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Abstract  We show that there is a unique graph with spectrum as in the title. It is a subgraph
of the McLaughlin graph. The proof uses a strong form of the eigenvalue interlacing theorem
to reduce the problem to one about root lattices.
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1 The graph A

It was shown in [5] that there is a unique graph Z with spectrum 30! 20 (—10)2! (with
multiplicities written as exponents), namely the collinearity graph of the unique generalized
quadrangle with parameters GQ(3, 9). It is strongly regular with parameters (v, k, A, ) =
(112, 30, 2, 10). Its automorphism group is U4(3). Dg >~ PG 027 (3) (of order 210-36-5~7),
where the * denotes that the form may be multiplied by a constant.

It was shown in [1] that there is a unique graph Y with spectrum 20! 260 (—7)20.
It is strongly regular with parameters (v, k, A, u) = (81,20, 1,6), and is the second
subconstituent of Z, the subgraph induced on the set of vertices at distance 2 from a fixed
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vertex a of Z. Its automorphism group is 3* : ((2 x Sg)-2) acting rank 3, the point stabilizer in
Aut(Z). One construction of Y is found by taking 1+ /(1) (where 1 denotes the all-1 vector)
inside F36, where two cosets are adjacent when they differ by a weight-3 vector.

Let A be the second subconstituent of Y, the subgraph induced on the set of vertices at
distance 2 from a fixed vertex b of Y. Then A has spectrum 14! 240 (—4)19 (—6)? (apply
Theorem 5.1 of [5]) and automorphism group (2% x Sg) - 2, the stabilizer of the unordered
pair {a, b} in Aut(Z), twice as large as the point stabilizer of Aut(Y). The above description
of Y leads to a description of A as the graph on the cosets in F36 with coordinates (up to
permutation) either 000012 + (1) or 001122 + (1), where two cosets are adjacent when they
differ by a weight 3 vector.

In this note we show that the graph A is determined by its spectrum.

This is an interesting case. The uniqueness proof is elegant and quite different from the
methods found in the literature (cf. [3,4]).

2 Interlacing

An important tool is the following lemma on interlacing eigenvalues ([6], Theorem 2.1 (i),
(i1); see also [2], Theorem 3.3.1).

Lemma 2.1 Let ' be a graph on n vertices with eigenvalues .y > --- > \,, and let
{X1, ..., X} be apartition of the vertex set of I" into nonempty parts. Let r;; be the average
number of neighbours in X j of a vertex in X;. Then the matrix R = (r;;) has real eigenvalues
H1 > - > [y, which satisfy

(i) (interlacing) hi > Wi > Ap—mi fori =1,...,m;

(ii) if wi = i, or i = Ap—m+i for some i € {1,...,m}, then R has a p;-eigenvector
v=(v,..., vm)T, such that the vector w € R" whose entries are equal to v; for all
verticesin X (j =1,...,m)is a u;-eigenvector of T.

For example if m = 1 it follows that the average valency k of I is at most equal to A1, and
equality implies that the all-1 vector is a A;-eigenvector of I". Since nk = )\1.2 it follows
that I is regular of valency A if nA; = Aiz.

3 Graphs cospectral to A

Let I" be a graph with the same spectrum 141240 (—4)10 (—6)? a5 A.

We shall write x ~ y (x % y) when x is a (non)neighbour of y in I', and denote the
number of common neighbours of x and y by A(x, y) (u(x, y)).

(i) By Lemma 2.1 we know that I" is regular of valency 14. Moreover I" is connected,
because the multiplicity of the eigenvalue 14 equals 1.

If T has adjacency matrix A, then (A —2I)(A +41)(A+61) = 72J so that (A%), = 8,
and it follows that each vertex is in four triangles.

(i1) For a vertex x, let Ty be a set of eight neighbours of x such that {x} U Ty contains the
four triangles on x. Let S, be the set of the remaining six neighbours of x, and let N, be the
set of 45 nonneighbours of x. The matrix of average row sums of A, partitioned according
to {{x}, Tx, Sx, Ny} is
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08 6 0
11 0 12
1 0 0 13
0 % 78 4%

5 45 45

with eigenvalues 14, 2, 0.40, —5.27. The 2-eigenspace is ((15, 3, 1, —1)T). By Lemma 2.1
it follows that the vector that is constant 15, 3, 1, —1 on {x}, T, Sy, Ny, respectively, is
2-eigenvector of A. Therefore each vertex in 7, has precisely one neighbour in 7, that is,
two triangles on x have only x in common. It also follows that if z is a non-neighbour of x
with a neighbours in 7y and b neighbours in Sy, then 2a + b = 6 whilea + b = u(x, z), so
that a = 6 — wu(x, z). In particular, wu(x, z) = 3 implies that z has no neighbours in S,.

(iii) The rank 10 matrix B = 4J — (A — 2I)(A + 61) is positive semi-definite and hence
can be written B = N T N for a 10 x 60 matrix N.

Let x be column x of N. Then x +— X is arepresentation of I" in Euclidean 10-space, with

2 ifx=y
(x,y) =1 —Ax,y) ifx~y.
4—plx,y) ifx#y

It follows that for nonadjacent vertices x, y one has 2 < u(x, y) < 6.

If {x, y, z} is a triangle, then X + y + z = O (since this sum has squared norm 0).

The matrix B satisfies JB = 0 and AB = —4B and B> = 12B so that the rows of B are
integral vectors with sum 0 and squared norm 24.

Row x of B has a2 at the x-position, and a —1 at the 8 positions z € Ty (with A(x, z) = 1).
If x = y, so that rows x and y of B are identical, then @ (x, y) = 2 and we see two 2’s and
at least fourteen —1’s in each row, and since there can be at most two more nonzero entries,
the row sum is nonzero, contradiction. It follows that the representation is injective.

If (x,y) = —2, then y = —x. Given x, this happens for at most one y. It follows that
arow of B has entries either 2! 13 0*> (—=1)% (=2)! or 2! 1703 (= 1)!! (with multiplicities
written as exponents).

(iv) Let us call a triangle a line. If u(x, y) = 3 then each of the six edges connecting
x and y with their common neighbours are in a line. Now there are 24 lines not on x
meeting Ty, and each y with u(x, y) = 3 determines three such lines, so if there are 9
such points y then some line is seen twice. We find a line {y, y’, z} with x ~ z. Now
0=(x,y) + (x, y_’) +(x,z) =141+ (—1) = 1, contradiction. It follows that no row of
B has pattern 21190% (—!L

(v) A set of roots (vectors of squared norm 2) with integral inner products spans a root
lattice ([2], §3.10), so A = (x | x € VT') is a 10-dimensional root lattice, orthogonal direct
sum of summands of the form A,, (n > 1), D,, (n > 4), Eg, E7, or Eg.

(vi) The roots of the orthogonal direct sum of root lattices are the roots of the summands, so
that an orthogonal direct sum decomposition of A gives a partition of VI" suchthat (y,z) =0
if y, z are vertices from different parts. It follows that the three vertices of a triangle belong
to the same part.

Consider the graph T with vertex set VI' where two vertices x, y are adjacent when
(x,y) = —1,i.e., when xy is an edge in a triangle of I". Given x, consider the five subsets
Si ={ue VDl | (x,u) =i}fori =2,1,0,—1,—-2. We have |S5z| = [S_2| = 1, |S_1| =
[S1] = 8, |So| = 42. The graph T is regular of valency 8. In T, any vertex y € S_; has 1
neighbour x, 1 neighbour in S_1, 3 neighbours in Sy, and hence 3 neighbours in Sp. A vertex
z € Sp has 0 or 2 I'-neighbours in S_1, so at most 2 T -neighbours. We see that the connected
component of 7 containing x has at least 1 +8 + 8 + 1 + (8 - 3) /2 = 30 vertices.
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It follows that either the root lattice A is indecomposable, i.e., is Ajg or Djg, or has
precisely two summands. Since A, has n(n + 1) roots, and D, has 2n(n — 1) roots, the
possibilities in the latter case are A5 + As, As + Ds, Ds + Ds.

(vii) Suppose A has a direct summand Ds. The root system D5 has 40 roots, and 30 occur
as images of vertices in the corresponding connected component C of T. Let ® be the graph
on the 40 roots of Ds, adjacent when they have inner product —1, and consider C a subset
of the vertex set of ®. Let D be the set of 10 roots not in C. The graph ® is regular of
valency 12. The valency inside C is 8, so each vertex in C has 4 neighbours in D. This gives
120 edges meeting D, so there are no internal edges in D and no two roots of D have inner
product —1. Both @ and C are closed under # +— —u, so also D is, and no two roots of D
have inner product 1. Consequently, D has only inner products 2, 0, —2 and consists of five
mutually orthogonal pairs of opposite roots. But D5 does not contain 5 mutually orthogonal
roots. Contradiction.

(viii) Consider the graph IT with as vertices the 30 pairs =, adjacent when they have non-
zero inner product. Then IT has valency 8 and A = 4. Using a Weetman argument (cf. [7])
we see that a connected component of IT has fewer than 30 vertices. It will follow that
A ~ A5+ As.

As follows. For geodesics xo ~ x1 ~ x2 ~ ... we find lower bounds »n; for the number
of common neighbours of x; and x; at distance i from xo. We can take n; = 2 since two
nonadjacent vertices in a 4-regular graph on 8 vertices must have at least 2 common neigh-
bours. We can take np = 3 since the set of common neighbours of x; and x( has valency
at least n; = 2, and hence size at least 3 (and an 8-vertex graph of degree 4 cannot have a
cut set of size 2). Now the local graph at x3 has at least 4 vertices at distance 2 from xg, and
hence cannot have any at distance 4 from x( and a connected component of IT has diameter
at most 3 and size at most 1 + 8 + (8 - 3)/3 4 (8 - 2) /4 = 21, as desired.

(ix) Thus far, we identified the 60 vertices of I" with the 60 roots of As + As, and can
recognize the triangles of I'. It remains to find the edges of I that are not in a triangle.

Let C and D be the two sets of vertices belonging to the two systems As. Given x € C, the
12 vertices y € C with (x, y) = 0 have common T -neighbours with x, so are nonadjacent to
x in I". That determines the induced subgraph on C and on D, and we have to find the edges
between C and D.

Suppose x € C. If y = —X, then p(x, y) = 6, and the six common neighbours of x and
y live in D, and form all neighbours of x in D. If u is a common neighbour of x and y, and
v = —1, then also v is a common neighbour of x and y. This means that for the edges across
we can identify pairs of opposite roots, and have a geometry with 15 points and 15 lines,
where each point is on 3 lines and each line has 3 points. The points can be identified with
the pairs from a 6-set. Then subgraph on the set of points is 7'(6). The lines consist of three
mutually disjoint pairs. This is the unique generalized quadrangle of order 2.

This proves that I' is uniquely determined by its spectrum, and hence must be isomorphic
to A.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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