the Latin square for verification). (b) We enforce particular cycle
structures for the autotopism; this allows a concrete theoretical analysis.

2 The proposed secret sharing scheme

2.1 Initialization

We begin in the initialization phase, illustrated in Fig. 4. A dealer (who will be a certified
authority) constructs a random contour C for a random suitable isotopism θ for which (C, θ)

generate a Latin square L . The dealer then generates l isotopisms σ1, σ2, . . . , σl uniformly at
random such that their product is θ ; these isotopisms are the shares. The dealer also computes
ξ := σlσl−1 · · · σ1 and makes public Cpublic = ξ(C). Afterwards, the dealer retains no
knowledge.

We propose performing this using a four-step protocol. We will consider Latin squares
that admit suitable autotopisms which requires n to be even. However, we will further require
n ≡ 2 (mod 4) for the proposed construction to work.1

Note that at no point do we actually need to construct a whole Latin square, as they will
be determined by a contour and an autotopism. However, for the readers’ sake, we include
the Latin squares in our description.

Step 1: A random contour for a Latin square with the special autotopism Let ζ = (τ, τ, τ)

where τ := (0, 1, . . . , n/2 − 1)(n/2, n/2 + 1, . . . , n − 1). We can randomly generate an
n × n partial Latin square D = (di, j) for which (D, ζ) generates a Latin square that admits
the autotopism ζ by randomly choosing zi ∈ {0, n/2} for each i ∈ {0, 1, . . . , n/2 − 1}, and
setting

dn/2−1−i,i = dn−1−i,n/2+i = zi , and

dn−1−i,i = dn/2−1−i,n/2+i = n/2 − zi .

Theorem 21 below ensures that (D, ζ) generates a Latin square, which we call Lprior. Note
that Theorem 21 implies that the construction only works when n ≡ 2 (mod 4).

This process is illustrated in an example below.

1 A more complicated construction would work in the n ≡ 0 (mod 4) cases, but, for simplicity, we restrict
to 2 (mod 4).

123

Autotopism secret sharing scheme 641

generate Cprior pRNG
Step 1

generate ϕ

compute C compute θ

Step 2

generate σ1, . . . , σl

Step 3

compute ξ

compute Cpublic

Step 4

verify θ = ξ

release Cpublic; dis-
tribute shares σ1, . . . , σl

Fig. 4 Flow chart of the proposed secret sharing scheme: initialization phase

D =

· · 0 · · 3
· 3 · · 0 ·
0 · · 3 · ·
· · 3 · · 0
· 0 · · 3 ·
3 · · 0 · ·

contour−−−−→ Lprior =

5 1 0 2 4 3
1 3 2 4 0 5
0 2 4 3 5 1
2 4 3 5 1 0
4 0 5 1 3 2
3 5 1 0 2 4

We name the blocks of D as

D =
[
M11 M12

M21 M22

]
.

123

642 R. J. Stones et al.

Theorem 21 Let D = (di, j) be a partial Latin square of order n containing exactly 2n
defined entries, with every symbol belonging to {0, n/2}. Then (D, ζ) generates a Latin
square if and only if

– each block, M11, M12, M21 and M22, contains precisely n/2 entries and
– if (i, j, di, j) and (i ′, j ′, d ′

i, j) are two distinct entries within a single block, then j − j ′ �≡
i − i ′ (mod n/2).

Proof This is a special case of a theorem by [24, pp. 111–112]. �

Instead of the original contour for D, we retain a random contour Cprior by replacing each
entry (i, j, di, j) in the contour with ζ t (i, j, di, j) for t ∈ {0, 1, . . . , n/2−1} randomly chosen
for each entry. This operation ensures (Cprior, ζ) generates Lprior also. In the earlier example,
we might retain

Cprior =

5 · · · · ·
1 · · 4 0 ·
0 · · 3 · ·
· · · · · ·
· 0 5 · · 2
· 5 · · 2 4

where, for example, the entry (3, 2, 3) is replaced by ζ 2(3, 2, 3) = (5, 1, 5).
Inmany cases, finding aLatin square that admits a given autotopism is difficult, particularly

when n is large. Moreover, often an arbitrary isotopism is not an autotopism of any Latin
square of order n [26]. This motivates our choice to use the specific cycle structure.

Step 2: Randomly generate contour and autotopism We randomly generate an isotopism
ϕ. If Lprior is a Latin square that admits the autotopism ζ , then L := ϕ(Lprior) admits the
autotopism θ := ϕζϕ−1. We compute the contour C := ϕ(Cprior) of L by applying the
isotopism ϕ to Cprior. Moreover, θ is conjugate to ζ , so each component has the same cycle
structure (that is, two (n/2)-cycles) [3, p. 25].

If we apply the random isotopism

ϕ = (
(041352), (124), (1325)

)

to the earlier example, we obtain the Latin square

L = ϕ(Lprior) =

0 1 5 2 4 3
4 2 0 3 1 5
2 5 1 0 3 4
3 0 2 4 5 1
1 4 3 5 0 2
5 3 4 1 2 0

which admits the autotopism

θ = ϕζϕ−1

= (
(043)(125), (024)(153), (035)(124)

)
.

123

Autotopism secret sharing scheme 643

Further, it is generated by the contour

C = ϕ(Cprior) =

0 · · 2 · ·
· · 0 · 1 5
· 5 1 · · 4
3 0 · 4 · ·
1 · · · · ·
· · · · · ·

and the autotopism θ .

Step 3: Splitting the autotopism We generate the shares σ1, σ2, . . . , σl , each of which will
be random isotopisms for which σ1σ2 · · · σl = θ . We can generate σ1 to σl−1 uniformly at
random, then compute σl = σ−1

l−1 · · · σ−1
1 θ .

So, in our example, if l = 4, we might generate and compute:

σ1 = (
(04)(15), (04531), (051)(243)

)

σ2 = (
(04)(1352), (025), (013452)

)

σ3 = (
(01325), (01354), (15)(24)

)

σ4 = (
(14352), (02531), (052143)

)
.

So θ = σ1σ2σ3σ4.

Step 4: Making public a contour We compute Cpublic := ξ(C) where ξ := σlσl−1 · · · σ1. In
our running example, we have the situation

ξ = (
(03)(1452), (031)(254), (0243)(15)

)

and so

Cpublic = ξ(C) =

· · · · · ·
· 0 · 2 · ·
1 · 4 · 3 ·
· · · 1 · ·
· 3 2 5 · ·
2 · · · 4 1

.

For security, we check if θ = ξ . If this occurs, we restart the initialization from scratch.

Share distribution After the completion of all Steps 1–4, the i-th isotopism σi is given to the
i-th participant, and we make public Cpublic = ξ(C).

We’re not obligated to make Cpublic public; for increased security, we could instead e.g.
split it into l parts and add these parts to the shares.

2.2 Recovery

When all l participants decide to cooperate, we enter the reconstruction phase. The l partic-
ipants securely send the shares σ̃1, σ̃2, . . . , σ̃l to a combiner. The shares may or may not be
returned correctly: if share i is correctly sent, we have σ̃i = σi .

123

644 R. J. Stones et al.

Table 1 Time complexity of the
initialization phase

Construct RN1 RN2 Time

Cprior n/2 2n O(n log n)

ϕ, σ1, σ2, . . . , σl−1 3l(n − 1) 9l(n − 1)

θ 6n

σl 6n(l − 1)

ξ 3n(l − 1)

Cpublic 6n

O(ln) O(n) O(ln + n log n)

– The combiner computes θcand := σ̃1σ̃2 · · · σ̃l .
– If θcand is not suitable, then we return fail. Otherwise we use Algorithm 2 to verify

that Lcand, determined from the contour C = ξ−1(Cpublic) = σ−1
1 σ−1

2 · · · σ−1
l (Cpublic)

and θcand, is a Latin square.
– If Lcand is not a Latin square, then we return fail. Otherwise θcand is revealed to the

participants.

Afterwards, the dealer retains no knowledge.
It will be assumed that θcand = θ if (C, θcand) generates a Latin square. In Sect. 3.2, wewill

analyze the chance of this happening without θcand = θ , along with other security matters.

3 Analysis

3.1 Overhead

There are some potential bottlenecks with this scheme: (a) number of memory accesses, (b)
number of transfers and transfer size, and (c) random number generation.

Our unit of time complexity will be a memory read/write; we separate random number
generation from this calculation. We note that both isotopism multiplication and inversion
can be performed in time 3n. Acting on a contour with an isotopism can be performed by
acting entry-by-entry, requiring time 6n in total.

3.1.1 Initialization

We describe the computational complexity of the initialization phase in Table 1. Here RN1

refers to the number of binary random numbers required and RN2 refers to the number of
random numbers in {0, 1, . . . , n/2−1} required.2 We detail how Table 1 comes about below.

To generate Cprior, we need to generate n/2 random binary numbers to determine
d(n/2−1−i)i for i ∈ {0, 1, . . . , n/2 − 1}, and 2n random numbers in {0, 1, . . . , n/2 − 1}
to determine which entry in each orbit is retained. To calculate the entries in Cprior, we
will need to add 6n pairs of numbers modulo n/2. However, addition of these numbers will
always result in a number in {0, 1, . . . , n/2−1}, so we need only subtract n/2 in some cases,
individually requiring time O(log n). This requires O(n log n) time in total.

2 In practice, we would make fewer than RN1 and RN2 calls to a pseduo-random number generator (pRNG);
e.g. n/2 random bits could be equally obtained by a single call to a pRNG that generates a random number in
{0, . . . , 2n/2 − 1}.

123

Autotopism secret sharing scheme 645

We generate the random isotopisms ϕ, σ1, σ2, . . . , σl−1 uniformly at random using a
Fisher–Yates Shuffle, requiring the computation of 3l(n − 1) random binary numbers and
performing 3l(n − 1) swaps (a swap requiring time 3).

We compute

(a) θ = ϕζϕ−1, requiring 1 isotopism inversion and 2 isotopism multiplications,
(b) σl = σ−1

l−1 · · · σ−1
1 θ , requiring l − 1 isotopism inversions and l − 1 isotopism multipli-

cations,
(c) ξ = σlσl−1 · · · σ1, requiring l − 1 isotopism multiplications, and
(d) Cpublic = ξ(C), requiring 6n time.

Thus, we require O(ln) random numbers and O(ln + n log n) time in the initialization
phase. There are 3n numbers from Zn transferred to each participant (the shares), and 6n
numbers from Zn are made public (Cpublic).

In comparison with [10], in the proposed scheme, the length of each share σi is linear in
n, whereas the size of the smallest critical sets in Latin squares of order n is conjectured to
be �n2/4� = �(n2) (see e.g. [4]). The computational complexity of generating critical sets
that could be used in a secret sharing scheme is unclear.

3.1.2 Recovery

In the reconstruction phase, the participants transfer σ1, σ2, . . . , σl to a certified authority: so
3n numbers from Zn are transferred. The contourCpublic is retrieved, comprising 6n numbers
from Zn .

The shares are then multiplied together to find θ and ξ , requiring time 6n(l − 1). We
compute ξ−1 in time 3n. We compute C = ξ−1(Cpublic) in time 6n. We verify that Lcand is
a Latin square using Algorithm 2, which requires time O(n2 log n).

Thus we take time O(ln + n2 log n) in the recovery phase.

3.1.3 Remark about practical computation

We remark that the operations required to implement this scheme are simple (mostly random
number generation, modular arithmetic, and table lookups). Moreover, the modular additions
can be performed as a conditioned regular addition; e.g. typically we want to compute a
(mod n/2) where a ∈ {0, 1, . . . , n − 1}, so, if a ≥ n/2, then we replace a with a − n/2, and
no change is required otherwise.

3.2 Security

Collusion Eachσi is a random isotopism (distributed uniformly at random from Sn×Sn×Sn);
knowledge of fewer than all l isotopisms σi is of no more use in recovering θ or C than is a
random suitable isotopism. No partial information about the secret θ is revealed.

Brute-force attack An attacker could attempt to crack the scheme by brute force, e.g., by
computing all Latin squares that admit the autotopism ζ , and testing all isotopic Latin squares
for correctness.

The number of Latin squares that admit the autotopism ζ was computed in [25] in small
cases, given in Table 2. The number of suitable isotopisms is (2(n − 1)!/n)3 (see “Number
of suitable isotopisms” in Appendix), which we also include in Table 2. These numbers grow
very rapidly, so a brute force attack, even for n = 10, seems prohibitively expensive.

123

646 R. J. Stones et al.

Table 2 For small n ≡ 2
(mod 4), the number of Latin
squares that admit the autotopism
ζ , the number of suitable
isotopisms, and a lower bound on
the size of the isotopism class of
any order-n Latin square L

n nr LS with autotop. ζ nr suitable isotop. is(L) lower bound

6 648 6 × 104 2 × 105

10 20,820,000 3 × 1014 4 × 1014

14 ? 7 × 1026 1 × 1027

18 ? 6 × 1040 7 × 1039

Attack by finding a completion of Cpublic If an attackermanaged to find L , they could compute
its autotopism group using the method in [18], and find the secret θ . So we need to ensure
Cpublic cannot be used to find L .

Assuming an attacker managed to find a completion ofCpublic, this would at most give the
attacker knowledge of the isotopism class containing L . If the attacker attempted to randomly
guess L from knowledge of M , their probability of being correct is 1/is(L); a lower bound
on is(L) is listed in Table 2 (see “Autotopism group and isotopism class sizes” in Appendix).
This probability is prohibitively small, even for n = 10.

Partial information about L Since the isotopisms σi are random, they provide no information
about L . The public contour Cpublic might give some information about the isotopism class
that L belongs to (such as the existence of subsquares), but as we just noted, even full
knowledge of the isotopism class is of limited use. This is a benefit to the schemes proposed
in [10,15] (if left unmodified) which give away partial information about the secret.

Attack by replacing shares Oneor several participantsmight return incorrect shares. Typically
this would result in the scheme returning fail during the reconstruction phase. If it didn’t,
it would require that θcand be a suitable isotopism, and that the generated matrix Lcand is a
Latin square. If this happens to occur, then the isotopism θcand �= θ is returned.

If used as a method of attack, it would be particularly dangerous e.g. in the case of a
malicious first or last participant, since, if it succeeds, they could use θcand to recover θ . For
example, if σ̃1 was the only erroneous share returned, then θ = σ1σ̃1

−1θcand, so participant 1
could recover the real secret, while the remaining participants believe a false secret. We argue
that this attack is unlikely to succeed. Specifically, the ability of the combiner to checkwhether
or not θcand is correct (by checking that Lcand is a Latin square) effectively prevents this kind
of attack, and is a key reason for the proposed Latin square autotopism scheme (instead of,
say, a simpler scheme were participants are assigned random permutations whose product is
the secret).

Obstacle 1 If participant i returns the share σ̃i chosen uniformly at random from those
whose components are even permutations, we have

Pr[θcand suitable | σ̃i returned] = 64

n6

(see “Probability of suitability” in Appendix for the details).
Obstacle 2 Let p denote the probability of a successful attack assuming Obstacle 1 is

overcome, where C is distributed according to the scheme and θcand is distributed uniformly
at random from the set of all suitable isotopisms. We have the lower bound

p ≥ n6ϕ(n/2)

8n!3 (1)

123

Autotopism secret sharing scheme 647

Table 3 Estimate that a random
contour given by the scheme and
a random suitable autotopism
generate a Latin square

n p ≤ p ≥

6 4.5 × 10−5 (99.995% confidence) 3.13 × 10−5

10 2 × 10−11 (99.995% confidence) 1.04 × 10−14

where ϕ is the Euler phi function, since the right-hand side is the probability of θcand = θ t

for t coprime to n/2. We expect (1) to be not too far away from the correct p-value.3 Such
small probabilities are difficult to estimate empirically, so we give estimates for p only for
n ∈ {6, 10}, as given in Table 3. The experimental details are given in “Probability (C, θcand)

generates a Latin square, when θcand is random” in Appendix.
For sensibly chosen n, this attack will likely require millions of repeated attempts, each

of which requiring all participants to return their shares for reconstruction.

Initialization with θ = ξ There is a chance that θ = ξ , i.e., σ1σ2 · · · σl = σlσl−1 · · · σ1,
which could conceivably be of use to an attacker. To avoid this, if θ = ξ occurs we restart
from scratch. The probability of this occurring for l = 2 is small: e.g. 3×10−5 for n = 6, and
2 × 10−14 for n = 10 (see “Random isotopisms commuting” in Appendix for the details).
Experiments suggest this is close to the probability of θ = ξ for larger l, as we would expect.
This ensures that we won’t need a large number of restarts in the initialization phase.

3.3 Multi-level scheme

In amulti-level secret sharing scheme,we have a family of subsets of the participants {Pj }kj=1,
say, where if the participants in any Pj pool their shares, they can recover the secret. A
common example is a threshold scheme, where the family would consist of all t-subsets of
the participants.

Generalizing the proposed secret sharing scheme to amulti-level scheme is straightforward
and can be performed “on the fly”, i.e., without changing the secret and restarting the entire
scheme. If the participants belonging to Pj for some j ∈ {1, 2, . . . , k − 1} decide to extend
the scheme to include Pk , then they securely transmit the shares to a certified authority,
who reconstructs θ and performs Step 3 again: generating the shares σ

(k)
1 , σ

(k)
2 , . . . , σ

(k)
|Pj |,

and distributes them to the participants in Pk accordingly. Afterwards, the certified authority
retains no knowledge.

This is a significant advantage over the Latin square schemes of [10,15], which (a) are
not naturally extensible to multi-level schemes, (b) give partial information about the secret,
and hence more shares imply a larger proportion of the secret is revealed, and (c) would not
be able to be performed on the fly (the participants would need to restart from scratch).

One benefit of a multi-level scheme is as a safeguard against lost shares. In a single-level
scheme, a lost share would mean the secret is irretrievable, whereas in a multi-level scheme,
if a share is lost, some other group of participants can still recover the secret (or a certified
authority could regenerate new shares for the group that has lost a share).

3 We won’t have equality in (1) as there are situations where C generates two distinct Latin squares when
paired with two distinct autotopisms; see “One contour generating two Latin squares” in Appendix for an
example.

123

648 R. J. Stones et al.

4 Concluding remarks

Wepresent a Latin square autotopism-based secret sharing schemewhich resolves amultitude
of issues arising in previous proposed Latin square secret sharing schemes. These problems
are overcome primarily by having a secret autotopism (symmetry), rather than a secret Latin
square. Motivated by the significant criticism Latin square secret sharing schemes have
received in the past, we perform a careful analysis of the proposed scheme, in terms of both
complexity and security.

This work further demonstrates that Latin squares can be useful for designing practical
secret sharing schemes, and could provide a practical alternative to established schemes. The
proposed scheme also has a substantial benefit over traditional schemes: verification, i.e., the
participants can be sure the returned secret is indeed the correct secret.

One future direction this research could take is to look for ways of identifying which
shares are incorrect, in the situation that incorrect shares are returned. One method would be
to make public cryptographic hash function value of the shares, although this (a) seems to
be “overkill” for the problem at hand, and (b) could be used for any secret sharing scheme.
Another possibility is encoding random entries of the Latin square L into the shares, however
this opens up new possible security vulnerabilities.

Acknowledgments The authors would like to thank TomMcCourt for feedback and assistance tracking down
references. Thanks also to Jinjin Sun for proofreading this paper. Lin and Stones were supported by NSFC
Grant 61170301. Stones was also partly supported by AARMS, and partially supported by her NSF China
Research Fellowship for International Young Scientists (Grant Number 11450110409). Lin thanks the Tianjin
Key Lab of Intelligent Computing and Novel Software Technology and Key Laboratory of Computer Vision
and System, Ministry of Education for their support. Stones recognizes the use of the online math forum
math.stackexchange.com to discuss topics arising in this work.

Compliance with ethical standards

Conflicts of interest The authors declare no potential conflicts of interest.

Research involving human and animal rights The research conducted did not involve human participants
nor animal testing.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Technical comments

Number of suitable isotopisms

The number of permutations in Sn with the cycle structure (n/2) + (n/2) is given by
n!/(2!(n/2)2

) = 2(n − 1)!/n. Thus the number of suitable isotopisms is (2(n − 1)!/n)3.

Autotopism group and isotopism class sizes

By the Orbit-Stabilizer Theorem, we know the size of the isotopism class of the Latin square
L is given by is(L) = n!3/aut(L), where aut(L) is the size of the autotopism group of L .
The maximum size of aut(L) in any order-n Latin square is n2+�log2 n� [2], which enables us
to give a lower bound on is(L).

123

http://creativecommons.org/licenses/by/4.0/

Autotopism secret sharing scheme 649

Probability of suitability

We know that permutations with the cycle structure (n/2)+ (n/2) are even permutations. Of
the n!/2 even permutations, precisely 2(n − 1)!/n have the cycle structure (n/2) + (n/2).
Thus, if we pick an isotopism uniformly at random from An × An × An (where An is the
alternating group), it has probability

(
2(n − 1)!/n

n!/2
)3

= 64/n6

of being suitable.

Probability (C, θcand) generates a Latin square, when θcand is random

We have

p := Pr[(C, θcand) generates a Latin square]
= Pr[(ϕ−1(C), ϕ−1θcandϕ) generates a Latin square]
= Pr[(Cprior, ϕ

−1θcandϕ) generates a Latin square]
= Pr[(Cprior, θcand) generates a Latin square]

since θcand and ϕ−1θcandϕ are equal in distribution. This was used to simplify method used
in the simulations.

For n = 6, we generate 109 pairs (Cprior, β), for random suitable autotopism β, and find
43409 generate a Latin square. The upper bound on theWald confidence interval is 4.5×10−5

with 99.995% confidence. For n = 10, we made N := 3.6 × 1011 samples, and no Latin
square was generated this way. Using a modified “rule of three” [28], we can be 99.995%
confident that p ≤ 7.6/N ≈ 2 × 10−11.

Random isotopisms commuting

The probability that two random isotopisms with components that are even permutations
commute is (2pn/n!)3, where pn is the number of partitions of n. This is a special case
of a general result in group theory: the probability of two random finite group elements
commuting is the number of conjugacy classes divided by the size of the group).

(C, θ1) →

5 4 0 2 1 3

1 3 5 4 0 2

3 2 4 0 5 1

2 1 3 5 4 0

4 0 2 1 3 5

0 5 1 3 2 4

(C, θ2) →

2 4 0 5 1 3

4 3 5 1 0 2

0 2 4 3 5 1

5 1 3 2 4 0

1 0 2 4 3 5

3 5 1 0 2 4

θ1 = (012)(345), (012)(345), (012)(345) θ2 = (012)(345), (045)(123), (012)(345)

Fig. 5 A contour C (formed by the circled entries) for which (C, θ1) and (C, θ2) generate two distinct Latin
squares

123

650 R. J. Stones et al.

One contour generating two Latin squares

It is possible that a contour C generates a Latin square under the action of two isotopisms:
Fig. 5 gives an example. This example swaps a pair of columns which don’t intersect the
contour; in this way we can generate larger examples.

References

1. Blakey G.R.: Safeguarding cryptographic keys. In: Proceedings of NCC, vol. 48, pp. 313–317 (1979).
2. Browning J., Stones D.S., Wanless I.M.: Bounds on the number of autotopisms and subsquares of a Latin

square. Combinatorica 33, 11–22 (2013).
3. Cameron P.J.: Permutation Groups. Cambridge University Press, Cambridge (1999).
4. Cavenagh N.J.: A superlinear lower bound for the size of a critical set in a Latin square. J. Combin. Des.

15(4), 269–282 (2007).
5. Chaudhry G., Seberry J.: Secret sharing schemes based on room squares. In: Proceedings of DMTCS

’96—Combinatorics, Complexity and Logic, pp. 158–167 (1996).
6. Chaudhry G., Ghodosi H., Seberry J.: Perfect secret sharing schemes from room squares. J. Comb. Math.

Comb. Comput. 28, 55–61 (1998).
7. Chum C.S., Zhang X.: The Latin squares and the secret sharing schemes. Groups Complex. Cryptol. 2(2),

175–202 (2010).
8. ChumC.S., ZhangX.: Improved Latin square based secret sharing scheme. Comput. Comb.Group Theory

Cryptogr. 582, 51–64 (2012).
9. Colbourn C.J.: The complexity of completing partial Latin squares. Discret. Appl. Math. 8(1), 25–30

(1984).
10. Cooper J., Donovan D., Seberry J.: Secret sharing schemes arising from Latin squares. Bull. Instrum.

Comb. Appl. 12, 33–43 (1994).
11. Donovan D.M., Lefevre J.G., McCourt T.A., Cavenagh N.J., Khodkar A.: Identifying flaws in the security

of critical sets in Latin squares via triangulations. Australas. J. Comb. 52, 243–268 (2012).
12. Fitina L.F., Lal S.P.: Access schemes based on perfect critical set partitions and transformations. Australas.

J. Comb. 34, 229–237 (2006).
13. Gamble G., Maenhaut B.M., Seberry J., Street A.P.: Further results on strongbox secured secret sharing

schemes. Util. Math. 66, 165–193 (2004).
14. Ganfornina R.M.F.: Decomposition of principal autotopisms into triples of a Latin square. In: Book of

Abstracts of the Tenth Meeting on Computer Algebra and Applications, pp. 95–98 (2006).
15. Ganfornina R.M.F.: Latin squares associated to principal autotopisms of long cycles. Application in

cryptography. In: Proceedings of Transgressive Computing, pp. 213–230 (2006).
16. Grannell M.J., Griggs T.S., Street A.P.: A flaw in the use of minimal defining sets for secret sharing

schemes. Des. Codes Cryptogr. 40(2), 225–236 (2006).
17. McKay B.D., Wanless I.M.: On the number of Latin squares. Ann. Comb. 9, 335–344 (2005).
18. McKay B.D., Meynert A., Myrvold W.: Small Latin squares, quasigroups, and loops. J. Comb. Des. 15,

98–119 (2007).
19. Seberry J., Street A.P.: Strongbox secured secret sharing schemes. Util. Math. 57, 147–163 (2000).
20. Shamir A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979).
21. Simmons G.J.: An introduction to shared secret and/or shared control schemes and their applications.

In: Contemporary Cryptology, the Science of Information Integrity, pp. 441–497. IEEE Press, New York
(1991).

22. Stinson D.R.: An explication of secret sharing schemes. Des. Codes Cryptogr. 2(4), 357–390 (1992).
23. Stones D.S.: The many formulae for the number of Latin rectangles. Electron. J. Comb. 17(A1) (2010).
24. Stones D.S.: On the number of Latin rectangles. Ph.D. Thesis, Monash University (2010). http://arrow.

monash.edu.au/hdl/1959.1/167114.
25. Stones D.S.: The parity of the number of quasigroups. Discret. Math. 310(21), 3033–3039 (2010).
26. Stones D.S., Vojtěchovský P., Wanless I.M.: Cycle structure of autotopisms of quasigroups and Latin

squares. J. Comb. Des. 20, 227–263 (2012).
27. Tompa M., Woll H.: How to share a secret with cheaters. IBM Res. Rep. RC 11840 (Log #52910) (1986).
28. Wikipedia: Rule of three (statistics). http://en.wikipedia.org/wiki/Rule_of_three_(statistics). Accessed

July 2014.

123

http://arrow.monash.edu.au/hdl/1959.1/167114
http://arrow.monash.edu.au/hdl/1959.1/167114
http://en.wikipedia.org/wiki/Rule_of_three_(statistics)

	A Latin square autotopism secret sharing scheme
	Abstract
	1 Introduction
	1.1 Latin squares
	1.1.1 Introduction
	1.1.2 Symmetries
	1.1.3 Partial Latin squares and contours

	1.2 Previous work
	1.2.1 Critical set scheme
	1.2.2 Variations on the critical set scheme
	1.2.3 An earlier autotopism scheme

	2 The proposed secret sharing scheme
	2.1 Initialization
	2.2 Recovery

	3 Analysis
	3.1 Overhead
	3.1.1 Initialization
	3.1.2 Recovery
	3.1.3 Remark about practical computation

	3.2 Security
	3.3 Multi-level scheme

	4 Concluding remarks
	Acknowledgments
	Appendix: Technical comments
	Number of suitable isotopisms
	Autotopism group and isotopism class sizes
	Probability of suitability
	Probability (C,θcand) generates a Latin square, when θcand is random
	Random isotopisms commuting
	One contour generating two Latin squares

	References

