Erratum to: On the support designs of extremal binary doubly even self-dual codes

Naoyuki Horiguchi • Tsuyoshi Miezaki • Hiroyuki Nakasora

Published online: 18 July 2014
© Springer Science+Business Media New York 2014

Erratum to: Des. Codes Cryptogr. (2014) 72:529-537
DOI 10.1007/s10623-012-9782-3
Several errors in the original publication of this article are noted. It has been corrected in this erratum.

Theorem 4.2
In the proof of Theorem 4.2, the computation of $\frac{F(63,4 \cdot 63+4 ;[0,2,4,6,8,10,12,14])}{10321920}$ is incorrect. We exchange "Let $D^{\prime \prime}$ be a self-orthogonal ... (page 535, line 5 up)" to

Let $D^{\prime \prime}$ be a self-orthogonal $8-\left(24 m, 4 m+4, \lambda_{8}\right)$ design, where $\lambda_{8}=\binom{5 m-2}{m-1}$ $\frac{(4 m-1)(4 m-2)(4 m-3)}{(24 m-5)(24 m-6)(24 m-7)}$. We set $A_{s}^{u}=\sum_{i=0}^{4 m+4}(i)_{s} n_{i}^{u}=(u)_{s} \lambda_{s}$ for $0 \leq \mathrm{s} \leq 8$. For the design $D^{\prime \prime}$, we have

$$
\begin{aligned}
F\left(m, u ;\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right]\right) & =\sum_{i=0}^{4 m+4}\left(i-x_{1}\right)\left(i-x_{2}\right) \ldots\left(i-x_{8}\right) n_{i}^{u} \\
& =\sum_{\theta=0}^{8}(-1)^{\theta} \sigma_{\theta, 8}\left(\sum_{h=0}^{8-\theta} S(8-\theta, h) A_{h}^{u}\right) .
\end{aligned}
$$

[^0]Then, we have $n_{16}^{u}=\frac{F(m, u ;[0,2,4,6,8,10,12,14])}{10321920}-9 n_{18}^{u}-45 n_{20}^{u}-\cdots-\binom{2 m+2}{8} n_{4 m+4}^{u}$. Put $u=4 m+8$. In the case $m=63$, by a computation using Magma and Mathematica, we have $\frac{F(63,4 \cdot 63+8 ;[0,2,4,6,8,10,12,14])}{10321920}$ $=43477008963170791885401824066553255650102446561069494920895005670086011251615 / 4$.
Hence $n_{16}^{4.63+8}$ is not an integer. Therefore, if $m=63$, there is no self-orthogonal 8 - $\left(24 m, 4 m+4, \lambda_{8}\right)$ design.

Thus Theorem 4.2 is correct.
Theorem 4.3
For Theorem 4.3, we examined again by using Magma and Mathematica. Then we found some errors.

In Theorem 4.3 (1), in the set $\{58,90,113\}$ should be 58.
In Theorem 4.3 (2), the set $\{10,79,93,118,120,123,125,142\}$ should be $\{10,23,79,93$, $118,120,123,125,142\}$. The set $\{79,93,118,120,123,125,142\}$ should be $\{23,79,93$, $118,120,123,125,142\}$.

[^0]: The online version of the original article can be found under doi:10.1007/s10623-012-9782-3.
 N. Horiguchi

 Graduate School of Science, Chiba University, Chiba 263-8522, Japan
 T. Miezaki (\boxtimes)

 Faculty of Education, Art and Science, Yamagata University, Yamagata 990-8560, Japan
 e-mail: miezaki@e.yamagata-u.ac.jp
 H. Nakasora

 Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan

