
Des. Codes Cryptogr. (2015) 77:493–514
DOI 10.1007/s10623-015-0087-1

High-speed Curve25519 on 8-bit, 16-bit, and 32-bit
microcontrollers

Michael Düll1 · Björn Haase2 · Gesine Hinterwälder1 ·
Michael Hutter3 · Christof Paar1 · Ana Helena Sánchez4 · Peter Schwabe4

Received: 16 November 2014 / Revised: 17 April 2015 / Accepted: 19 April 2015 /
Published online: 31 May 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract This paper presents new speed records for 128-bit secure elliptic-curve Diffie–
Hellman key-exchange software on three different popular microcontroller architectures. We

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue
on Cryptography, Codes, Designs and Finite Fields: In Memory of Scott A. Vanstone”.

This work was supported by the Austrian Science Fund (FWF) under the grant number TRP251-N23, by the
Netherlands Organisation for Scientific Research (NWO) through Veni 2013 project 13114, by the European
Cooperation in Science and Technology (COST) Action IC1204 (Trustworthy Manufacturing and Utilization
of Secure Devices—TRUDEVICE), and by the German Federal Ministry for Economic Affairs and Energy
(Grant 01ME12025 SecMobil). Work was done while Michael Hutter was with Graz University of
Technology, Austria. Permanent ID of this document: bd41e6b96370dea91c5858f1b809b581.

B Peter Schwabe
peter@cryptojedi.org

Michael Düll
michael.duell@rub.de

Björn Haase
info@conducta.endress.com

Gesine Hinterwälder
gesine.hinterwaelder@rub.de

Michael Hutter
michael.hutter@cryptography.com

Christof Paar
christof.paar@rub.de

Ana Helena Sánchez
saralup@gmail.com

1 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, 44801 Bochum, Germany

2 Endress+Hauser Conducta GmbH+Co. KG, Dieselstraße 24, 70839 Gerlingen, Germany

3 Cryptography Research, 425 Market Street, 11th Floor, San Francisco, CA 94105, USA

4 Digital Security Group, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-015-0087-1&domain=pdf

494 M. Düll et al.

consider a 255-bit curve proposed by Bernstein known as Curve25519, which has also been
adopted by the IETF.We optimize the X25519 key-exchange protocol proposed by Bernstein
in 2006 for AVR ATmega 8-bit microcontrollers, MSP430X 16-bit microcontrollers, and for
ARM Cortex-M0 32-bit microcontrollers. Our software for the AVR takes only 13,900,397
cycles for the computation of a Diffie–Hellman shared secret, and is the first to perform
this computation in less than a second if clocked at 16 MHz for a security level of 128
bits. Our MSP430X software computes a shared secret in 5,301,792 cycles on MSP430X
microcontrollers that have a 32-bit hardwaremultiplier and in 7,933,296 cycles onMSP430X
microcontrollers that have a 16-bit multiplier. It thus outperforms previous constant-time
ECDH software at the 128-bit security level on the MSP430X by more than a factor of 1.2
and 1.15, respectively. Our implementation on the Cortex-M0 runs in only 3,589,850 cycles
and outperforms previous 128-bit secure ECDH software by a factor of 3.

Keywords Curve25519 · ECDH key-exchange · Elliptic-curve cryptography · Embedded
devices · AVR ATmega · MSP430 · ARM Cortex-M0

1 Introduction

A large and growing share of the world’s CPU market is formed by embedded microcon-
trollers. A surprisingly large number of embedded systems require security, e.g., electronic
passports, smartphones, car-to-car communication and industrial control units. The continu-
ously growing Internet of Things will only add to this development. It is of great interest to
provide efficient cryptographic primitives for embedded CPUs, since virtually every secu-
rity solution is based on crypto algorithms. Whereas symmetric algorithms are comparably
efficient and some embedded microcontrollers even offer hardware support for them [3],
asymmetric cryptography is notoriously computational intensive.

Since the invention of elliptic-curve cryptography (ECC) in 1985, independently by
Koblitz [26] and Miller [31], it has become the method of choice for many applications,
especially in the embedded domain. Compared to schemes that are based on the hardness of
integer factoring, most prominently RSA, and schemes based on the hardness of the discrete
logarithm in the multiplicative group Z

∗
n , like the classical Diffie–Hellman key exchange

or DSA, ECC offers significantly shorter public keys, faster computation times for most
operations, and an impressive security record. For suitably chosen elliptic curves, the best
attacks known today still have the same complexity as the best attacks known in 1985. Over
the last one and half decade or so, various elliptic curves have been standardized for use in
cryptographic protocols such as TLS. The most widely used standard for ECC are the NIST
curves proposed by NSA’s Jerry Solinas and standardized in [33, Appendix D]. Various other
curves have been proposed and standardized, for example the FRP256v1 curve by the French
ANSSI [1], the Brainpool curves by the German BSI [30], or the SM2 curves proposed by
the Chinese government [36].

It is known for quite a while that all of these standardized curves are not optimal from a
performance perspective and that special cases in the group law complicate implementations
that are at the same time correct, secure, and efficient. These disadvantages together with
some concerns about how these curveswere constructed—see, for example [10,37]—recently
lead to increased interest in reconsidering the choice of elliptic curves for cryptography. As a
consequence, in 2015 the IETF adopted two next-generation curves as draft internet standard
for usage with TLS [25]. One of the promising next-generation elliptic curves now also
adopted by the IETF is Curve25519. Curve25519 is already in use in various applications

123

High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers 495

today and was originally proposed by Bernstein in 2006 [5]. Bernstein uses the Montgomery
form of this curve for efficient, secure, and easy-to-implement elliptic-curve Diffie–Hellman
key exchange. Originally, the name “Curve25519” referred to this key-exchange protocol,
but Bernstein recently suggested to rename the scheme to X25519 and to use the name
Curve25519 for the underlying elliptic curve [6]. We will adopt this new notation in this
paper.

Several works describe the excellent performance of this key-agreement scheme on large
desktop and server processors, for example, the Intel Pentium M [5], the Cell Broadband
Engine [13], ARM Cortex-A8 with NEON [7], or Intel Nehalem/Westmere [8,9].

1.1 Contributions of this paper

This paper presents implementation techniques of X25519 for three different, widely
used embedded microcontrollers. All implementations are optimized for high speed,
while executing in constant time, and they set new speed records for constant-time
variable-base-point scalar multiplication at the 128-bit security level on the respective archi-
tectures.

To some extent, the results presented here are based on earlier results by some of the
authors. However, this paper does not merely collect those previous results, but significantly
improves performance. Specifically, the software for the AVR ATmega family of micro-
controllers presented in this paper takes only 13,900,397 cycles and is thus more than a
factor of 1.6 faster than the X25519 software described by Hutter and Schwabe [23]. The
X25519 implementation for MSP430Xs with 32-bit multiplier presented in this paper takes
only 5,301,792 cycles and is thus more than a factor of 1.2 faster, whereas the implemen-
tation for MSP430Xs with 16-bit multiplier presented in this paper takes 7,933,296 cycles
and is more than a factor of 1.15 faster than the software presented by Hinterwälder et al.
[21].

Furthermore, this paper is the first to present a X25519 implementation optimized for the
verywidely usedARMCortex-M0 architecture. The implementation requires only 3,589,850
cycles, which is a factor of 3 faster than the scalar multiplication on the NIST P-256 curve
described by Wenger et al. [45].

1.2 A note on side-channel protection

All the software presented in this paper avoids secret-data-dependent branches and secretly
indexed memory access and is thus inherently protected against timing attacks. Protection
against power-analysis (and EM-analysis) attacks is more complex. For example, the imple-
mentation of the elliptic-curve scalar multiplication by Wenger et al. [45] includes an initial
randomization of the projective representation (and basic protection against fault-injection
attacks). The authors claim that their software is “secure against (most) side-channel attacks”.
Under the assumption that good randomness is readily available (which is not always the
case in embedded systems), projective randomization indeed protects against first-order DPA
attacks and the recently proposed online-template attacks [4]. However, it does not protect
against horizontal attacks [12] or higher-order DPA attacks. DPA attacks are mainly an issue
if X25519 is used for static Diffie–Hellman key exchange with long-term keys; they are not
an issue at all for ephemeral Diffie–Hellman without key re-use.

Adding projective randomization would be easy (assuming a reliable source of ran-
domness) and the cost would be negligible, but we believe that serious protection against
side-channel attacks requires more investigation, which is beyond the scope of this paper.

123

496 M. Düll et al.

1.3 Availability of software

We placed all the software described in this paper into the public domain. The software
for AVR ATmega is available at http://munacl.cryptojedi.org/curve25519-atmega.shtml; the
software for TI MSP430 is available at http://munacl.cryptojedi.org/curve25519-msp430.
shtml; and the software for ARM Cortex M0 is available at http://munacl.cryptojedi.org/
curve25519-cortexm0.shtml.

1.4 Organization of this paper

Section 2 reviews theX25519 elliptic-curveDiffie–Hellman key exchange protocol. Section 3
describes our implementation for AVR ATmega, Sect. 4 describes our implementation for
MSP430X, and Sect. 5 describes our implementation for Cortex-M0. Each of these three
sections first briefly introduces the architecture, then gives details of the implementation
of the two most expensive operations, namely field multiplication and squaring, and then
concludes with remarks on other operations and the full X25519 implementation. Finally,
Sect. 6 presents our results and compares them to previous results.

2 Review of X25519

X25519 elliptic-curve Diffie–Hellman key-exchange was introduced in 2006 by Bernstein
[5]. It is based on arithmetic on the Montgomery curve Curve25519 with equation

E : y2 = x3 + 486662x2 + x

defined over the field F2255−19. Computation of a shared secret, given a 32-byte public key
and a 32-byte secret key, proceeds as follows: The 32-byte public key is the little-endian
encoding of the x-coordinate of a point P on the curve; the 32-byte secret key is the little-
endian encoding of a 256-bit scalar s. The most significant bit of this scalar is set to 0, the
second-most significant bit of the scalar is set to 1, and the 3 least significant bits of the scalar
are set to 0. The 32-byte shared secret is the little-endian encoding of the x-coordinate of
[s]P . Computation of a Diffie–Hellman key pair uses the same computation, except that the
public key is replaced by the fixed value 9, which is the x-coordinate of the chosen base point
of the elliptic curve group.

In all previous implementations of X25519, and also in our implementations, the x-
coordinate of [s]P is computed by using the efficient x-coordinate-only formulas for
differential addition and doubling introduced by Montgomery [32]. More specifically, the
computation uses a sequence of 255 so-called “ladder steps”; each ladder step performs one
differential addition and one doubling. Each ladder step is followed by a conditional swap
of two pairs of coordinates. The whole computation is typically calledMontgomery ladder;
a pseudo-code description of the Montgomery ladder is given in Algorithm 1. The cswap
function in that algorithms swaps its first two arguments X1 and X2 if its third argument
c = 1. This could easily be achieved through an if-statement, but all of our implementations
instead use bit-logical operations for the conditional swap to eliminate a possible timing
side-channel. In all our implementations we achieve this by computing a temporary value
t = (X1 ⊕ X2) × c and further executing an XOR of this result with the original values X1

and X2, i.e. X1 = X1 ⊕ t and X2 = X2 ⊕ t .
For the ladder-step computation we use formulas that minimize the number of temporary

(stack) variables without sacrificing performance. Our implementations need stack space for

123

http://munacl.cryptojedi.org/curve25519-atmega.shtml
http://munacl.cryptojedi.org/curve25519-msp430.shtml
http://munacl.cryptojedi.org/curve25519-msp430.shtml
http://munacl.cryptojedi.org/curve25519-cortexm0.shtml
http://munacl.cryptojedi.org/curve25519-cortexm0.shtml

High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers 497

Algorithm 1 The Montgomery ladder for x-coordinate-based scalar multiplication on E :
y2 = x3 + 486662x2 + x
Input: A 255-bit scalar s and the x-coordinate xP of some point P
Output: (X[s]P , Z[s]P) fulfilling x[s]P = X[s]P/Z[s]P
X1 ← 1; Z1 ← 0; X2 ← xP ; Z2 ← 1
p ← 0
for i ← 254 downto 0 do

b ← bit i of s
c ← b ⊕ p
p ← b
(X1, X2) ← cswap(X1, X2, c)
(Z1, Z2) ← cswap(Z1, Z2, c)
(X1, Z1, X2, Z2) ← ladderstep(xP , X1, Z1, X2, Z2)

end for
return (X1, Z1)

Algorithm 2 Single Montgomery ladder step on Curve25519
function ladderstep(xD, X1, Z1, X2, Z2)

T1 ← X2 + Z2
X2 ← X2 − Z2
Z2 ← X1 + Z1
X1 ← X1 − Z1
T1 ← T1 · X1
X2 ← X2 · Z2
Z2 ← Z2 · Z2
X1 ← X1 · X1
T2 ← Z2 − X1
Z1 ← T2 · a24

Z1 ← Z1 + X1
Z1 ← T2 · Z1
X1 ← Z2 · X1
Z2 ← T1 − X2
Z2 ← Z2 · Z2
Z2 ← Z2 · xD
X2 ← T1 + X2
X2 ← X2 · X2
return (X1, Z1, X2, Z2)

end function

only two temporary field elements. Algorithm 2 presents a pseudo-code description of the
ladder step with these formulas, where a24 denotes the constant (486662+ 2)/4 = 121666.

Note that each ladder step takes 5multiplications, 4 squarings, 1multiplication by 121666,
and a few additions and subtractions in the finite field F2255−19. At the end of theMontgomery
ladder, the result x is obtained in projective representation, i.e., as a fraction x = X/Z .
X25519 uses one inversion and one multiplication to obtain the affine representation. In most
(probably all) previous implementations, and also in our implementations, the inversion uses
a sequence of 254 squarings and 11 multiplications to raise Z to the power of 2255 − 21. The
total computational cost of X25519 scalar multiplication in terms of multiplications (M) and
squarings (S) is thus 255 · (5M + 4 S) + 254 S + 12M = 1287M + 1274 S.

3 Implementation on AVR ATmega

3.1 The AVR ATmega family of microcontrollers

The AVR ATmega is a family of 8-bit microcontrollers. The architecture features a register
file with 32 8-bit registers named R0, . . . ,R31. Some of these registers are special: The
register pair (R26,R27) is aliased as X, the register pair (R28,R29) is aliased as Y, and the
register pair (R30,R31) is aliased as Z. These register pairs are the only ones that can be

123

498 M. Düll et al.

used as address registers for load and store instructions. The register pair (R0,R1) is special
because it always holds the 16-bit result of an 8×8-bit multiplication.

The instruction set is a typical 8-bit RISC instruction set. The most important arith-
metic instructions for big-integer arithmetic—and thus also large-characteristic finite-field
arithmetic and elliptic-curve arithmetic—are 1-cycle addition (ADD) and addition-with-carry
(ADC) instructions, 1-cycle subtraction (SUB) and subtraction-with-borrow (SBC) instruc-
tions, and the 2-cycle unsigned-multiply (MUL) instruction. Furthermore, our squaring routine
(see below) makes use of 1-cycle left-shift (LSL) and left-rotate (ROL) instructions. Both
instructions shift their argument to the left by one bit and both instructions set the carry
flag if the most-significant bit was set before the shift. The difference is that LSL sets the
least-significant bit of the result to zero, whereas ROL sets it to the value of the carry flag.

The AVR instruction set offers multiple instructions for memory access. All these
instructions take 2 cycles. The LD instruction loads a value from memory to an internal
general-purpose register. The ST instruction stores a value from register to memory. An
important feature of the AVR is the support of pre-decrement and post-increment addressing
modes that are available for the X, Y, and Z registers. For the registers Y and Z there also
exist a displacement addressing mode where data in memory can be indirectly addressed
by a fixed offset. This has the advantage that only a 16-bit base address needs to be stored
in registers while the addressing of operands is done by indirect displacement and without
changing the base-address value. We applied addressing with indirect displacement as much
as possible in our code to increase efficiency.

AVR ATmega microcontrollers come in various different memory configurations. For
example, our benchmarking platform features an ATmega2560 with 256KB of ROM and
8KB of RAM. Other common configurations are the ATmega128 with 128KB of ROM and
4KB of RAM and the ATmega328 with 32KB of ROM and 2KB of RAM.

All cycle counts for arithmetic operations reported in this section have been obtained from
a cycle-accurate simulation (using the simulator of the Atmel AVR Studio).

3.2 Multiplication

In our AVR implementation we use an unsigned radix-28 representation for field elements.
An element f in F2255−19 is thus represented as f = ∑31

i=0 fi28i =̂ (f0, f1, . . . f31) with
fi ∈ {0, . . . , 255}.
For fast 256-bit-integer multiplication on the AVR we use the recently proposed highly

optimized 3-level Karatsubamultiplication routine byHutter and Schwabe [24].More specif-
ically, we use the branch-free variant of their software, which is slightly slower than the
“branched” variant but allows easier verification of constant-time behavior. This branch-free
subtractive Karatsuba routine takes 4961 cycles without function-call overhead and thus out-
performs previous results presented by Hutter andWenger [22], and by Seo and Kim [38,39]
by more than 18%.

Not only is the Karatsuba multiplier from [24] faster than all previous work, it is also
smaller than previous fully unrolled speed-optimizedmultiplication routines. For some appli-
cations, the size of 7616 bytes might still be considered excessive so we investigated what
the time-area tradeoff is for not fully unrolling and inlining Karatsuba. A multiplier that
uses 3 function calls to a 128×128-bit multiplication routine instead of fully inlining those
half-size multiplication takes 5064 cycles and has a size of only 3366 bytes. Note that a
single 2-level 128×128-bit Karatsuba multiplication takes 1369 cycles, therefore 957 cycles
are due to the higher-level Karatsuba overhead. Because of the better speed/size trade-off,
we therefore decided to integrate the latter multiplication method needing 103 cycles in

123

High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers 499

addition but saves almost 56% of code size. Section 6 reports results for X25519 for both
an implementation with the faster multiplier from [24] and the smaller and slightly slower
multiplier.

The details of the size-reduced Karatsuba multiplication are as follows. Basically, we
split the 256 × 256-bit multiplication into three 128 × 128-bit multiplications. We follow
the notation of [24] and denote the results of these three smaller multiplications with L for
the low part, H for the high part, and M for the middle part. Each of these multiplications is
implemented as a 2-level refined Karatsubamultiplication and is computed via a function call
named MUL128. This function expects the operands in the registers X and Y and the address
of the result in Z. After the low-word multiplication L , we increment the operand and result-
address pointers and perform the high-word multiplication H by a second call to MUL128.
Note that here we do not merge the refined Karatsuba addition of the upper half of L into
the computation of H as described in [24] because we would need additional conditions in
MUL128which we avoid in general. Instead, we accumulate the higher words of L right after
the computation of H . This requires the additional loading of all operands and the storing of
the accumulated result back to memory—but this can be done in the higher-level Karatsuba
implementation which makes our code more flexible and smaller in size. Finally, we prepare
the input operands for the middle-part multiplication M by a constant-time calculation of the
absolute differences and a conditional negation.

3.3 Squaring

We implemented a dedicated squaring function to improve speed of X25519. For squaring,
we also made use of Karatsuba’s technique but only use 2 levels and make use of some
simplifications that are applicable in general. For example, in squaring many cross-product
terms are equal so that the computation of those terms needs to be performed only once.
These terms can then be simply shifted to the left in order to get doubled. Furthermore, it
becomes obvious that by calculating the absolute difference of the input for the middle-part
Karatsuba squaring M is always positive. Thus also no conditional negation is required. For
squaring, we hence do not need to distinguish between a “branched” and a “branch-free”
variant as opposed to the multiplication proposed in [24].

Similar to multiplication, we implemented a squaring function named SQR128, which is
then called in a higher-level 256-bit squaring implementation. The 128-bit squaring operation
needs 872 cycles. Again we use two versions of squaring, one with function calls and one
fully inlined version. The fully inlined version needs a total of 3324 cycles.

3.4 Putting it together

Besides 256-bit multiplication and squaring, we implemented a separate modular reduction
function as well as 256-bit modular addition and subtraction. All those implementations are
implemented in assembly to obtain best performance.

During scalar multiplication in X25519, we decided to reduce all elements modulo 2256−
38 andperforma “freezing” operation at the end ofX25519 tofinally reducemodulo 2255−19.
This has the advantage thatmodular reduction is simplified throughout the entire computation
because the intermediate results need not be fully reduced but can be almost reduced which
saves additional costly reduction loops. In total, modular addition and subtraction need 592
cycles. Modular reduction needs 780 cycles.

123

500 M. Düll et al.

The Montgomery arithmetic on Curve25519 requires a multiplication with the curve
parameter a24 = 121666 (see Algorithm2 for the usage in the Montgomery-ladder step).
We specialized this multiplication in a dedicated function called fe25519_mul121666.
It makes use of the fact that the constant has 17 bits; multiplying by this constant needs only
2 multiplication instructions and several additions per input byte. The multiplication of a
256-bit integer by 121666 needs 695 cycles. All these cycle counts are for the fully speed
optimized version of our software, which unrolls all loops. Our smaller software for X25519
uses (partially) rolled loops which take a few extra cycles.

4 Implementation on MSP430X

This section describes our implementation of X25519 onMSP430Xmicrocontrollers, which
is based on and improves the software presented in [21]. We implemented X25519 for
MSP430X devices that feature a 16-bit hardware multiplier as well as for those that feature
a 32-bit hardware multiplier. We present execution results measured on an MSP430FR5969
[41], which has an MSP430X CPU, 64KB of non-volatile memory (FRAM), 2kB SRAM
and a 32-bit memory-mapped hardware multiplier. The result of a 16× 16-bit multiplication
is available in 3 cycles on both types of MSP430X devices, those that have a 32-bit hard-
ware multiplier as well as those that have a 16-bit hardware multiplier (cf. [41,42]). Thus, our
measurement results can be generalized to other microcontrollers from theMSP430X family.

All cycle counts presented in this section were obtained when executing the code on
a MSP-EXP430FR5969 Launchpad development board and measuring the execution time
using the debugging functionality of the IAR Embedded Workbench IDE.

4.1 The MSP430X

TheMSP430Xhas a 16-bit RISCCPUwith 27 core instructions and 24 emulated instructions.
TheCPUhas 16 16-bit registers. Of those, onlyR4 toR15 are freely usableworking registers,
and R0 to R3 are special-purpose registers (program counter, stack pointer, status register,
and constant generator). All instructions execute in one cycle, if they operate on contents that
are stored in CPU registers. However, the overall execution time for an instruction depends
on the instruction format and addressing mode. The CPU features 7 addressing modes.
While indirect auto-increment mode leads to a shorter instruction execution time compared
to indexed mode, only indexed mode can be used to store results in RAM.

We considerMSP430Xmicrocontrollers, which feature amemory-mapped hardwaremul-
tiplier that works in parallel to the CPU. Four types of multiplications, namely signed and
unsigned multiply as well as signed and unsigned multiply-and-accumulate are supported.
The multiplier registers have to be loaded with CPU instructions. The hardware multiplier
stores the result in two (in case of 16-bit multipliers) or four (in case of 32-bit multipli-
ers) 16-bit registers. Further a SUMEXT register indicates for the multiply-and-accumulate
instruction, whether accumulation has produced a carry bit. However, it is not possible to
accumulate carries in SUMEXT. The time required for the execution of a multiplication is
determined by the time that it takes to load operands to and store results from the peripheral
multiplier registers.

The MSP430FR5969 (the target under consideration) belongs to a new MSP430X series
featuring FRAM technology for non-volatile memory. This technology has two benefits
compared to flash memory. It leads to a reduced power consumption during memory writes
and further increases the number of possible write operations. However, as a drawback,

123

High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers 501

while the maximum operating frequency of the MSP430FR5969 is 16 MHz, the FRAM can
only be accessed at 8 MHz. Hence, wait cycles have to be introduced when operating the
MSP430FR5969 at 16 MHz. For all cycle counts that we present in this section we assume
a core clock frequency of 8 MHz. Increasing this frequency on the MSP430FR5969 would
incur a penalty resulting from those introduced wait cycles. Note, that this is not the case for
MSP430X devices that use flash technology for non-volatile memory.

4.2 Multiplication

In our MSP430X implementation we use an unsigned radix-216 representation for field ele-
ments. An element f in F2255−19 is thus represented as f = ∑15

i=0 fi216i =̂ (f0, f1, . . . f15)
with fi ∈ {0, . . . , 216 − 1}. In order to be conform with other implementations of X25519,
we consider inputs and outputs to and from the scalar multiplication on Curve25519 to be
32-byte arrays. Thus conversions to and from the used representation have to be executed
at the beginning and the end of the scalar multiplication. As reduction modulo 2255 − 19
requires bit shifts in the chosen representation of field elements, we reduce intermediate
results modulo 2256 − 38 during the entire execution of the scalar multiplication and only
reduce the final result modulo 2255 − 19.

Hinterwälder, Moradi, Hutter, Schwabe, and Paar presented and compared implemen-
tations of various multiplication techniques on the MSP430X architecture in [21]. They
considered the carry-save, operand-caching and constant-time Karatsuba multiplication, for
which they used the operand-caching technique for the computation of intermediate results.
Among those implementations, the Karatsuba implementation performed best. To the best
of the authors knowledge, the fastest previously reported result for 256-bit multiplication on
MSP430X devices was presented by Gouvêa et al. [18]. In their work the authors have used
the product-scanning technique for the multi-precision multiplication. We implemented and
compared the product-scanning multiplication and the constant-time Karatsuba multiplica-
tion, and this time used the product-scanning technique for the computation of intermediate
results of the Karatsuba implementation. It turns out that on devices that have a 16-bit
hardware multiplier, the constant-time Karatsuba multiplication performs best. On devices
that have a 32-bit hardware multiplier the product-scanning technique performs better than
constant-time Karatsuba, as it makes best use of the 32-bit multiply-and-accumulate unit of
the memory-mapped hardware multiplier. We thus use constant-time Karatsuba in our imple-
mentation of X25519 on MSP430X microcontrollers that have a 16-bit hardware multiplier
and the product-scanning technique for our X25519 implementation onMSP430Xs that have
a 32-bit hardware multiplier.

In our product-scanningmultiplication implementation, where h = f ×g mod 2256−38
is computed, we first compute the coefficients of the double-sized array, which results from
multiplying f with g and then reduce this result modulo 2256 − 38. We only have 7 general-
purpose registers available to store input operands during themultiplication operation.Hence,
we cannot store all input operands inworking registers, but we keep asmany operands in them
as possible. For the computation of a coefficient of the double-sized array, which results from
multiplying f by g, one has to access the contents of f in incrementing and g in decrementing
order, e.g. the coefficient h2 is computed as h2 = f0g2 + f1g1 + f2g0. As there is no indirect
auto-decrement addressing mode available on the MSP430X microcontroller, we put the
contents of g on the stack in reverse order at the beginning of the multiplication, which
allows us to access g using indirect auto-increment addressing mode for the remaining part
of the multiplication. Including function-call and reduction overhead, our 32-bit product-

123

502 M. Düll et al.

scanning multiplication implementation executes in 2079 cycles on the MSP430FR5969.
Without function call and modular reduction, it executes in 1693 cycles.

For MSP430X microcontrollers that have a 16-bit hardware multiplier we imple-
mented the constant-time one-level Karatsuba multiplication (refer to Sect. 3). We use the
product-scanning technique to compute the three intermediate results L , H and M . For the
computationof L , H andM wehave sevenworking registers available to store input operands.
Hence, we can store almost the full input that is accessed in decrementing order in working
registers and access the eighth required operand of it using indirect addressing mode. Again
we first compute the double-sized array resulting from the multiplication of f and h and then
reduce this result modulo 2256 − 38. Our modular multiplication implementation dedicated
for devices that have a 16-bit hardware multiplier executes in 3193 cycles including function
call and modular reduction, and in 2718 cycles excluding those.

4.3 Squaring

In order to compute h = f 2 mod 2256 −38, we first compute a double-sized array resulting
from squaring f and then reduce this result modulo 2256 − 38. Similar to our multiplication
implementation, we use the product-scanning technique for our implementation targeting
devices that have a 32-bit hardware multiplier. We again store the input f on the stack in
reverse order, allowing us to use indirect auto-increment addressing mode to access elements
of f in decrementing order. As mentioned in Sect. 3, many multiplications of cross-product
terms occur twice during the execution of the squaring operation. These do not have to be
computed multiple times, but can be accounted for by multiplying an intermediate result
by two, i.e. shifting it to the left by one bit. As shift operations on the result registers of
the memory-mapped hardware multiplier are expensive, we move results of a multiplication
back to CPU registers before executing this shift operation. Including function call and mod-
ular reduction overhead our squaring implementation executes in 1563 cycles on MSP430X
microcontrollers that have a 32-bit hardware multiplier. Without reduction and function call
this number decreases to 1171 cycles.

Our squaring implementation for MSP430X microcontrollers that have a 16-bit hardware
multiplier follows the constant-timeKaratsuba approach, where intermediate results are com-
puted using the product-scanning technique. This function executes in 2426 cycles including
function call and reduction overhead and in 1935 cycles without.

4.4 Putting it together

We implemented all finite-field arithmetic in assembly language and all curve arithmetic as
well as the conversion to and from the internal representation in C.

The x-coordinate-only doubling formula requires a multiplication with the constant
121666. One peculiarity of the MSP430 hardware multiplier greatly improves the perfor-
mance of the computation of h = f · 121666 mod 2256 − 38, which is that contents of the
hardware multiplier’s MAC registers do not have to be loaded again, in case the processed
operands do not change. In case of having a 32-bit hardwaremultiplier we proceed as follows:
The number 121666 can be written as 1 · 216 + 56130. We store the value 1 in MAC32H and
56130 in MAC32L and then during each iteration load two consecutive coefficients of the
input array f , i.e. fi and fi+1 to OP2L and OP2H for the computation of two coefficients of
the resulting array namely hi and hi+1. The array that results from computing f 2 is only two
elements longer than the input array, which we reduce as the next step. Using this method, the

123

High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers 503

multiplication with 121666 executes in 352 cycles on MSP430s that have a 32-bit hardware
multiplier, including function call and reduction.

For the 16-bit hardware multiplier version, we follow a slightly different approach. As
we cannot store the full number 121666 in the input register of the hardware multiplier, we
proceed as follows: To compute h = f ·121666 mod 2256 −38 we store the value 56130 in
the hardware-multiplier register MAC. We then compute each hi as hi = fi ·56130+ fi−1 for
i ∈ [1 . . . 15] such that we add the (i−1)th input coefficient to the multiplier’s result registers
RESLO and RESHI. This step takes care of the multiplication with 1 · 216 for the (i − 1)th
input coefficient. We further load the i th input coefficient to the register OP2, thus executing
the multiply-and-accumulate instruction to compute the i th coefficient of the result. Special
care has to be taken with the coefficient h0, where h0 = f0 · 56130 + 38 · f15. The method
executes in 512 cycles including function call and reduction overhead.

The reduction of a double-sized array modulo 2256 − 38 is implemented in a similar
fashion. We store the value 38 in the MAC-register of the hardware multiplier. We then add
the i th coefficient of the double-sized input to the result registers of the hardware multiplier
and load the (i + 16)th coefficient to the OP2-register. In the 32-bit version of this reduction
implementation the only difference is that two consecutive coefficients can be processed in
each iteration, i.e. the i th and (i + 1)th coefficients are added to the result registers and and
the (i + 16)th and (i + 17)th coefficient are loaded to the OP2-registers.

The modular addition h = f + g mod 2256 − 38, which executes in 186 cycles on the
MSP430, first adds the two most significant words of f and g. It then extracts the carry and
the most significant bit of this result and multiplies those with 19. This is added to the least
significant word of f . All other coefficients of f and g are added with carry to each other.
The carry resulting from the addition of the second most significant words of f and g is
added to the sum that was computed first.

For the computation of h = f − g, we first subtract g with borrow from f . If the result
of the subtraction of the most significant words produces a negative result, the carry flag is
cleared, while, if it produces a positive result the carry flag is set. We add this carry flag to a
register tmp that was set to 0xffff before, resulting in the contents of tmp to be 0xffff
in case of a negative result and 0 in case of a positive result of the subtraction. We AND tmp
with 38, subtract this from the lowest resulting coefficient and ripple the borrow through.
Again a possible resulting negative result of this procedure is reduced using the samemethod,
minus the rippling of the borrow. This modular subtraction executes in the same time as the
modular addition, i.e. in 199 cycles including function-call overhead.

5 Implementation on ARM Cortex-M0

5.1 The ARM Cortex M0

TheARMCortexM0 andCortexM0+ cores (M0) are the smallest members of ARM’s recent
Cortex-M series, targeting low-cost and low-power embedded devices. The M0 implements
a load-store architecture. The register file consists of 16 registers r0, . . . ,r15, including 3
special-purpose registers for the program counter (pc) in r15, the return addresses (lr) in
r14, and the stack pointer (sp) in r13.

Unlike its larger brothers from the ARM Cortex M series, the M0 encodes arithmetic and
logic instructions exclusively in 16 bits. This 16-bit instruction encoding results in constraints
with respect to register addressing. As a result, the eight lower registers r0, . . . ,r7 can be

123

504 M. Düll et al.

used much more flexibly than the upper registers r8, . . . ,r14. More specifically, only the
lower registers r0, . . . ,r7 may be used for pointer-based memory accesses, as destination
of a load or source of a store, and for holding memory-address information. Also almost all
arithmetic and logic instructions like addition and subtraction only accept lower registers as
operands and results. The upper registers are mainly useful as fast temporary storage, i.e., in
register-to-register-move instructions.

TheM0 core supports a multiplication instruction which receives two 32-bit operands and
produces a 32-bit result. Note that this is substantially different from the AVR ATmega and
the MSP430X; on the M0 the upper half of the 64-bit result is cut off. For our purpose of
fast multi-precision integer arithmetic, we consider the multiplier as a 16-bit multiplier. The
main difference to AVR andMSP430X is then, that the result is produced in only one register.
The M0 is available in two configurations, where multiplication either costs 1 cycle or 32
cycles. In this paper we focus on M0 systems featuring the single-cycle hardware multiplier,
a design choice present on most M0 implementations that we are aware of. All arithmetic
and logic operations, including the multiplication operate on 32-bit inputs and outputs. They
all require a single clock cycle.

The M0 uses a von Neumann memory architecture with a single bus being used for both,
code and data. Consequently all load and store instructions require one additional cycle
for the instruction fetch. This constitutes one of the key bottlenecks to consider for the
implementation of the arithmetic algorithms. Since a typical load/store instruction requires
2 cycles, while an arithmetic or multiplication operation only takes a single cycle, it is very
important to make best usage of the limitedmemory bandwidth. Consequently it is part of our
strategy to make loads and stores always operate on full 32-bit operands and use the load and
store multiple (LDM/STM) instructions wherever possible. These LDM/STM instructions
transfer n (up to eight) 32-bit words in one instruction, with a cost of only n + 1 cycles.

Like the other two platforms considered in this paper, the ARM Cortex-M0 also comes
in very different memory configurations. The STM32F0-Value chips have between 16 and
256KB of ROM and between 4 and 32KB of RAM. For our benchmarks and tests we used
a development board with an STM32F051R8T6 microcontroller with 64KB of ROM and
8KB of RAM. All cycle counts for arithmetic operations reported in this section have been
obtained using the systick counter on this development board.

In comparison to the other architectures discussed in this paper, the M0 platform benefits
from its single-cycle 32×32 → 32-bit multiplication instruction that directly operates on the
general-purpose register file. The weakness of this architecture is its slow memory interface
and the restrictions resulting from the 16-bit encoding of instructions: the small register set of
only 8 registers r0, . . . ,r7 that can be used in arithmetic instructions and memory access.

5.2 Multiplication

In our Cortex-M0 implementation we use an unsigned radix-232 representation for field
elements. An element f inF2255−19 is thus represented as f = ∑7

i=0 fi232i =̂ (f0, f1, . . . f7)
with fi ∈ {0, . . . , 232 − 1}.

It turns out that the most efficient strategy for multiplication of n = 256-bit operands
is a three-level refined Karatsuba method. To obtain a constant-time behavior and avoid
the carry propagation, we use a variant of subtractive Karatsuba. The n-bit input operands
A = A� +2n/2Ah and B = B� +2n/2Bh are first decomposed into a lower and a higher half.
Then one computes the partial products L = Ah · Bh and and H = Ah · Bh . The subtractive
Karatsuba formulas involve a product term M = (A� − Ah) · (B� − Bh) which may be either
positive or negative. The full result may then be calculated by use of the subtractive Karatsuba

123

High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers 505

formula A · B = L + 2n/2(L + H − M) + 2n · H . By use of the refined Karatsuba method,
we reduce the storage needed to calculate the middle part M and at the same time we save
several additions on each Karatsuba level. Analysis of the low-level constraints of the CPU
architecture revealed that it is considerably more efficient not to use a signed multiplication
yielding M directly but to first calculate the absolute value |M | = |A� − Ah | · |B� − Bh |
and separately keep track of the sign t of the result. This stems mainly from the observation
that sign changes (i.e. two’s complements) of operands may be calculated in-place without
requiring temporary spill registers.

Actually the variant in our M0 implementation swaps the difference of one factor of |M |,
i.e., |M | = |A� − Ah | · |Bh − B�| and compensates for this by toggling the sign bit t . This
makes branch-free combination of the partial results slightly more efficient. The calculation,
thus, involves calculating the absolute value of the differences |A� − Ah | and |Bh − B�|, the
sign t and a conditional negation of the positive result |M |. As in the AVR implementation,
we do not use any conditional branches, but instead use conditional computation of the two’s
complements. Note that the conditional calculation of the two’s complement involves first a
bitwise exclusive or operation with either 0 or −1, depending on the sign. Subsequently a
subtraction operation of either −1 or 0 follows, being equivalent to addition of 1 or 0.

For our implementation, we represent the field elements as arrays of eight 32-bit words.
Since the architecture only provides a precision of 16-bit on its multiplier, we obtain a 32-bit
multiplication with 17 arithmetic instructions: 4 to convert the registers from 32 to 16 bits,
4 multiplications, 1 to save an extra input (multiplication overwrites one of the inputs), and
8 instructions (4 additions and 4 shifts) to add the middle part into the final result. Since the
32-bit multiplication requires at least 5 registers, register-to-register moves between the low
and high part of the register file are required to perform more than one multiplication.

We obtain the 256-bit product using three 128-bit multiplications, each one with a cost
of 332 cycles. The 128-bit multiplier uses three 64-bit multiplications which only take 81
cycles each. The full 256-bit multiplication requires 1294 cycles, about 700 cycles faster than
a fully unrolled product-scanning multiplication.

5.3 Squaring

For squaring we also use three levels of refined subtractive Karatsuba. We use the same two
observations as for the AVR to improve squaring performance compared to multiplication
performance. First all of the partial results M , L and H entering the Karatsuba formula
are solely determined by squaring operations, i.e. no full multiplication is involved. Con-
ventional squaring of an operand A = A� + 2k Ah would have required two squarings of
the lower and upper halves A2

� and A2
h and one multiplication for the mixed term A� · Ah .

Aside from arithmetic simplification, a big benefit of avoiding this mixed-term multiplica-
tion is that one input operand fetch and register spills to memory may be spared because for
squarings we have only one input operand. This benefit clearly outweighs the extra com-
plexity linked to the additional additions and subtractions within the Karatsuba formula.
Second it is easily observed that the sign of the operand M is known to be positive from
the very beginning. The conditional sign change of the intermediate operand M is thus not
necessary.

The 64-bit squaring takes 53 cycles using only seven registers; our 128-bit squaring takes
only 206 cycles, with the advantage thatwe handle all temporary storagewith the upper half of
the register file, i.e. no use of the stack is required.Our 256-bit squaring algorithm requires 857
cycles for 256-bit operands, in comparison to 1110 cycles for an unrolled product-scanning
squaring. As expected, the benefit of using Karatsuba is much smaller than for multiplication.

123

506 M. Düll et al.

Table 1 Cycle count on ARM
Cortex M0 with single-cycle
multiplier for assembly
optimized implementation and
optimization for speed
Modular addition and
multiplication with 121666
include reduction modulo
2256 − 38

Operation Clock cycles

Modular addition 109

Modular multiplication by 121666 184

Reduction modulo 2256 − 38 175

256 × 256-Bit multiplication 1294

256-Bit squaring 857

Still the difference between squaring and multiplication is significant, clearly justifying to
use a specialized squaring algorithm when optimizing for speed.

5.4 Putting it together

For multiplication and squaring we did not merge multiplication and reduction due to the
high register pressure. Merging the operations would have led to many register spills. For
these operations, we first implement a standard long-integer arithmetic and reduce the result
in a second step. We use separate functions for multiplication and reduction

Throughout theX25519 calculationwe reducemodulo 2256−38 and even allow temporary
results to reach up to 2256 − 1. Full reduction is used only for the final result.

For addition, subtraction and multiplication with the curve constant 121666, we use a
different strategy and reduce the result on the fly in registers before writing results back to
memory. For these simple operations, it is possible to perform all of the arithmetic and reduc-
tion without requiring register spills to the stack. The cycle counts for these operations are
summarized in Table1. Multiplication with the curve constant is implemented by a combina-
tion of addition andmultiplication. Since the constant has 17 significant bits, multiplication is
implemented by a combination of a 16-bitmultiplication and a 16-bit shift-and-add operation.

The strategy for reducing on the fly consists of two steps. First, the arithmetic operation
(addition, subtraction, multiplication by 121666) is implemented on the most significant
word. This generates carries in bits 255 and higher that need to be reduced. We strip off these
carries resulting from the most significant word (setting bits 255 and higher of the result to
zero) and merge the arithmetic for the lower words with reduction. This may result in an
additional carry into the most significant word. However, these carries may readily be stored
in bit 255 of the most significant word. This way a second carry chain is avoided.

6 Results and comparison

This section describes our implementation results for the X25519 Diffie–Hellman key-
exchange on the aforementioned platforms. We present performance results in terms of
the required clock cycles for one scalar multiplication. We furthermore report the required
storage and RAM space. A full Diffie–Hellman key exchange requires one scalar multipli-
cation of a fixed-basepoint and one variable-point scalar multiplication. Our software does
not specialize fixed-basepoint scalar multiplication; the cost for a complete key exchange
can thus be obtained by multiplying our cycle counts for one scalar multiplication by two.
We compare our results to previous implementations of elliptic-curve scalar multiplication at
the 128-bit security level (and selected high-performance implementations at slightly lower
security levels) on the considered platforms.

123

High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers 507

6.1 Results and comparison on AVR ATmega

Our results for X25519 scalar multiplication on the AVRATmega family of microcontrollers
and a comparison with previous work are summarized in Table 2. As described in Sect. 3,
all low-level functions are written in assembly. The high-level functionality is written in
C; for compilation we used gcc-4.8.1 with compiler options -mmcu=atmega2560 -O3
-mcall-prologues. Unlike the cycle counts for subroutines reported in Sect. 3, all cycle
counts reported for full elliptic-curve scalarmultiplication reported hereweremeasured using
the built-in cycle counters on an Arduino MEGA development board with an ATmega2560
microcontroller. To achieve sufficient precision for the cycle counts, we combined an 8-bit
and a 16-bit cycle counter to a 24-bit cycle counter.

Many implementations of elliptic-curve cryptography exist for theAVRATmega; however,
most of them aim at lower security levels of 80 or 96 bits. For example the TinyECC library
by Liu and Ning implements ECDSA, ECDH, and ECIES on the 128-bit, 160-bit, and 192-
bit SECG curves [27]. NanoECC by Szczechowiak, Oliveira, Scott, Collier, and Dahab uses
the NIST K-163 curve [40]. Also recent ECC software for the AVR ATmega uses relatively
low-security curves. For example, Liu et al. [28] report new speed records for elliptic-curve
cryptography on the NIST P-192 curve. Also Dalin, Großschädl, Liu, Mßller, and Zhang
focus on the 80-bit and 96-bit security levels for their optimized implementation of ECC
with twisted Edwards curves presented in [14].

Table 2 summarizes the results for elliptic-curve variable-basepoint scalar multiplication
on curves that offer at least 112 bits of security. Not only are both of our implementations
more than 1.5 times faster than all previous implementations of ECC at the 128-bit security
level, the small implementation is also considerably smaller than all previous implemen-
tations. As also stated in the footnote, the size comparison with the MoTE-ECC software
presented by Liu, Wenger, and Großschädl [29] is not fair, because their software optimizes
also fixed-basepoint scalar multiplication and claims a performance of 30,510,000 cycles
for ephemeral Diffie–Hellman (one fixed-point and one variable-point scalar multiplication).
Even under the assumption that this is the right measure for ECDH performance—which
means that ephemeral keys are not re-used for several sessions, for a discussion, see [11,
Appendix D]—our small implementations offers better speed and size than the one pre-
sented in [29]. The only implementation that is smaller than ours and offers reasonably
close performance is the one by Gura, Patel, Wander, Eberle, and Chang Shantz presented
in [20]; however, that implementation is using a curve that offers only 112 bits of security.
The only implementation that is faster than ours is the DH software on the NIST-K233 curve
by Aranha, Dahab, López, and Oliveira presented in [2]; however, this software also offers
only 112 bits of security, has very large ROM and RAM consumptions, and uses a binary
elliptic-curve with efficiently computable endomorphisms, which is commonly considered
a less conservative choice. As pointed out in the footnote, the size comparision to [2] is also
not entirely fair because their software also contains a specialized fixed-basedpoint scalar
multiplication.

6.2 Results and comparison on MSP430X

Our results for Curve25519 on the MSP430X microcontroller and a comparison with related
previous work are summarized in Table 3. As for the AVR comparison, we only list results
that target reasonably high security levels. For our implementation we report cycle counts
of the MSP430FR5969 for 8 MHz and 16 MHz. One might think that the cycle counts are
independent of the frequency; however, due to the limited access frequency of the non-volatile

123

508 M. Düll et al.

Ta
bl
e
2

C
yc
le
co
un
ts
,s
iz
es
,a
nd

st
ac
k
us
ag
e
of

el
lip

tic
-c
ur
ve

sc
al
ar
-m

ul
tip

lic
at
io
n
so
ft
w
ar
e
fo
r
A
V
R
A
T
m
eg
a
m
ic
ro
co
nt
ro
lle
rs

Im
pl
em

en
ta
tio

n
C
ur
ve

C
lo
ck

cy
cl
es

Si
ze

R
A
M

us
ag
e

A
ra
nh
a
et
al
.[
2]

N
IS
T
K
-2
33

≈5
,3
82

,1
44

≈3
8,
60

0
by

te
sb

≈3
70

0
by

te
s

A
ra
nh
a
et
al
.[
2]

N
IS
T
B
-2
33

≈1
3,
93

4,
59

2
≈3

4,
60

0
by

te
sb

≈2
,2
00

by
te
s

G
ur
a
et
al
.[
20

]
N
IS
T
P-
22

4
≈1

7,
52

0,
00

0
48

12
by

te
s

42
2
by

te
s

L
iu

et
al
.[
29

]
25

6-
bi
tM

on
tg
om

er
y

≈2
1,
07

8,
20

0
14

,7
00

by
te
sb

55
6
by

te
s

W
en
ge
r
et
al
.[
45
]

N
IS
T
P-
25

6
≈3

4,
93

0,
00

0
16

,1
12

by
te
s

59
0
by

te
s

H
ut
te
r
an
d
Sc
hw

ab
e
[2
3]

C
ur
ve
25

51
9

22
,7
91

,5
79

n/
aa

67
7
by

te
s

T
hi
s
pa
pe
r

C
ur
ve
25

51
9

14
,1
46

,8
44

9,
91

2
by

te
s

51
0
by

te
s

T
hi
s
pa
pe
r

C
ur
ve
25

51
9

13
,9
00

,3
97

17
,7
10

by
te
s

49
4
by

te
s

a
Si
ze

is
re
po

rt
ed

on
ly

fo
r
th
e
co
m
pl
et
e
N
aC

ll
ib
ra
ry

co
re
,n

ot
fo
r
st
an
d-
al
on

e
C
ur
ve
25

51
9

b
Im

pl
em

en
ta
tio

n
al
so

in
cl
ud
es

fa
st
er

fix
ed
-b
as
ep
oi
nt

sc
al
ar

m
ul
tip

lic
at
io
n

123

High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers 509

Ta
bl
e
3

C
yc
le
co
un
ts
,s
iz
es
,a
nd

st
ac
k
us
ag
e
of

el
lip

tic
-c
ur
ve

sc
al
ar
-m

ul
tip

lic
at
io
n
so
ft
w
ar
e
fo
r
M
SP

43
0X

m
ic
ro
co
nt
ro
lle
rs

Im
pl
em

en
ta
tio

n
C
PU

C
ur
ve

C
lo
ck

cy
cl
es

@
8
M
H
z

C
lo
ck

cy
cl
es

@
16

M
H
z

Si
ze

St
ac
k
us
ag
e

W
ith

16
-b
it
ha
rd
w
ar
e
m
ul
tip

lie
r

W
en
ge
r
an
d
W
er
ne
r
[4
4]

M
SP

43
0

N
IS
T
P-
25

6
23

,9
37

,0
00

n/
a

n/
a

n/
a

W
en
ge
r
et
al
.[
45

]
M
SP

43
0

N
IS
T
P-
25

6
22

,1
70

,0
00

n/
a

8,
37

8
by

te
s

41
8
by

te
s

G
ou
vê
a
et
al
.[
16

,1
8]

M
SP

43
0X

N
IS
T
P-
25

6
7,
28

4,
37

7a
n/
a

n/
a

n/
a

H
in
te
rw

äl
de
r
et
al
.[
21
]

M
SP

43
0X

C
ur
ve
25

51
9

9,
13

9,
73

9
10

,4
04

,0
42

11
,7
78

by
te
s

51
3
by

te
s

T
hi
s
pa
pe
r

M
SP

43
0X

C
ur
ve
25

51
9

7,
93

3,
29

6
9,
11

9,
84

0
13

,1
12

by
te
s

38
4
by

te
s

W
ith

32
-b
it
ha
rd
w
ar
e
m
ul
tip

lie
r

G
ou
vê
a
et
al
.[
16

,1
8]

M
SP

43
0X

N
IS
T
P-
25

6
5,
32

1,
77

6a
n/
a

n/
a

n/
a

H
in
te
rw

äl
de
r
et
al
.[
21
]

M
SP

43
0X

C
ur
ve
25

51
9

6,
51

3,
01

1
7,
39

1,
50

6
89

56
by

te
s

49
5
by

te
s

T
hi
s
pa
pe
r

M
SP

43
0X

C
ur
ve
25

51
9

5,
30

1,
79

2
5,
94

1,
78

4
10

,0
88

by
te
s

38
2
by

te
s

a
N
ot
e
th
at
th
e
au
th
or
s
us
e
th
e
4w

-N
A
F
m
et
ho
d
fo
r
th
e
sc
al
ar

m
ul
tip

lic
at
io
n,
w
hi
ch

do
es

no
te
xe
cu
te
in

co
ns
ta
nt

tim
e.
In

th
is
pa
pe
r
w
e
fo
cu
s
on

a
co
ns
ta
nt
-t
im

e
im

pl
em

en
ta
tio

n
to

th
w
ar
t
tim

in
g
at
ta
ck
s.
Fu

rt
he
r
th
e
au
th
or
s
ob

ta
in
ed

so
m
e
of

th
e
cy
cl
e
co
un

ts
us
in
g
th
e
IA

R
E
m
be
dd

ed
W
or
kb

en
ch

si
m
ul
at
or
.I
t
tu
rn
s
ou

t
th
at

th
is
si
m
ul
at
or

do
es

no
t
re
po

rt
co
rr
ec
tt
im

in
gs
,i
f
th
e
m
em

or
y-
m
ap
pe
d
ha
rd
w
ar
e
m
ul
tip

lie
r
of

th
e
M
SP

43
0
is
us
ed

123

510 M. Düll et al.

(FRAM)memory of theMSP430FR5969 (see Sect. 4), core clock frequencies beyond 8MHz
introduce wait cycles for memory access.

As mentioned in Sect. 4, all arithmetic operations in F2255−19 (aside from inversion)
are implemented in assembly. The high-level functionality is written in C; for compilation
we used gcc-4.6.3 with compiler options -mmcu=msp430fr5969 -O3. All cycle counts
reported in this section were obtained by measuring the cycle count when executing the code
on an MSP-EXP430FR5969 Launchpad Development Kit [43], using the cycle counters of
the chip, unlike Sect. 4 where cycle counts on the board were obtained using the debugging
functionality of the IAR Embedded Workbench IDE. These cycle counters have a resolution
of only 16-bits, which is not enough to benchmark our software. We use a divisor of 8
(i.e., the counter is increased every 8 cycles) and increase a global 64-bit variable every
time an overflow interrupt of the on-chip counter is triggered. This gives us a counter with
reasonable resolution and relatively low interrupt-handling overhead and makes it possible
to independently reproduce our results without the use of the proprietary IAR Workbench
IDE.

Naturally the implementation that makes use of the 32-bit hardware multiplier executes
in fewer cycles and requires less program storage space than the implementation that only
requires a 16-bit hardware multiplier. This is because fewer load and store instructions to the
peripheral registers of the hardware multiplier have to be executed.

A plethora of literature describes implementations of elliptic curve cryptography on the
MSP430 microcontroller architecture, while only few of those works describe an imple-
mentation at the 256-bit security level. The first implementation of ECC on an MSP430
microcontroller was presented in 2001 by Guajardo, Blümel, Krieger, and Paar. Their
implementation at the 64-bit security level executes in 3.4 million clock cycles [19]. In
2009, Gouvêa and López reported speed records for 160 and 256-bit finite-field multipli-
cations on the MSP430 needing 1586 and 3597 cycles, respectively [17]. Their 256-bit
Montgomery-ladder scalar multiplication requires 20.4 million clock cycles; their 4-NAF
and 5-NAF versions require 13.4 and 13.2 million cycles, respectively. In 2011, Wenger and
Werner compared ECC scalar multiplications on various 16-bit microcontrollers [44]. Their
Montgomery-ladder-based scalar multiplication on the NIST P-256 elliptic curve executes in
23.9 million cycles on the MSP430. Pendl, Pelnar, and Hutter presented the first ECC imple-
mentation running on the WISP UHF RFID tag the same year [35]. Their implementation of
theNISTP-192 curve achieves an execution time of around 10million clock cycles. They also
reported the first 192-bit multi-precision multiplication results needing 2581 cycles. Gouvêa,
Oliveira, and López reported new speed records for differentMSP430X architectures in 2012
[18], improving their results from [17]. For the MSP430X architecture (with a 16-bit mul-
tiplier) their 160-bit and 256-bit finite-field multiplication implementations execute in 1299
and 2981 cycles, respectively. In 2013,Wenger, Unterluggauer, andWerner [45] presented an
MSP430 clone with instruction-set extension to accelerate big-integer arithmetic. For a NIST
P-256 elliptic curve, their Montgomery ladder implementation using randomized projective
coordinates and multiple point validation checks requires 9 million clock cycles. Without
instruction-set extensions their implementation needs 22.2 million cycles.

6.3 Results and comparison on ARM Cortex M0

Our results for Curve25519 on ARM Cortex-M0 and a comparison with related work are
summarized in Table 4. As described in Sect. 5, all low-level functions for arithmetic in
F2255−19 (except for inversion, addition and subtraction) are implemented in assembly. It
turned out that the addition and subtraction code generated by the compiler was almost

123

High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers 511

Table 4 Cycle counts, sizes, and stack usage of elliptic-curve scalar-multiplication software for ARMCortex-
M0 microcontrollers

Implementation Curve Clock cycles Size RAM usage

De Clercq et al. [15] NIST K-233 2,762,000 n/a n/a bytes

Wenger et al. [45] NIST P-256 ≈10,730,000 7168 Bytes 540 bytes

This paper Curve25519 3,589,850 7,900 bytes 548 Bytes

as efficient as hand-optimized assembly. Higher-level functions are implemented in C; for
compilation we used clang 3.5.0.

For C files we use a 3-stage compilation process. First we translate with clang
-fshort-enums -mcpu=cortex-m0 -mthumb -emit-llvm -c -nostdlib
-ffreestanding -target arm-none-eabi -mfloat-abi=soft scalar
mult.c to obtain a .bc file, which is then optimized with opt -Os -misched=
ilpmin -misched-regpressure -enable-misched -inline and further
translated to a.sfilewithllc -misched=ilpmin -enable-misched -misched
-regpressure. As a result of these settings, addition and subtraction functions were fully
inlined. This improves speed in comparison to calls to assembly functions by avoiding the
function call overhead (at the expense of roughly 1KB larger code).

We obtained cycle counts from the systick cycle counter of an STM32F0Discovery devel-
opment board. We also experimented with an LPC1114 Cortex-M0 chip but were unable to
achieve the full performance of the Cortex-M0 even for very simple code (like a sequence
of 1000 NOPs). For the “default” power profile the cycle counts we obtained were exactly a
factor of 1.25 higher than expected. When switching to the “performance” profile (see [34,
Sect. 7.16.5]), we achieved better performance, but still not the expected cycle counts.

ARM’s Cortex-M microcontrollers are rapidly becoming the device of choice for appli-
cations that previously used less powerful 8-bit or 16-bit microcontrollers. It is surprising
to see that there is relatively little previous work on speeding up ECC on Cortex-M micro-
controllers and in particular on the Cortex-M0. Probably the most impressive previous work
has recently been presented by De Clerq, Uhsadel, Van Herrewege, and Verbauwhede who
achieve a performance of 2,762,000 cycles for variable base-point scalarmultiplication on the
233-bit Koblitz curve sect233k1 [15]. This result is hard to directly compare to our result for
three reasons. First the curve is somewhat smaller and targets the 112-bit security level rather
than then 128-bit security level targeted by our implementation. Second the implementation
in [15] is not protected against timing attacks. Third the software presented in [15] performs
arithmetic on an elliptic-curve over a binary field. All the underlying field arithmetic is thus
very different.

The only scientific paper that we are aware of that optimizes arithmetic on an elliptic curve
over a large-characteristic prime field for the Cortex-M0 is the 2013 paper byWenger, Unter-
luggauer, and Werner [45]. Their scalar multiplication on the secp256r1 curve is reported to
take 10,730,000 cycles, almost exactly 3 times slower than our result.

Acknowledgments The authors would like to thank Daniel Bernstein for his suggestion to reverse an input
to the modular multiplication implementation for the MSP430.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

512 M. Düll et al.

References

1. Agence nationale de la sécurité des systèmes d’information. Avis relatif aux paramètres de courbes
elliptiques définis par l’Etat français. Journal officiel de la République Française, 0241, 17533 (2011).
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000024668816.

2. Aranha D.F., Dahab R., López J., Oliveira L.B.: Efficient implementation of elliptic curve cryptography
in wireless sensors. Adv. Math. Commun. 4(2), 169–187 (2010).

3. Atmel Corporation: AVR1519: XMEGA-A1 Xplained Training—XMEGA Crypto Engines. 8-bit Atmel
Microcontrollers Application Note (2011). http://www.atmel.com/Images/doc8405.pdf.

4. Batina L., Chmielewski, Ł., Papachristodoulou L., Schwabe P., Tunstall M.: Online template attacks.
In: Meier W., Mukhopadhyay D. (eds.) Progress in Cryptology—INDOCRYPT 2014. Lecture Notes in
Computer Science, vol. 21–36, p. 8885. Springer, Berlin (2014). http://cryptojedi.org/papers/#ota.

5. Bernstein D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung M., Dodis Y., Kiayias A.,
Malkin T. (eds.) Public Key Cryptography—PKC 2006. Lecture Notes in Computer Science, vol. 3958,
pp. 207–228. Springer, Berlin (2006). http://cr.yp.to/papers.html#curve25519.

6. Bernstein D.J.: 25519 naming. Posting to the CFRG mailing list (2014). https://www.ietf.org/
mail-archive/web/cfrg/current/msg04996.html.

7. Bernstein D.J., Schwabe, P.: NEON crypto. In: Prouff E., Schaumont P. (eds.) Cryptographic Hardware
and Embedded Systems—CHES 2012. Lecture Notes in Computer Science, vol. 7428, pp. 320–339.
Springer, Berlin (2012). http://cryptojedi.org/papers/#neoncrypto.

8. Bernstein D.J., Duif N., Lange T., Schwabe P., Yang B.-Y.: High-speed high-security signatures. In:
Preneel B., Takagi T (eds.) Cryptographic Hardware and Embedded Systems—CHES 2011. Lecture
Notes in Computer Science, vol. 6917, pp. 124–142. Springer, Berlin (2011). see also full version [9].

9. Bernstein D.J., Duif N., Lange T., Schwabe P., Yang B.-Y.: High-speed high-security signatures. J. Cryp-
togr. Eng. 2(2), 77–89 (2012). http://cryptojedi.org/papers/#ed25519, see also short version [8].

10. Bernstein D.J., Chou T., Chuengsatiansup C., Hülsing A., Lange T., Niederhagen R., van Vredendaal C.:
How to manipulate curve standards: a white paper for the black hat. Cryptology ePrint Archive, Report
2014/571 (2014). http://eprint.iacr.org/2014/571, see also http://safecurves.cr.yp.to/bada55.html.

11. Bernstein D.J., Chuengsatiansup C., Lange T., Schwabe P.: Kummer strikes back: new DH speed records.
In: Iwata T., Sarkar P (eds.) Advances in Cryptology—ASIACRYPT 2014. Lecture Notes in Computer
Science, vol. 8873, pp. 317–337. Springer, Berlin (2014). Full version: http://cryptojedi.org/papers/#
kummer.

12. Clavier C., Feix B., Gagnerot G., Roussellet M., Verneuil V.: Horizontal correlation analysis on exponen-
tiation. In: SorianoM., Qing S., López J. (eds.) Information and Communications Security. Lecture Notes
in Computer Science, vol. 6476, pp. 46–61. Springer, Berlin (2010). http://eprint.iacr.org/2003/237.

13. Costigan N., Schwabe P.: Fast elliptic-curve cryptography on the Cell Broadband Engine. In: Preneel B
(ed.) Progress in Cryptology—AFRICACRYPT 2009. Lecture Notes in Computer Science, vol. 5580,
pp. 368–385. Springer, Berlin (2009). http://cryptojedi.org/papers/#celldh.

14. Dalin D., Großschädl J., Liu Z., Müller V., Zhang W.: Twisted edwards-form elliptic curve cryptography
for 8-bit AVR-based sensor nodes. In: Xu S., Zhao Y. (eds.) Proceeding of the 1st ACM Workshop on
Asia Public-key Cryptography—AsiaPKC 2013, pp. 39–44. ACM, New York (2013). http://orbilu.uni.
lu/handle/10993/14765.

15. DeClercqR.,Uhsadel L.,VanHerrewegeA.,Verbauwhede I.: Ultra low-power implementation of ECCon
the ARMCortex-M0+. In: DAC ’14 Proceedings of the The 51st Annual Design Automation Conference
on Design Automation Conference, pp. 1–6. ACM, New York (2014). https://www.cosic.esat.kuleuven.
be/publications/article-2401.pdf.

16. Gouvêa C.P.L.: Personal communication (2014).
17. Gouvêa C.P.L., López J.: Software implementation of pairing-based cryptography on sensor networks

using theMSP430microcontroller. In: Sendrier N., Roy B. (eds.) Progress in Cryptology—INDOCRYPT
2009. Lecture Notes in Computer Science, vol. 5922, pp. 248–262. Springer, Berlin (2009). http://
conradoplg.cryptoland.net/files/2010/12/indocrypt09.pdf.

18. Gouvêa C.P.L., Oliveira L.B., López J.: Efficient software implementation of public-key cryptography on
sensor networks using the MSP430X microcontroller. J. Cryptogr. Eng. 2(1) (2012). http://conradoplg.
cryptoland.net/files/2010/12/jcen12.pdf.

19. Guajardo J., Blümel R., Krieger U., Paar C.: Efficient implementation of elliptic curve cryptosystems on
the TI MSP430x33x family of microcontrollers. In: Kim K (ed.) Public Key Cryptography—PKC 2001.
Lecture Notes in Computer Science, vol. 1992, pp. 365–382. Springer, Berlin (2001). http://www.emsec.
rub.de/media/crypto/veroeffentlichungen/2011/01/21/guajardopkc2001_msp430.pdf.

20. Gura N., Patel A., Wander A., Eberle H., Shantz S.C.: Comparing elliptic curve cryptography and RSA
on 8-bit CPUs. In: Joye M (ed.) Cryptographic Hardware and Embedded Systems—CHES 2004. Lecture

123

http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000024668816
http://www.atmel.com/Images/doc8405.pdf
http://cryptojedi.org/papers/#ota
http://cr.yp.to/papers.html#curve25519
https://www.ietf.org/mail-archive/web/cfrg/current/msg04996.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg04996.html
http://cryptojedi.org/papers/#neoncrypto
http://cryptojedi.org/papers/#ed25519
http://eprint.iacr.org/2014/571
http://safecurves.cr.yp.to/bada55.html
http://cryptojedi.org/papers/#kummer
http://cryptojedi.org/papers/#kummer
http://eprint.iacr.org/2003/237
http://cryptojedi.org/papers/#celldh
http://orbilu.uni.lu/handle/10993/14765
http://orbilu.uni.lu/handle/10993/14765
https://www.cosic.esat.kuleuven.be/publications/article-2401.pdf
https://www.cosic.esat.kuleuven.be/publications/article-2401.pdf
http://conradoplg.cryptoland.net/files/2010/12/indocrypt09.pdf
http://conradoplg.cryptoland.net/files/2010/12/indocrypt09.pdf
http://conradoplg.cryptoland.net/files/2010/12/jcen12.pdf
http://conradoplg.cryptoland.net/files/2010/12/jcen12.pdf
http://www.emsec.rub.de/media/crypto/veroeffentlichungen/2011/01/21/guajardopkc2001_msp430.pdf
http://www.emsec.rub.de/media/crypto/veroeffentlichungen/2011/01/21/guajardopkc2001_msp430.pdf

High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers 513

Notes in Computer Science, vol. 3156, pp. 119–132. Springer, Berlin (2004). www.iacr.org/archive/
ches2004/31560117/31560117.pdf.

21. Hinterwälder G., Moradi A., HutterM., Schwabe P., Paar C.: Full-size high-security ECC implementation
onMSP430microcontrollers. In: Third International Conference on Cryptology and Information Security
in Latin America—Latincrypt 2014. Lecture Notes in Computer Science. Springer, Berlin (2014). http://
www.emsec.rub.de/research/publications/Curve25519MSPLatin2014/.

22. Hutter M., Wenger E.: Fast multi-precision multiplication for public-key cryptography on embedded
microprocessors. In: Preneel, B., Takagi T. (eds.) Cryptographic Hardware and Embedded Systems—
CHES 2011. Lecture Notes in Computer Science, vol. 6917, pp. 459–474. Springer, Berlin (2011). http://
mhutter.org/papers/Hutter2011FastMultiPrecision.pdf.

23. Hutter M., Schwabe P.: NaCl on 8-bit AVR microcontrollers. In: Youssef A., Nitaj A. (eds.) Progress
in Cryptology—AFRICACRYPT 2013. Lecture Notes in Computer Science, vol. 7918, pp. 156–172.
Springer, Berlin (2013). http://cryptojedi.org/papers/#avrnacl.

24. Hutter M., Schwabe P.: Multiprecision multiplication on AVR revisited (2014). http://cryptojedi.org/
papers/#avrmul.

25. Kenny P.: Formal request from TLS WG to CFRG for new elliptic curves. Posting to the CFRG mailing
list (2014). http://www.ietf.org/mail-archive/web/cfrg/current/msg04655.html.

26. Koblitz N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987). http://www.ams.org/
journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf.

27. Liu A., Ning P.: TinyECC: a configurable library for elliptic curve cryptography in wireless sensor net-
works. In: International Conference on Information Processing in Sensor Networks—IPSN 2008(April),
pp. 22–24, 2008. St. Louis, Missouri, USA, Proceedings, pp. 245–256 (2008). http://discovery.csc.ncsu.
edu/pubs/ipsn08-TinyECC-IEEE.pdf.

28. Liu Z., Seo H., Großschädl J., Kim H.: Efficient implementation of NIST-compliant elliptic curve cryp-
tography for sensor nodes. In: Qing S., Zhou J., Liu D. (eds.) Information and Communications Security.
Lecture Notes in Computer Science, vol. 8233, pp. 302–317. Springer, Berlin (2013). http://orbilu.uni.
lu/bitstream/10993/12934/1/ICICS2013.pdf.

29. Liu Z., Großschädl J., Wenger E.: MoTE-ECC: energy-scalable elliptic curve cryptography for wireless
sensor networks. In: Applied Cryptography and Network Security. Lecture Notes in Computer Sci-
ence, vol. 8479, pp. 361–379. Springer, Berlin (2014). https://online.tugraz.at/tug_online/voe_main2.
getvolltext?pCurrPk=77985.

30. LochterM.,Merkle J.: Elliptic curve cryptography (ECC)Brainpool standard curves and curve generation.
IETF Request for Comments 5639 (2010). http://tools.ietf.org/html/rfc5639.

31. Miller V.S.: Use of elliptic curves in cryptography. In: Williams H.C. (ed.) Advances in Cryptology—
CRYPTO ’85: Proceedings. Lecture Notes in Computer Science, vol. 218, pp. 417–426. Springer, Berlin
(1986).

32. Montgomery P.L.: Speeding the Pollard and elliptic curve methods of factorization. Math. Com-
put. 48(177), 243–264 (1987). http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-
0866113-7/S0025-5718-1987-0866113-7.pdf.

33. National Institute of Standards and Technology. FIPS PUB186–4 digital signature standard (DSS) (2013).
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

34. NXP. LPC1110/11/12/13/14/15 32-bit ARM Cortex-M0 microcontroller; up to 64 kB flash and 8
kB SRAM. Product data sheet, rev. 9.2 edition (2014). http://www.nxp.com/documents/data_sheet/
LPC111X.pdf.

35. Pendl C., Pelnar M., Hutter M.: Elliptic curve cryptography on the WISP UHF RFID tag. In:
Juels A., Paar C. (eds.) 8th Workshop on RFID Security and Privacy—RFIDsec 2012. Lecture
Notes in Computer Science, vol. 7055, pp. 32–47. Springer, Berlin (2012). http://mhutter.org/papers/
Pendl2011EllipticCurveCryptography.pdf.

36. ProcFig0. Public key cryptographic algorithm SM2 based on elliptic curves. Part 1: General. (2012).
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf.

37. Scott M.: Re: NIST announces set of elliptic curves. Posting to the sci.crypt mailing list (1999). https://
groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ.

38. Seo H., Kim H.: Multi-precision multiplication for public-key cryptography on embedded microproces-
sors. In: Lee D.H., YungM (eds.) Information Security Applications. Lecture Notes in Computer Science,
vol. 7690, pp. 55–67. Springer, Berlin (2012). doi:10.1007/978-3-642-35416-8

39. Seo H., Kim H.: Optimized multi-precision multiplication for public-key cryptography on embedded
microprocessors. Int. J. Comput. Commun. Eng. 2(3), (2013). http://www.ijcce.org/papers/183-J034.
pdf.

40. Szczechowiak P., Oliveira L.B., Scott M., Collier M., Dahab R.: NanoECC: testing the limits of elliptic
curve cryptography in sensor networks. In: Verdone R. (ed.) Wireless Sensor Networks. Lecture Notes

123

www.iacr.org/archive/ches2004/31560117/31560117.pdf
www.iacr.org/archive/ches2004/31560117/31560117.pdf
http://www.emsec.rub.de/research/publications/Curve25519MSPLatin2014/
http://www.emsec.rub.de/research/publications/Curve25519MSPLatin2014/
http://mhutter.org/papers/Hutter2011FastMultiPrecision.pdf
http://mhutter.org/papers/Hutter2011FastMultiPrecision.pdf
http://cryptojedi.org/papers/#avrnacl
http://cryptojedi.org/papers/#avrmul
http://cryptojedi.org/papers/#avrmul
http://www.ietf.org/mail-archive/web/cfrg/current/msg04655.html
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
http://discovery.csc.ncsu.edu/pubs/ipsn08-TinyECC-IEEE.pdf
http://discovery.csc.ncsu.edu/pubs/ipsn08-TinyECC-IEEE.pdf
http://orbilu.uni.lu/bitstream/10993/12934/1/ICICS2013.pdf
http://orbilu.uni.lu/bitstream/10993/12934/1/ICICS2013.pdf
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=77985
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=77985
http://tools.ietf.org/html/rfc5639
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://www.nxp.com/documents/data_sheet/LPC111X.pdf
http://www.nxp.com/documents/data_sheet/LPC111X.pdf
http://mhutter.org/papers/Pendl2011EllipticCurveCryptography.pdf
http://mhutter.org/papers/Pendl2011EllipticCurveCryptography.pdf
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ
https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ
http://dx.doi.org/10.1007/978-3-642-35416-8
http://www.ijcce.org/papers/183-J034.pdf
http://www.ijcce.org/papers/183-J034.pdf

514 M. Düll et al.

in Computer Science, vol. 4913, pp. 305–320. Springer, Berlin (2008). http://www.ic.unicamp.br/~leob/
publications/ewsn/NanoECC.pdf.

41. Texas Instruments Incorporated. MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and
MSP430FR69xx family user’s guide (2012). www.ti.com.cn/cn/lit/ug/slau367f/slau367f.pdf.

42. Texas Instruments Incorporated. MSP430x2xx family user’s guide (2004). http://www.ti.com/lit/ug/
slau144j/slau144j.pdf.

43. Texas Instruments Incorporated.MSP-EXP430FR5969 LaunchPadDevelopment Kit user’s guide (2014).
http://www.ti.com/lit/ug/slau535a/slau535a.pdf.

44. Wenger E., Werner M.: Evaluating 16-bit processors for elliptic curve cryptography. In: Prouff E. (ed.)
Smart Card Research and Advanced Applications—CARDIS 2011. Lecture Notes in Computer Sci-
ence, vol. 7079, pp. 166–181. Springer, Berlin (2011). https://online.tugraz.at/tug_online/voe_main2.
getvolltext?pCurrPk=59062.

45. Wenger E., Unterluggauer T., Werner M.: 8/16/32 shades of elliptic curve cryptography on embedded
processors. In: PaulG., Vaudenay S. (eds.) Progress in Cryptology—INDOCRYPT2013. LectureNotes in
Computer Science, vol. 8250, pp. 244–261. Springer, Berlin (2013). https://online.tugraz.at/tug_online/
voe_main2.getvolltext?pCurrPk=72486.

123

http://www.ic.unicamp.br/~leob/publications/ewsn/NanoECC.pdf
http://www.ic.unicamp.br/~leob/publications/ewsn/NanoECC.pdf
www.ti.com.cn/cn/lit/ug/slau367f/slau367f.pdf
http://www.ti.com/lit/ug/slau144j/slau144j.pdf
http://www.ti.com/lit/ug/slau144j/slau144j.pdf
http://www.ti.com/lit/ug/slau535a/slau535a.pdf
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=59062
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=59062
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=72486
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=72486

	High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers
	Abstract
	1 Introduction
	1.1 Contributions of this paper
	1.2 A note on side-channel protection
	1.3 Availability of software
	1.4 Organization of this paper

	2 Review of X25519
	3 Implementation on AVR ATmega
	3.1 The AVR ATmega family of microcontrollers
	3.2 Multiplication
	3.3 Squaring
	3.4 Putting it together

	4 Implementation on MSP430X
	4.1 The MSP430X
	4.2 Multiplication
	4.3 Squaring
	4.4 Putting it together

	5 Implementation on ARM Cortex-M0
	5.1 The ARM Cortex M0
	5.2 Multiplication
	5.3 Squaring
	5.4 Putting it together

	6 Results and comparison
	6.1 Results and comparison on AVR ATmega
	6.2 Results and comparison on MSP430X
	6.3 Results and comparison on ARM Cortex M0

	Acknowledgments
	References

