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Abstract For the Tardos traitor tracing scheme, we show that by combining the symbol-
symmetric accusation function of Škorić et al. with the improved analysis of Blayer and Tassa
we get further improvements. Our construction gives codes that are up to four times shorter
than Blayer and Tassa’s, and up to two times shorter than the codes from Škorić et al. Asymp-
totically, we achieve the theoretical optimal codelength for Tardos’ distribution function and
the symmetric score function. For large coalitions, our codelengths are asymptotically about
4.93 % of Tardos’ original codelengths, which also improves upon results from Nuida et al.
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1 Introduction

Watermarking digital content allows distributors of copyrighted digital data to embed so-
called fingerprints into their data in such a way that each copy of the data can be uniquely
identified. These watermarks are made in a robust way, so that users cannot change or remove
them from the content. If a copy of the data is then illegally distributed to unauthorized users
and intercepted by the distributor, he can extract the fingerprint from the copy and find the
person whose fingerprinted data was distributed. Actions can then be taken against this user,
to prevent further illegal distribution.
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84 T. Laarhoven, B. de Weger

To be able to trace the watermarked data back to the user, we need that the embedded
fingerprints for each user are different. However, by comparing their differently watermarked
copies of the content, multiple malicious users can form a coalition and detect differences in
their content. Assuming that besides the watermarks all copies are the same, this allows coali-
tions to detect part of the watermark. By editing this data, they can then create a forged copy,
which contains the same digital content as their original copies, but has a forged fingerprint
that cannot be traced back to them directly. Under the marking assumption, which says that
colluders can only detect and edit fingerprint positions if their fingerprints do not all match
on that position, there are ways to construct fingerprinting schemes such that any forged copy
can be traced back to at least one of the colluders. This involves finding a construction for
fingerprints for each of the users, and finding a way to trace back forged copies to guilty
users.

1.1 Model

Let U = {1, . . . , n} denote the set of the n users that received watermarked content. Here, a
user corresponds to one watermarked copy of the content, so a person who possesses several
differently watermarked copies of the data is assumed to control multiple users. For each user
j the distributor generates a fingerprint (also called a codeword), which is usually denoted
by x j . This codeword is a vector of length � (the codelength) of symbols from an alphabet
Q of size q . The case q = 2 corresponds to the binary alphabet, which is usually taken
as Q = {0, 1}. All fingerprints together form the fingerprinting code C = {x1, . . . , xn}. A
common way of representing this code is by putting all codewords as rows in a matrix X
according to X ji = (x j )i .

After assigning codewords to users and distributing the watermarked copies, a subset
C ⊆ U of c users (called colluders or pirates) may form a coalition to create a forged copy.
Using some pirate strategy ρ, a function Q�×c → Q�, they construct a forged copy, which
has some unknown distorted fingerprint ρ(X) = y called the forgery. For the pirate strat-
egy ρ, we assume that the marking assumption holds, i.e. if for all j ∈ C the pirates have
(x j )i = ω for some position i and symbol ω ∈ Q, then the coalition is forced to output
yi = ω. On other positions, we assume that colluders are free to choose any of the symbols
from the alphabet.

Finally, after the coalition has created a forged copy, we assume the distributor intercepts
it and extracts the forgery y from the data. He then runs some tracing algorithm σ on the
forgery, to get a subset σ(y) ⊆ U of users that are accused. The accusation is said to be
successful if no innocent users are accused (i.e. σ(y) ⊆ C) and at least one guilty user is
accused (i.e. σ(y) ∩ C �= ∅).

In the setting of probabilistic schemes, the code X and the tracing algorithm σ may depend
on some random variables. The events of not accusing any innocent users (soundness) and
accusing at least one guilty user (completeness) then also depend on these random variables.
Then, instead of demanding that a fingerprinting scheme is always sound and complete, we
may demand that the probability of failure is bounded by some small value ε, where the
probability is taken over these random variables. This leads to the following definitions of
ε1-soundness and ε2-completeness.

Definition 1 (Soundness and completeness) Let C ⊆ U be a coalition of size at most c, and
let ρ be some pirate strategy employed by this coalition. Then a traitor tracing scheme (X, σ )

is called ε1-sound if
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P[σ(ρ(X)) �⊆ C] ≤ ε1.

Similarly, a fingerprinting scheme is called ε2-complete if

P[σ(ρ(X)) ∩ C = ∅] ≤ ε2.

As we will see later, ε1/n and ε2 are closely related in the Tardos fingerprinting scheme. There-
fore it is convenient to introduce the notation η = log(ε2)/ log(ε1/n) such that ε2 = (ε1/n)η,
which describes how large ε2 is, compared to ε1/n. Also, we sometimes simply say that a
scheme is secure, to denote that it is sound and complete for certain (implicit) parameters ε1

and ε2.

1.2 Related work

In [1], Tardos investigated probabilistic binary fingerprinting schemes where small margins
of error are allowed. He proved that a codelength of � = �(c2 ln(n/ε1)) is necessary to
achieve soundness and completeness, while in the same paper he also gave a construction
with a codelength of � = 100c2 ln(n/ε1). This construction is often referred to as the Tardos
scheme. In [2,3] the lower bound on the codelength was further tightened, to show that one
needs � ≥ 2 ln(2)c2 ln(n/ε1) for sufficiently large c and q = 2, to achieve soundness and
completeness.

We write d� for the constant in front of the c2 ln(n/ε1) in the codelength. Since the scheme
of Tardos had a codelength constant of d� = 100, many papers focused on constructing a
scheme with the same order codelength, but with a smaller constant. For example, using
a discrete distribution function in the Tardos scheme, Nuida et al. showed in [4] that one
can achieve codelengths of � < 5c2 ln(n/ε1) in some cases with small c, while for large c
they achieved an asymptotic codelength of � ≈ 5.35c2 ln(n/ε1). In [5], Škorić et al. showed
that by tightening the analysis, one can obtain smaller codelength constants in the original
Tardos scheme while maintaining soundness and completeness. Using a completely different
approach, Amiri and Tardos showed in [2] that with a computation-heavy accusation algo-
rithm, one can approach the theoretical lower bound of � = 2 ln(2)c2 ln(n/ε1) for large c.

In this paper we will focus on the binary Tardos scheme with the arcsine distribution func-
tion from [1], which was introduced in [1] and further analyzed and improved in e.g. [4–7].
We will focus on two improvements in particular. In [6], Blayer and Tassa made the proofs of
[1] tighter by introducing several auxiliary variables which were to be optimized later, instead
of fixing them in advance. In that paper the construction of the Tardos scheme essentially
remained the same, but it was shown that a codelength of � = 85c2 ln(n/ε1) for c ≥ 2, and
� < 25c2 ln(n/ε1) for large c is also sufficient to prove soundness and completeness. In [7],
Škorić et al. did change the scheme, by making the score function used in the accusation phase
of the Tardos scheme symmetric in yi = 0, 1. This also lead to shorter codelengths, giving
asymptotic codelengths of � = (π2 + o(1))c2 ln(n/ε1) ≈ 9.87c2 ln(n/ε1) for large c, while
maintaining soundness and completeness. Furthermore assuming that the accusation scores
of innocent users and the joint coalition score are normally distributed, Škorić et al. showed

in [7, Sect. 6] that an asymptotic codelength of � = ( π2

2 + o(1))c2 ln(n/ε1) is then both
sufficient and necessary. Since by the Central Limit Theorem these accusation scores will in
fact converge to normal distributions for asymptotically large c, this also provides a lower
bound on the codelength, when using the arcsine distribution function and the symmetric
score function.
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1.3 Contributions and outline

Combining the symbol-symmetric score function from Škorić et al. with Blayer and Tassa’s
sharp analysis, we will prove ε1-soundness and ε2-completeness for all c ≥ 2 and η ≤ 1
with a codelength of � ≥ 23.79c2 ln(n/ε1). This improves upon the codelength from Blayer
and Tassa by a factor more than 3.5 at c = 2, and a factor between 3.5 and 4 for larger values
of c (compare Fig. 1 to [6, Fig. 1]). It also improves upon the original Tardos scheme by
a factor more than 4 for c = 2, and the improvement factor increases to more than 20 for
large c.

Similar to work of Škorić et al., we also look at the asymptotics of our scheme, and
show that for large c, we can prove soundness and completeness for a codelength of

� ≥ ( π2

2 + O(c−1/3))c2 ln(n/ε1) ≈ 4.93c2 ln(n/ε1). This improves upon the asymptotic
results from Škorić et al. by a factor 2, and we achieve the asymptotic optimal codelength
which Škorić et al. proved to be sufficient and necessary under the added assumption that
the distributions of scores are normal distributions. We therefore close the gap of a factor 2
between the best known provably secure codelength and the asymptotic optimal codelength,
for Tardos’ original arcsine distribution function and the symmetric score function. These
results also improve upon the asymptotic codelengths from Nuida et al., who used different
discrete distribution functions, by more than 7 %.

The paper is organized as follows. In Sect. 2 we give the construction of the (symmetric)
Tardos scheme, and compare our results with earlier results from the literature. In Sects. 3
and 4 we prove that the soundness and completeness properties hold under our assumptions
on the parameters. In Sect. 5 we show how to solve an often overlooked problem in the
literature, to make sure that the codelength is integral. In Sect. 6 we give results similar to
those in [6, Sect. 2.4.5] on how to find the optimal set of parameters that satisfies the condi-
tions for our proof method to work, and minimizes the codelength. There we also give such
minimal codelengths, for several values of c and η. In Sect. 7 we prove the results stated
above for asymptotically large c, and show that the optimal rate of convergence is of order
O(c−1/3). Finally, in Sect. 8 we give a brief summary of our contributions, and remaining
open problems in this area.
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Fig. 1 Optimal values of d�, denoted by d̂�, for several values of c between 2 and 1000. The different lines
correspond to the cases η = 1, 0.5, 0.2, 0.1, 0.01 respectively, where higher values of η correspond to higher
values of d̂�.
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2 Construction and results

First we present the construction of the Tardos traitor tracing scheme, as in [6], where we use
auxiliary variables d�, dz, dδ for the codelength �, accusation offset Z and cutoff parameter δ

respectively. The only difference between our construction and that of Blayer and Tassa is in
the score function that we use. While Blayer and Tassa used the asymmetric score function
from Tardos’ original scheme, we use the symbol-symmetric score function from Škorić et al.

2.1 The Tardos traitor tracing scheme

Let n ≥ c ≥ 2 be positive integers, and let ε1, ε2 ∈ (0, 1) be the desired upper bounds for
the soundness and completeness error probabilities respectively. Let us write k = ln(n/ε1)

so that e−k = ε1/n. Let d�, dz, dδ be positive constants, with dδ > 1. Then the symmetric
Tardos fingerprinting scheme works as follows.

1. Initialization

(a) Take the codelength as � = d�c2k.1

(b) Take the accusation offset parameter as Z = dzck.
(c) Take the cutoff parameter as δ = 1/(dδc), and compute δ′ = arcsin(

√
δ) such that

0 < δ′ < π/4.
(d) For each fingerprint position 1 ≤ i ≤ �, select pi ∈ [δ, 1 − δ] independently from

the distribution defined by the following distribution function F(p) and probability
density function f (p):

F(p) = 2 arcsin(
√

p) − 2δ′

π − 4δ′ , f (p) = 1

(π − 4δ′)
√

p(1 − p)
(1)

The function f (p) is biased towards δ and 1 − δ and symmetric around 1/2.

2. Codeword generation

(a) For each position 1 ≤ i ≤ � and for each user 1 ≤ j ≤ n, select the i th entry of
the codeword of user j according to P[X ji = 1] = pi and P[X ji = 0] = 1 − pi .

3. Accusation

(a) For each position 1 ≤ i ≤ � and for each user 1 ≤ j ≤ n, calculate the score S ji ,
based on the user’s watermark symbol X ji and the pirate output yi , according to:

S ji =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+√
(1 − pi )/pi if X ji = 1, yi = 1,

−√
pi/(1 − pi ) if X ji = 0, yi = 1,

−√
(1 − pi )/pi if X ji = 1, yi = 0,

+√
pi/(1 − pi ) if X ji = 0, yi = 0.

(2)

(b) For each user 1 ≤ j ≤ n, calculate the total accusation sum S j = ∑�
i=1 S ji . User

j is accused if and only if S j > Z .

In the construction above, the score S ji is positive iff X ji and yi are the same, while |S ji |
is large iff the probability of outputting symbol X ji is small. Intuitively, unlikely matches
and differences contribute more to the accusation sum S j than likely matches and differ-

1 Note that � may not be integral, while the codelength of a code of course has to be integral. See Sect. 5 for
a solution to this minor problem.
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ences, while positive scores indicate guilt and negative scores indicate innocence. With a
suitable choice of parameters, innocent users will have scores close to 0 (positive and neg-
ative) while at least one guilty user must have a large score exceeding Z . More precisely,
under certain conditions on the parameters d�, dz, dδ , which are specified in Sects. 2.2 and
2.3, one can prove soundness and completeness, using a modified version of Tardos’ original
proof construction. Apart from the score function, which satisfied S ji = 0 for yi = 0 in
[1], the above construction is identical to the construction of Tardos’ original scheme, for
d� = 100, dz = 20 and dδ = 300.

2.2 Results for the asymmetric Tardos scheme

In the original Tardos scheme, and in several papers discussing the Tardos scheme, the score
function is asymmetric in yi , as only the positions with yi = 1 are taken into account for the
accusations. The construction of this asymmetric Tardos scheme is the same as in Sect. 2.1,
but with the scores from (2) replaced by:

S ji =

⎧
⎪⎨

⎪⎩

+√
(1 − pi )/pi if X ji = 1, yi = 1,

−√
pi/(1 − pi ) if X ji = 0, yi = 1,

0 otherwise.

(3)

Blayer and Tassa performed an extensive analysis of this scheme in [6], and showed that under
the following assumptions, one can prove soundness and completeness for given c and η. In
these theorems, the function h−1 : (0,∞) → ( 1

2 ,∞) is defined by h−1(x) = (ex −1−x)/x2,
while the function h : ( 1

2 ,∞) → (0,∞) denotes its inverse function as in [6], so that
ex ≤ 1 + x + λx2 for all x ≤ h(λ).

Theorem 1 [6, Theorem 1.1] Let the Tardos scheme be constructed as in Sect. 2.1, but with
the asymmetric score function from (3). Let dα, r be positive constants, with r > 1

2 , such that
d�, dz, dδ, dα and r satisfy the following two requirements:

dα ≥
√

dδ

h(r)
√

c
, (S1)

dz

dα

− rd�

d2
α

≥ 1. (S2)

Then the scheme is ε1-sound.

Theorem 2 [6, Theorem 1.2] Let the Tardos scheme be constructed as in Sect.2.1, but with
the asymmetric score function from (3). Let s, g be positive constants such that d�, dz, dδ, s
and g satisfy the following two requirements:

1 − 2
dδ

π
− h−1(s)s√

dδc
≥ g, (C1)

gd� − dz ≥ η

√
dδ

s2c
. (C2)

Then the scheme is ε2-complete.

Tardos’ original choice of parameters was the following, which allowed him to prove that
his scheme is ε1-sound and ε2-complete for all c ≥ 2 and η ≤ √

c/4 [1, Theorems 1 and 2]:
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d� = 100, dz = 20, dδ = 300, dα = 10, r = 1, s = 1, g = 1

4
.

Blayer and Tassa proved that to achieve ε1-soundness and ε2-completeness for all c ≥ 2 and
η ≤ 1, the following choice of parameters is also provably secure [6, Sect. 2.4]:

d� = 85, dz = 15, dδ = 40, dα = 8, r = 0.611, s = 0.757, g = 0.2461.

In [5, Corollary 1], Škorić et al. showed that the following choice of parameters suffices to
prove soundness and completeness for asymptotically large c:2

d� → 4π2, dz → 4π, dδ → ∞, dα ≈ 2π, r = 1, s = h(1), g ≈ 1

π
.

According to the Central Limit Theorem, the scores of innocent users and the total score of
the coalition converge to certain normal distributions. Under the assumption that the scores
behave exactly like these normal distributions, Škorić et al. showed in [5, Corollary 3] that
the following choice of parameters is then sufficient and necessary to prove soundness and
completeness:

d� → 2π2, dz → 2π, dδ → ∞.

Applying our analysis from Sect. 7 to the asymmetric Tardos scheme, we can prove that the
following choice of parameters is provably sufficient for large c:3

d� → 2π2, dz → 2π, dδ → ∞, dα → π, r → 1

2
, s → ∞, g → 1

π
.

So with Blayer and Tassa’s proof construction, for the asymmetric Tardos scheme we obtain
a two times shorter asymptotic codelength compared to the shortest provable codelength
of Škorić et al. [5], and we achieve the asymptotic optimal codelength for the asymmetric
Tardos scheme which Škorić et al. [5] only achieved when they added the assumption that
scores behave like normal distributions.

2.3 Results for the symmetric Tardos scheme

We will prove in Sects. 3 and 4 that with the following assumptions on the parameters, we
can also prove soundness and completeness for the symmetric Tardos scheme.

Theorem 3 Let the Tardos scheme be constructed as in Sect.2.1, and let dα, r be positive
constants, with r > 1

2 , such that d�, dz, dδ, dα and r satisfy the requirements (S1) and (S2).
Then the scheme is ε1-sound.

Theorem 4 Let the Tardos scheme be constructed as in Sect. 2.1, and let s, g be positive
constants, such that d�, dz, dδ, s and g satisfy (C2) and the following requirement:

2 − 4
dδ

π
− h−1(s)s√

dδc
≥ g. (C1′)

Then the scheme is ε2-complete.

2 In [5, Eq. 13], the parameters r and s were implicitly chosen as r = 1 and s = h(1), while in [5, Appendix II]
they observed that L

π = 1
πg ≥ 1 and α1

αT
1

= 10
dα

≤ 10
2π

≈ 1.59 for several values of c and η.

3 These results can be obtained by applying the asymptotic analysis from Sect. 7 to Blayer and Tassa’s original
analysis for the asymmetric Tardos scheme, using g = 1

π + o(1) instead of g = 2
π + o(1).
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Using the above results, in Sect. 6 we will prove ε1-soundness and ε2-completeness for
all c ≥ 2 and η ≤ 1 for the following set of parameters:

d� = 23.79, dz = 8.06, dδ = 28.31, dα = 4.58, r = 0.67, s = 1.07, g = 0.49.

This improves upon the constants from Blayer and Tassa by a factor more than 3.5, and it
improves upon the original Tardos scheme by a factor more than 4. Furthermore, for bigger
c and smaller η the values of d� further decrease, easily leading to a factor 10 improvement
over the original Tardos scheme.

Škorić et al. [7, Corollary 1] showed that for asymptotically large c, the following set of
parameters is sufficient for proving soundness and completeness in the symmetric Tardos
scheme:4

d� → π2, dz → 2π, dδ → ∞, dα ≈ π, r = 1, s = h(1), g ≈ 2

π
.

With the added assumption that the scores of innocent users and the joint score of guilty users
are normally distributed, Škorić et al. [7, Corollary 2] also showed that the following set of
parameters is sufficient for soundness and completeness, for asymptotically large c:

d� → π2

2
, dz → π, dδ → ∞.

Since by the Central Limit Theorem these scores will also converge to normal distribu-
tions, this shows that the asymptotic optimal codelength for the symmetric Tardos scheme

is � = ( π2

2 + o(1))c2 ln(n/ε1). We show in Sect. 7 that for asymptotically large c, we
can actually prove soundness and completeness for this optimal codelength, without any
added assumptions. In the asymptotic case of c → ∞, our construction gives the following
parameters:

d� → π2

2
, dz → π, dδ → ∞, dα → π

2
, r → 1

2
, s → ∞, g → 2

π
.

Similar to the asymmetric case, we thus get a factor 2 improvement over the best provable
asymptotic codelength of Škorić et al. [7], and we achieve the asymptotic optimal codelength
which Škorić et al. [7] only proved with the added assumption that the scores behave like
normal distributions. This also improves upon results from Nuida et al. [4], who showed
that with certain discrete distribution functions F , one can prove soundness and complete-
ness for � ≈ 5.35c2 ln(n/ε1) for large c. With our construction, we show a codelength of
� ≈ 4.93c2 ln(n/ε1) is provably secure for large c.

3 Soundness

Here we will prove Theorem 3, i.e. prove the soundness property from Definition 1, under
the assumptions (S1) and (S2). We will closely follow the proof of soundness of Blayer and
Tassa of [6, Theorem 1.1]. We will first prove an upper bound on Ey,X,p

[
eαS j

]
(the expected

value with respect to all selections y, X, p), with α = 1/(dαc) and using only (S1), and then
use this result together with (S2) to prove upper bounds on P[ j ∈ σ(y)] for innocent users
j , and P[σ(ρ(X)) �⊆ C].

4 In [7] the parameters dα, r, s and g were implicitly chosen.
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Lemma 1 Let dα and r be positive constants, with r > 1
2 , such that dδ, dα and r satisfy

Eq. (S1). Let j be an innocent user, and let S j be the user’s score in the Tardos scheme from
Sect.2.1. Let α = 1/(dαc). Then

Ey,X,p

[
eαS j

]
≤ erα2�. (4)

Proof First we fill in S j = ∑�
i=1 S ji and use the fact that the S ji are pairwise independent

for different i to get

Ey,X,p

[
eαS j

]
= Ey,X,p

[
�∏

i=1

eαS ji

]

=
�∏

i=1

Eyi ,X ji ,pi

[
eαS ji

]
.

Since S ji <
√

1/δ = √
dδc it follows that αS ji <

√
dδ/(dα

√
c). From (S1) we know that√

dδ/(dα

√
c) ≤ h(r) for our choice of r , hence αS ji < h(r). From the definition of h we

know that ex ≤ 1 + x + r x2 exactly when x ≤ h(r). Using this with x = αS ji we get

E
[
eαS ji

]
≤ E

[
1 + αS ji + r(αS ji )

2] = 1 + αE[S ji ] + rα2 E[S2
j i ].

We can easily calculate E[S ji ] and E[S2
j i ], as yi and Xji are independent for innocent users

j . As in [7, Lemmas 2 and 3], we first take the expected value over Xji for fixed values of yi

and pi to obtain

EX ji [S ji ] = pi ·
(

±
√

1 − pi

pi

)

+ (1 − pi ) ·
(

∓
√

pi

1 − pi

)

= 0, (5)

EX ji [S2
j i ] = pi ·

(

±
√

1 − pi

pi

)2

+ (1 − pi ) ·
(

∓
√

pi

1 − pi

)2

= 1, (6)

where the signs in the intermediate calculations depend on the value of yi . So it follows that
E[S ji ] = 0 and E[S2

j i ] = 1, so we get E
[
eαS ji

] ≤ 1 + rα2 ≤ erα2
, and Ey,X,p

[
eαS j

] ≤
erα2�, which was to be proven. ��
Proof (Theorem 3) We prove that the probability of accusing any particular innocent user is
at most ε1/n. Since there are at most n innocent users, the probability of not accusing any
innocent user is then at least (1 − ε1/n)n ≥ 1 − ε1, which then proves that the scheme is
ε1-sound.

Since a user is accused if and only if his score S j exceeds Z , we need to prove that
P[S j > Z ] ≤ ε1/n for innocent users j . First of all, we write α = 1/(dαc), and we use the
Markov inequality and Lemma 1 to obtain

P[ j ∈ σ(y)] = P[S j > Z ] = P
[
eαS j > eαZ

]
≤ e−αZ E

[
eαS j

]
≤ e−αZ+rα2�.

Since we want to prove that P[ j ∈ σ(y)] ≤ ε1/n, the proof would be complete if
e−αZ+rα2� ≤ e−k = ε1/n, i.e. if −αZ + rα2� ≤ −k. Filling in α = 1/(dαc), Z = dzck and
� = d�c2k, and dividing both sides by −k, we get

dz

dα

− rd�

d2
α

≥ 1.

This is exactly inequality (S2), which was assumed to hold. This completes the proof. ��
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Compared to the original proof in [6], this proof has barely changed. The only difference
is that now the scores are counted for all positions i , instead of only those positions where
yi = 1. However, since in the proof in [6] this number of positions was bounded by �, the
result remains the same. This explains why we can prove ε1-soundness with the symmetric
score function under the same assumptions (S1), (S2) as in [6].

4 Completeness

For the proof of Theorem 4, we will again closely follow the proof of Blayer and Tassa of
[6, Theorem 1.2], and make changes where necessary to incorporate the symbol-symmetric
score function. We first give a Lemma to bound the expectation value of Ey,X,p

[
e−βS

]
with

β = s
√

δ/c and S = ∑
j∈C S j , and then use this Lemma to prove completeness.

Lemma 2 Let s and g be positive constants such that dδ, s and g satisfy (C1′). Let β =
s
√

δ/c, let C be a coalition of size c, and let S = ∑
j∈C S j be their total coalition score in

the Tardos scheme from Sect.2.1. Then

Ey,X,p

[
e−βS

]
≤ e−gβ�. (7)

The proof of Lemma 2 is quite lengthy and can be found in Appendix A. Using this Lemma
we can easily prove Theorem 4.

Proof (Theorem 4) We will prove that for a coalition of size c, with probability at least 1−ε2

the algorithm will accuse at least one of the colluders. Note that if no colluders are accused,
then the score of each colluder is below Z . Hence if the total coalition score S exceeds cZ ,
then at least one of the pirates is accused. So to prove ε2-soundness, it suffices to prove that
P[S < cZ ] ≤ ε2.

We first use the Markov inequality and Lemma 2 with β = s
√

δ/c > 0 to get

P[σ(y) ∩ C = ∅] ≤ P[S < cZ ] = P
[
e−βS > e−βcZ

]
≤ eβcZ Ey,X,p

[
e−βS

]
≤ eβcZ−gβ�.

Since we want to prove that P[S < cZ ] ≤ e−ηk ≤ (ε1/n)η = ε2, the proof would be com-
plete if βcZ − gβ� ≤ −ηk. Filling in β = s

√
δ/c, � = d�c2k, Z = dzck, δ = 1/(dδc) and

writing out both sides, we get

gd� − dz ≥ η

√
dδ

s2c
.

This is exactly inequality (C2), which was assumed to hold. This completes the proof. ��
Compared to [6], we see that instead of using (C1), we now need that inequality (C1′)

holds. Comparing these two inequalities, we see that a term 1
π

has changed to a 2
π

, and a
term 2

dδπ
has changed to a 4

dδπ
. The most important change is the 1

π
changing to a 2

π
, since

that term is the most dominant factor (and the only positive term) on the left hand side of
(C1′). By increasing this by a factor 2, we get that g ≤ 2

π
instead of g ≤ 1

π
. Especially for

large c, this will play an important role, and it will basically be the reason why the required
codelength can then be reduced by a factor 4, compared to Blayer and Tassa’s analysis for
the asymmetric scheme.

While the other change (the 2
dδπ

changing to 4
dδπ

) does not have a big impact on the
optimal choice of parameters for large c, this change does influence the required codelength
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for smaller c. Because of this change, we now subtract more from the left hand side of (C1′),
so that the value of g is bounded more sharply from above. This means that for finite c we
cannot reduce the codelength of Blayer and Tassa by a factor 4, but only by a factor slightly
less than 4.

Finally, after using (C1′) in the proof above, the analysis remained the same as in [6]. So
under the same assumption (C2) as in [6], we could also complete the proof for the symmetric
Tardos scheme.

5 Integral codelengths

One detail we have not taken care of and which is often “swept under the carpet” in other
literature, is that the codelength � by definition has to be integral. In the construction of
the Tardos scheme, we said we take � = d�c2 ln(n/ε1), while ln(n/ε1) and d� may not be
integral. To solve this problem, Tardos rounded up ln(n/ε1) and took d� = 100 in his original
scheme. Blayer and Tassa also rounded up ln(n/ε1) and took d� = 85, presumably also to
guarantee that � is integral.5 However, rounding up d� and ln(n/ε1) could drastically increase
the codelength. For example, suppose n = 106, ε1 = ε2 = 0.01, and c = 25. Then η = 0.25
and ln(n/ε1) ≈ 18.42, and numerical optimizations give d� ≈ 8.18. Without rounding we
would get a codelength of � ≈ 94155, while with rounding we get �′ = 106875. So then the
codelength �′ is more than 13.5 % higher than �, only because we rounded up both ln(n/ε1)

and d�.
Instead of rounding up inbetween, rounding up the entire codelength to

�′ = �d�c2 ln(n/ε1)� makes more sense. The codelength is then increased by less than
1 symbol, so we hardly notice the difference in the codelength. However, the proofs
we give in Sects. 3 and 4 are based on � = d�c2 ln(n/ε1), which corresponds to using
d� = �/(c2 ln(n/ε1)). If we take �′ = ���, then we get d ′

� = ���/(c2 ln(n/ε1)) > d� (for
� /∈ N), so that for the same parameters Z and δ we may not be able to prove soundness and
completeness anymore. In particular, Eq. (S2) might not be satisfied if d� is increased, since
(S2) implies that 4rd� ≤ d2

z . Increasing the left hand side may violate this bound, if we do
not also increase dz .

The following Theorem takes care of this minor problem, by showing that if we can find
a solution to (S1), (S2), (C1′), (C2) with a fractional codelength �, then we can also find a
solution to these inequalities with the integral codelength ���. In particular, we show which
scheme parameters �, Z and δ one could take to achieve this result.

Theorem 5 Let the Tardos scheme be constructed as in Sect.2.1, and let (d�, dz, dδ, dα,

r, s, g) be a septuple satisfying conditions (S1), (S2), (C1′), (C2) giving scheme parameters
�0 = d�c2 ln(n/ε1), Z0 = dzc ln(n/ε1) and δ0 = 1/(dδc). Then the Tardos scheme from
Sect.2.1 with parameters

� = ��0�, Z = Z0 + g

c
(��0� − �0) , δ = δ0, (8)

is ε1-sound and ε2-complete.

Proof Let us write ω = d�(��0� − �0)/�0. We prove that if the equations hold for
(d�, dz, dδ, dα, r, s, g), then they also hold for (d ′

�, d ′
z, dδ, d ′

α, r, s, g), where d ′
� = d� +

5 Numerical optimizations show that even a parameter set with d� ≈ 81.25 exists that satisfies all requirements
of Blayer and Tassa.
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ω, d ′
z = dz + gω, d ′

α = (d ′
z +

√
(d ′

z)
2 − 4rd ′

�)/2. Since for this set of parameters we get �, Z

and δ as in (8), the result then follows.
First note that since dδ, s and g did not change, both sides of inequality (C1′) remain

the same and this inequality is still satisfied. For inequality (C2), note that both sides also
remained the same, since gd ′

� − d ′
z = g(d� + ω) − (dz + gω) = gd� − dz . For (S2), we

rewrite this inequality as a quadratic inequality in d ′
α:

(d ′
α)2 + (−d ′

z)d
′
α + rd ′

� ≤ 0. (9)

This inequality is satisfied if and only if d ′
α lies between the two roots of x2+(−d ′

z)x+rd ′
� =0,

which therefore must exist. These roots exist if and only if (d ′
z)

2 − 4rd ′
� ≥ 0. Since we know

that d2
z − 4rd� ≥ 0 the inequality follows if

(d ′
z)

2 − 4rd ′
� = (d2

z − 4rd�) + (2gωdz + g2ω2 − 4rω) ≥ d2
z − 4rd� ≥ 0.

From (S2) and (C2) we know that g(d2
z ) ≥ g(4rd�) ≥ 4rdz , i.e. gdz ≥ 4r . So it follows that

2gωdz + g2ω2 ≥ 4rω, which proves the second inequality. The third inequality then follows
from (S2).

Finally for (S1), we prove that d ′
α ≥ dα , while the right hand side remains the same, so

that this inequality is still satisfied. Note that dα is also at most the largest root of (9), so
d ′
α − dα is bounded by

d ′
α − dα ≥

d ′
z +

√
(d ′

z)
2 − 4rd ′

�

2
−

dz +
√

d2
z − 4rd�

2
≥ gω

2
≥ 0.

Here the second inequality follows from earlier calculations that (d ′
z)

2 − 4rd ′
� ≥ d2

z − 4rd�.
So this choice of d ′

α is at least as high as dα , so inequality (S1) is satisfied. This completes
the proof. ��

6 Optimization

Similar to the analysis done by Blayer and Tassa in [6, Sect. 2.4], we also investigate the opti-
mal choice of parameters such that all requirements are satisfied, and d� is minimized. As
only one of the inequalities has changed, and it changed only on two positions, the formulas
for the optimal values of dδ, dα, dz, d� in the following theorem are almost the same as in [6,
Sect. 2.4.5]. We do not give a proof here, as it would be nearly identical to the analysis done
in [6, Sect. 2.4].

Theorem 6 Let η, c be given, and let r, s, g be fixed, satisfying r ∈ ( 1
2 ,∞), s ∈ (0,∞),

g ∈ (0, 2
π
). Then the optimal choice of dδ, dα, dz, d�, minimizing d� and satisfying conditions

(S1), (S2) , (C1′) , (C2), is given by:

d̂δ =
⎛

⎝
1

4
π

− 2g

⎛

⎝

√
(h−1(s)s)2

c
+ 16

π

(
2

π
− g

)

+ h−1(s)s√
c

⎞

⎠

⎞

⎠

2

, (O1)

d̂α = max

⎛

⎜
⎝

√

d̂δ

h(r)
√

c
,

r

g
+

√
√
√
√
(

r

g

)2

+ r

g
η

√

d̂δ

s2c

⎞

⎟
⎠ , (O2)
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d̂z = gd̂2
α + rη

√
d̂δ

s2c

gd̂α − r
, (O3)

d̂� = η

√
d̂δ

s2c
+ d̂z

g
. (O4)

So to find an optimal septuple (r̂ , ŝ, ĝ, d̂δ, d̂α, d̂z, d̂�) for given c, η, satisfying all require-
ments and minimizing d̂�, one only has to find the triple (r, s, g) with r ∈ ( 1

2 ,∞), s ∈ (0,∞)

and g ∈ (0, 2
π
) that minimizes the right hand side of (O4).

Example An optimal solution to (S1), (S2), (C1′), (C2) for c ≥ 2 and η = 1, minimizing
d�, is given by

d� = 23.79, dz = 8.06, dδ = 28.31, dα = 4.58, r = 0.67, s = 1.07, g = 0.49.

This means that with these constants, we can prove soundness and completeness for all
c ≥ 2 and η ≤ 1, with a codelength of � ≥ 23.79c2 ln(n/ε1). Compared to the original
Tardos scheme, which had a codelength of � = 100c2 �ln(n/ε1)�, this gives an improvement
of a factor more than 4. Furthermore we can prove that this scheme is ε1-sound and ε2-com-
plete for any value of c ≥ 2 and η ≤ 1, while Tardos’ original proof only works for c ≥ 2
and η ≤ √

c/4.
Example In practice, one usually has η � 1 instead of η = 1. For example, it could be

that ε2 = 1/2 is sufficient, while ε1 = 10−3 is desired and there are n = 106 users, so
that η ≈ 0.033. Then the optimizations give us d� ≈ 10.89 for c = 2. So with this larger
value of ε2, a codelength of � ≥ 10.89c2 ln(n/ε1) is sufficient to prove the soundness and
completeness properties for any c ≥ 2. This is then already a factor more than 9 improvement
compared to the original Tardos scheme.

If we let c increase in inequalities (O1),(O2),(O3),(O4), i.e. if we only want provable
soundness and completeness for c ≥ c0 for some c0 > 2, then one can easily see that the
inequalities become weaker and an even shorter codelength can be achieved. Figure 1 shows
the optimal values of d� against different values of c, for several values of η. One can see
that for large c, a codelength of � < 6c2 ln(n/ε1) can be sufficient. In the next Section, we

will see that for large c, the optimal values of d� will converge to π2

2 ≈ 4.93.

7 Asymptotics

Here we show that with the symmetric Tardos construction, for c → ∞ we can prove sound-

ness and completeness for d� = π2

2 + O
(
c−1/3

)
. We calculate the optimal first order error

term explicitly, and also show explicitly the dependence on η, as the choice of η may depend
on the particular application. It is customary to assume that η ≤ 1, but smaller values of η

are plausible and can lead to even shorter codelengths.

Theorem 7 Let γ = ( 2
3π

)2/3 ≈ 0.35577. The optimal asymptotic (for c → ∞) value for
d�, and the accompanying values for dz, dδ , are

d� = π2

2

(

1 +
(

3γ + 18γ
η

log c
(1 + o(1))

)

c−1/3
)

, (10)
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dz = π

(

1 +
(

5

2
γ + 6γ

η

log c
(1 + o(1))

)

c−1/3
)

, (11)

dδ = 4

γ

(

1 − 3
η

log c
(1 + o(1))

)

c1/3, (12)

and the choices for g, r, s leading to them are given by

g = 2

π

(

1 −
(

1

2
γ + 3γ

η

log c
(1 + o(1))

)

c−1/3
)

, (13)

r = 1

2

(

1 +
(

2γ − 6γ
η

log c
(1 + o(1))

)

c−1/3
)

, (14)

s = log

(
24

π2γ

η

log c
(1 + o(1))c1/3

)

. (15)

Proof We introduce parameters Kg, Kr , Ks , a priori depending on c, to enable us to write

g = 2

π
− Kgc−1/3, h(r) = Kr c−1/3,

1

sh−1(s)
= Ksc−1/3.

Clearly Kg, Kr , Ks are positive, and we will assume that Kg and Kr are O(1) for c → ∞.
This assumption will be validated later on. Note that we do not demand this for Ks (and
indeed, it will turn out that Ks → ∞).

Note that r = h−1(Kr c−1/3) = 1
2 + 1

6 Kr c−1/3 + O(c−2/3), so that, with for convenience
R = r

g , we have

R = π

4
+
(

π2

8
Kg + π

12
Kr

)

c−1/3 + O
(
c−2/3) . (16)

Next, for convenience we put D =
√

dδ

c , and then we have from (O1) that D = D0c−1/3,
where

D0 = 1

2Kg Ks

(

1 +
√

1 + 16

π
Kg K 2

s

)

.

Note that D0 is a decreasing function of Ks , with limiting value 2√
π

1√
Kg

.

From (O2) we see that dα = max
{

D
h(r)

, x0

}
, where x0 = R +

√
R2 + RD η

s . Note that

x0 = 2R + 1

2
D

η

s
+ O

(
c−2/3) , (17)

where we used that η
s = o(1). Note that (O3) and (O4) imply d� = d2

α+dα D η
s

g(dα−R)
, and that by

dα > R we have d� ≥ 2x0+D η
s

g , with equality if and only if dα = x0. So in order to minimize

d� we minimize
2x0+D η

s
g , and show that there is a solution to this with dα = x0, which then

must be the optimum. For this optimal solution, by (16) and (17) we get

d� = π2

2
+ L0c−1/3 + O(c−2/3), where L0 = π3

2
Kg + π2

6
Kr + π D0

η

s
. (18)

To find the main terms in the optimal values for d�, dz, dδ , for the moment we neglect error
terms. The fact that dα = x0 implies that D

h(r)
≤ x0, and this is asymptotically equivalent
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to D0
Kr

≤ π
2 . This can be expanded into 1 +

√

1 + 16
π

Kg K 2
s ≤ π Kg Kr Ks , and this leads to

(π3 Kg K 2
r − 16)Ks ≥ 2π2 Kr , which actually is two conditions:

Kg K 2
r >

16

π3 = 0.51602 . . . , Ks ≥ 2π2 Kr

π3 Kg K 2
r − 16

. (19)

This shows that it is impossible to choose both Kg and Kr close to 0, and that it is certainly
possible to choose them O(1) as c → ∞. Note that optimizing η

s implies taking s as large as
possible, but this means taking Ks as small as possible, which is limited by the above con-
dition. Indeed, in minimizing L0 we would like to minimize Kg and Kr , leading to growing
Ks , while also s preferably keeps growing. We will see that this is possible.

In optimizing L0, to find the main term we also neglect for the moment the term π D0
η
s ,

as it also tends to 0. So we optimize L ′
0 = π3

2 Kg + π2

6 Kr under the constraint Kg K 2
r > 16

π3 .
The minimal value for L ′

0 is reached for Kg → γ
π

≈ 0.11325, Kr → 6γ = 2.1346, where
γ = ( 2

3π
)2/3 ≈ 0.35577 is a convenience constant. In this case Kg K 2

r → 16
π3 , so Ks → ∞,

and D0 → 2√
π

1√
Kg

→ 3πγ ≈ 3.3531. It follows that L ′
0 → 3π2

2 γ ≈ 5.2670.

Let us next be more careful, and not throw away the term π D0
η
s and the error terms. L0

as in (18) is a priori a function of Kg, Kr and s. We can take for Ks its exact optimal value
according to (19), viz.

Ks = 2π2 Kr

π3 Kg K 2
r − 16

, (20)

so that D0 = π
2 Kr . Note that (20) allows us to eliminate from L0 the variable Kg . This yields

L0 = π2

6

(
1 + 3

η

s

)
Kr + π2 1

Kr Ks
+ 8

1

K 2
r
.

We now minimize L0 by setting the partial derivatives w.r.t. s and Kr to 0. Indeed,
∂L0
∂Kr

= π2

6 (1 + 3 η
s ) − π2 1

K 2
r Ks

− 16 1
K 3

r
, and this being 0 implies

π2

6

(
1 + 3

η

s

)
K 2

r − 16
1

Kr
= π2 1

Ks
. (21)

Further, by 1
K 2

s

d Ks
ds = − (s−1)es+1

s2 c−1/3 we find ∂L0
∂s = −π2

2
η

s2 Kr + π2 1
Kr

(s−1)es+1
s2 c−1/3,

and this being 0 implies

K 2
r = 2

η
((s − 1)es + 1)c−1/3. (22)

From (21) and (22) we eliminate Kr , and thus obtain an equation in s only, viz.

(
1 + 3

η

s

) 1

η3/2 ((s − 1)es + 1)3/2 − 24
√

2

π2 c1/2 = 3
1

η1/2

es − 1 − s

s
((s − 1)es + 1)1/2.

The first term on the left hand side is ( ses

η
)3/2(1+O( 1

s )), and the right hand side is 3(es )3/2

(sη)1/2 (1+
O( 1

s )), and as η < 1 and s → ∞ the right hand side clearly is smaller, so vanishes in the

O( 1
s ). So we find ( ses

η
)3/2(1 + O( 1

s )) = 24
√

2
π2 c1/2, and this yields

ses =
(

8

π2γ
η + O

(
1

log c

))

c1/3.
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In turn this implies

s = 1

3
log c − log log c + log η + O(1),

1

s
= 3

log c

(

1 + O

(
log log c

log c

))

, (23)

and

Ks = π2γ

72η
log2 c

(

1 + O

(
1

log c

))

. (24)

Indeed we find that Ks and s both tend to ∞.
To get the proper value for Kr we turn to (21), and introduce θ such that Kr = 6γ + θ ,

so that θ will tend to 0. Then (21) becomes a cubic equation in θ :

θ3 + 18γ θ2 +
(

108γ 2 − 6
(
1 + 3 η

s

)
Ks

)

θ +
(

288
π2

η
s

1 + 3 η
s

− 36γ
(
1 + 3 η

s

)
Ks

)

= 0. (25)

When s → ∞ and Ks → ∞, this ultimately becomes θ(θ2 + 18γ θ + 108γ 2) = 0, with
the quadratic term being positive definite, showing that (25) for finite large s has exactly one
real solution, which will be close to 0. For this solution we have, using (23), (24),

(

108γ 2 + O

(
1

log2 c

))

θ + O(θ2) = −288

π2

η

s

(

1 + O

(
1

log c

))

,

hence

Kr = 6γ

(

1 − η

s

(

1 + O

(
1

log c

)))

, Kg = γ

π

(

1 + 2
η

s

(

1 + O

(
1

log c

)))

.

Putting everything together, using (23), we find

L0 = 3

2
π2γ

(

1 + 6η
1

log c
(1 + o(1))

)

.

The result now easily follows. ��
We have optimized for d�, and one could get slightly better error terms for dz or dδ . For

example, optimizing for dz yields an optimal value of π(1+(3γ ′+9γ ′ η
log c (1+o(1)))c−1/3),

for a suboptimal d� of π2

2 (1 + (4γ ′ + 15γ ′ η
log c (1 + o(1)))c−1/3), where γ ′ = 2−1/3γ .

It is remarkable that the error terms for d� and dz scale with c−1/3, while Škorić et al.
found error terms scaling with c−1/2. It turns out that in [7] an error term in μ̃ was not taken
into account, and if one does do, their analysis for the binary case will also yield error terms
scaling with c−1/3. Also note that dδ (related to the cutoff) scales with c1/3, i.e. the cutoff

1
dδc scales with c−4/3 rather than with c−1 as one might have guessed.

An immediate consequence of Theorem 7 is the following result, which shows that asymp-
totically we will achieve codelengths of � ≈ 4.93c2 ln(n/ε1), i.e. codelengths that are about
4.93 % of Tardos’ original codelengths.

Corollary 1 For c → ∞ the above construction gives an ε1-sound and ε2-complete scheme
with parameters

� → π2

2
c2 ln(n/ε1), Z → πc ln(n/ε1), δ → γ

4
c−4/3.

This proves that our analysis is asymptotically tight, since for large c we achieve the

optimal codelength of � = ( π2

2 + o(1))c2 ln(n/ε1).
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Remark In the proof of Theorem 7, we use that r can be taken in the neighborhood of 1
2

to get the final result, d� = π2

2 + O(c−1/3). In [7] however, no such variable r was used, as
it was simply fixed at 1. If they had taken r as a parameter in their analysis and had taken it
close to 1

2 in the asymptotic case, then they would have obtained the same asymptotic results
as we did above, but still with different first order terms.

8 Summary

We have shown that by combining the symmetric score function of [7] with the improved
analysis of [6], we get even shorter codelengths. Furthermore, the asymptotic codelength

we obtain, � = π2

2 c2 ln(n/ε1), is optimal, which follows from an earlier result of [7]. We
also investigated the first order behaviour of the codelengths for large c, and we have shown

that � = ( π2

2 + O(c−1/3))c2 ln(n/ε1) is optimal for this construction, and is achieved by
our analysis. With this we have thus closed the gap of a factor 2 between the best provably
secure codelength and the required codelength, as existed in [7], for this construction, and
we have established the order of the first order term (O(c−1/3)), as well as the optimal first
order constant.

An important open problem in this area is whether one can efficiently achieve even shorter
asymptotic codelengths. We have shown that with the symmetric score function and the

arcsine distribution function, the optimal asymptotic codelength is � → π2

2 c2 ln(n/ε1) ≈
4.93c2 ln(n/ε1), and is achieved by our analysis. In [4], different distribution functions were
considered, leading to shorter constants for small c but a larger asymptotic codelength of
� ≈ 5.35c2 ln(n/ε1). In [3] it was shown that the asymptotic codelength will always sat-
isfy � ≥ 2 ln(2)c2 ln(n/ε1) ≈ 1.39c2 ln(n/ε1), but it is unknown whether efficient schemes
reaching such a codelength exist.
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Appendix A: Proof of Lemma 2

For proving Lemma 2 we will again closely follow the analysis of Blayer and Tassa, and
make changes where necessary.

First, we write the total accusation sum of all colluders together as follows:

S =
�∑

i=1

c∑

j∈C

S ji =
�∑

i=1

yi

(

xi qi − c − xi

qi

)

+
�∑

i=1

(1 − yi )

(
c − xi

qi
− xi qi

)

.

Here xi is the number of ones on the i th positions of all colluders, yi is the output symbol of
the pirates on position i , and we introduced the notation qi = √

(1 − pi )/pi . Following the

analysis from e.g. Blayer and Tassa, and Tardos, but using that Si = (1 − yi )
(

c−xi
qi

− xi qi

)

for positions i where yi = 0 (instead of Si = 0, as with the asymmetric score function), we
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can bound the expectation value by

Ey,X,p

[
e−βS

]
≤
(

c∑

x=0

(
c

x

)

Mx

)�

, (26)

where

Mx =

⎧
⎪⎨

⎪⎩

E0,x if x = 0,

E1,x if x = c,

max(E0,x , E1,x ) otherwise,

and, for some random variable p distributed according to F ,

E0,x = E p

[

px (1 − p)c−x e
−β

(
c−x

q −xq
)]

,

E1,x = E p

[

px (1 − p)c−x e
−β

(
xq− c−x

q

)]

.

Now, using β = s
√

δ/c, we bound the exponents in E0,x and E1,x as follows.

−s = −βc√
δ

≤ −βcq ≤ −β

(

xq − c − x

q

)

≤ βc

q
≤ βc√

δ
= s.

So |β(xq − (c − x)/q)| ≤ s for our choice of β. So we can use the inequality ew ≤
1 + w + h−1(s)w2 which holds for all w ≤ s, with w = ±β(xq − (c − x)/q), to obtain

E0,x ≤ E p

[

px (1 − p)c−x

(

1 + β

(

xq − c − x

q

)

+ h−1(s)β2
(

xq − c − x

q

)2
)]

,

E1,x ≤ E p

[

px (1 − p)c−x

(

1 − β

(

xq − c − x

q

)

+ h−1(s)β2
(

xq − c − x

q

)2
)]

.

Introducing more notation, this can be rewritten to

E0,x ≤ F0,x + βF1,x + h−1(s)β2 F2,x ,

E1,x ≤ F0,x − βF1,x + h−1(s)β2 F2,x ,

where

F0,x = E p
[

px (1 − p)c−x ] ,

F1,x = E p

[

px (1 − p)c−x
(

xq − c − x

q

)]

,

F2,x = E p

[

px (1 − p)c−x
(

xq − c − x

q

)2
]

.

We first calculate F1,x explicitly. Writing out the expectation value and using the definition
of f (p) from (1), we get

F1,x = 1

π − 4δ′

∫ 1−δ

δ

px (1 − p)c−x
(

x

p
− c − x

1 − p

)

dp

The primitive of the integrand is given by I (p) = px (1 − p)c−x , so we get

F1,x = I (1−δ)−I (δ)
π−4δ′ = (1−δ)x δc−x −δx (1−δ)c−x

π−4δ′ . (27)
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For 0 < x < c, we bound F1,x from above and below as

−δx (1 − δ)c−x

π − 4δ′ ≤ F1,x ≤ (1 − δ)xδc−x

π − 4δ′ .

Using these bounds for Mx , with 0 < x < c, we get

Mx ≤ F0,x + β
max(δx (1−δ)c−x ,(1−δ)x δc−x )

π−4δ′ + h−1(s)β2 F2,x .

Since δ < 1 − δ, the maximum of the two terms is the first term when 0 < x ≤ c/2, and
it is the second term when c/2 < x < c. Note that this bound is different from the one of
Blayer and Tassa, since in their analysis they do not have this maximum over two terms, but
just the first of these two terms. We cannot prove the same upper bound as Blayer and Tassa,
and therefore our bound for Mx , 0 < x < c, is slightly weaker than Blayer and Tassa’s.

For the positions where the marking assumption applies, i.e. x = 0 and x = c, we do not
use the bounds on F1,x , but use the exact formula from (27) to obtain

M0 ≤ F0,0 − β
(1−δ)c−δc

π−4δ′ + h−1(s)β2 F2,0,

Mc ≤ F0,c − β
(1−δ)c−δc

π−4δ′ + h−1(s)β2 F2,c.

The value of Mc is the same as that of Blayer and Tassa, but whereas Blayer and Tassa had
M0 = F0,0, we get a lower upper bound on M0. This is essentially the reason why with the
symmetric score function we get shorter codelengths than Blayer and Tassa.

Substituting the bounds on Mx in the summation over Mx from (26) gives us

c∑

x=0

(
c

x

)

Mx ≤ M0 + Mc +
c−1∑

x=1

(
c

x

)

Mx

≤
(

F0,0 − β
(1 − δ)c − δc

π − 4δ′ + h−1(s)β2 F2,0

)

+
(

F0,c − β
(1 − δ)c − δc

π − 4δ′ + h−1(s)β2 F2,c

)

+
�c/2�∑

x=1

(
c

x

)(

F0,x + β
δx (1 − δ)c−x

π − 4δ′ + h−1(s)β2 F2,x

)

+
c−1∑

x=�c/2�+1

(
c

x

)(

F0,x + β
(1 − δ)xδc−x

π − 4δ′ + h−1(s)β2 F2,x

)

.

Gathering all terms with F0,x and F2,x , and using the substitution x ′ = c − x for the sum-
mation over �c/2� − 1 terms, we get

c∑

x=0

(
c

x

)

Mx ≤
c∑

x=0

(
c

x

)

F0,x − β
2(1 − δ)c

π − 4δ′ + h−1(s)β2
c∑

x=0

(
c

x

)

F2,x

+ β

π − 4δ′

⎛

⎝δc +
�c/2�∑

x=1

(
c

x

)

δx (1 − δ)c−x

⎞

⎠

+ β

π − 4δ′

⎛

⎝δc +
�c/2�−1∑

x ′=1

(
c

x ′

)

δx ′
(1 − δ)c−x ′

⎞

⎠ . (28)
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For the summation over F2,x , let us define a sequence of random variables {Ti }c
i=1 according

to Ti = q with probability p and Ti = −1/q with probability 1− p. Similar to the inequalities
from (6), we get that E p[Ti ] = 0 and E p[T 2

i ] = 1. Also, since Ti and Tj are independent
for i �= j , we have that E p[Ti Tj ] = 0 for i �= j . Therefore we can write

E p

⎡

⎣

(
c∑

i=1

Ti

)2
⎤

⎦ =
c∑

i=1

E p
[
T 2

i

] + 2
∑

i< j

E p
[
Ti Tj

] = c.

But writing out the definition of the expected value, we see that the left hand side is actually
the same as the summation over F2,x , so that we get

E p

⎡

⎣

(
c∑

i=1

Ti

)2
⎤

⎦ =
c∑

x=0

(
c

x

)

px (1 − p)c−x
(

xq − c − x

q

)2

=
c∑

x=0

(
c

x

)

F2,x = c.

Also we trivially have that

c∑

x=0

(
c

x

)

F0,x =
c∑

x=0

(
c

x

)

E p
[

px (1 − p)c−x ] = E p

[
c∑

x=0

(
c

x

)

px (1 − p)c−x

]

= 1.

For the summation over �c/2� terms we use the following upper bound, which then also
holds for the summation over �c/2� − 1 terms:

δc +
�c/2�∑

x=1

(
c

x

)

δx (1 − δ)c−x ≤
c∑

x=1

(
c

x

)

δx (1 − δ)c−x = 1 − (1 − δ)c ≤ δc.

Note that this first inequality is quite sharp. In most cases δ � 1 − δ, so that the summation
is dominated by the terms with low values of x . Adding the terms with �c/2� < x < c (i.e.
terms with high powers of δ) to the summation has an almost negligible effect on the value
of the summation.

Now applying the previous results to (28), and using (1 − δ)c ≥ 1 − δc, which holds for
all c, we get

c∑

x=0

(
c

x

)

Mx ≤ 1 − β 2−4cδ
π−4δ′ + h−1(s)β2c.

We want to prove that, for some g > 0,

c∑

x=0

(
c

x

)

Mx ≤ 1 − β 2−4cδ
π−4δ′ + h−1(s)β2c ≤ 1 − gβ ≤ e−gβ . (29)

Filling in β = s
√

δ/c and δ = 1/(dδc) and writing out the second inequality, this leads to
the requirement that

2 − 4
dδ

π
− h−1(s)s√

dδc
≥ g.

This is exactly inequality (C1′), which is assumed to hold. Combining the results from
Eqs. (29) and (26) gives us
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Ey,X,p

[
e−βS

]
≤
(

c∑

x=0

(
c

x

)

Mx

)�

≤ e−gβ�.

This completes the proof. ��
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