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In this issue, Hee Yeon Kim et al. [1] further extend an

evolving understanding of ALT reference range in ways

that affirm the importance of conceiving of laboratory data

as probability estimates influenced by clinical circum-

stances. Furthermore, their work also demonstrates latent

clinical information in laboratory data that outdated

methods of reporting leave untapped but which an ‘‘intel-

ligent’’ medical laboratory could provide.

While some laboratory results—have binary outcomes,

others fall across a range typically distributed within a

‘‘healthy population.’’ But there are pitfalls in approaching

the cutoffs as if they cleanly separate ‘‘health’’ from

‘‘disease,’’ as demonstrated by serum concentrations (lev-

els) of alanine aminotransferase (ALT). ALT levels are not

distributed normally [2], vary with race, size, and age [2, 3]

and can vary widely in specificity and sensitivity for liver

disease depending upon how stringently the reference

range is defined [4, 5]. While the relative contributions of

obesity and the commonly—but not inevitably—linked

metabolic syndrome to cardiovascular disease risk are still

not entirely clear [6], Kim’s article demonstrates that there

may be important clinical information hiding within the

normal ranges set by the laboratory. In this study, ALT

levels within the established normal range but above a

more stringently defined upper limit predicted the meta-

bolic obese phenotype even in patients not themselves

overtly overweight. Even for clinicians adroit at the use of

standardized thresholds to interpret diagnostic testing [7], a

laboratory value falling within a single reference range thus

simplifies into oblivion this potentially useful information.

In a paper-and-pencil era, an experienced clinician

might interpret ALT in light of individual patient charac-

teristics—ALT levels that would provoke a biopsy if

obtained from a small Asian woman with hepatitis B might

not raise concern when obtained from a large African-

American man. But in the era of Big Data, should the

clinical laboratory simply broadcast numbers and ranges,

leaving the recognition of meaningful patterns entirely to

the clinician?

The importance of laboratory data is unquestionable—

the British National Health Service estimates nearly two-

thirds of diagnoses already depend to some degree on

clinical laboratory information [8]—but its potential out-

strips current applications. In the USA, where patient

records are frequently scattered among non-interfacing

health systems, the medical information in a community’s

laboratory archive provides often unrecognized continuity.

But with the addition of a small amount of individual

data—patient diagnosis codes, ethnicity, prescriptions,

BMI—laboratory measurements could yield more impor-

tant clinical information for the clinician. In automatically

performing operations on the raw data, the laboratory

moves beyond broadcasting and archiving (‘‘memory’’) to

intelligent function (‘‘brain’’), automatically generating

clinical meaning from its data such as indicating an ALT

between 20 and 40 might suggest the presence of the

metabolic syndrome. If this seems unnecessarily compli-

cated now, wait until the coming proliferation of genomic

data and individuated latent medical meaning expands

exponentially beyond the scope of any single practitioner.

The simplest improvements in laboratory access and

presentation of data take advantage of ‘‘memory’’ to avoid
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duplication. For example, an intelligent laboratory would

retain invariant information for an individual patient (such

as hemochromatosis genotype) and if such a test is ordered,

first search archives for previous results otherwise

unknown to the ordering physician. It is money and phle-

botomy-saving to re-report rather than re-assay.

For data that vary over time, an intelligent laboratory can

reduce testing by including in every new report the differ-

ence from the last such assay, or the average over a desig-

nated interval. A cross-covering doctor would respond

differently to a midnight call of a platelet count of 30,000

knowing the 6 months average on this patient was 25,000

than he would knowing it was 250,000.

A laboratory can also save time and improve outcomes if

abnormal results automatically trigger the appropriate fol-

low-up testing. For instance, a laboratory that recognizes a

first positive hepatitis B surface antigen could automatically

trigger viral load measurement from the same specimen.

Once ‘‘hard-wired’’ into a reporting system, these improve-

ments require no additional testing since they rely on existing

results already in the laboratory’s memory, waiting to be

utilized.

The greater a laboratory’s ability to translate results from

its database into individualized meta-data, the more intelli-

gent it becomes. For a patient with diagnostic codes indi-

cating chronic liver disease, an individualized reporting

screen could include a model for end-stage liver disease

(MELD) score automatically updated when data were

refreshed. With respect to ALT results, a laboratory that

takes into account the age, BMI, and ethnicity of the patient

could adjust the reference range to the individual in question

and the specific needs of the clinician. An on-screen report

could be soft-wired to include an adjustable reference range

bar. By toggling the bar, the clinician could adjust the range

and for each such setting see the new sensitivity and speci-

ficity estimates for predicting liver disease—or metabolic

syndrome phenotype—given the patient’s result. Alterna-

tively, reporting could be supplemented with a visual analog

reference range bar of a density proportional to the proba-

bility of liver disease, and demarcated in another color

indicating the probability of metabolic syndrome, individu-

alized for that particular patient’s age and weight, further

adjusted for lipid, glycosylated hemoglobin or other perti-

nent values as they become available. If a mutual fund’s

webpage can update anticipated annual income as users

toggle between various investment returns, how difficult

would it be for an intelligent laboratory containing a patient’s

transaminase and platelet levels to present an aspartate

aminotransferase-to-platelet ratio index (APRI) sliding scale

for the assessment of fibrosis risk, allowing the physician to

optimize positive or negative predictive values depending

upon the clinical interest? [9, 10] In short, laboratories must

go beyond reporting specific laboratory values to create the

metabolic meta-data that arise from the interactions of

information in an individuated laboratory archive and

actively present these results to the ordering clinician.

Websites already allow clinicians to calculate coronary

disease risk or to assess the response to treatment for

alcoholic hepatitis, generating the personalized meta-data

at the level of their personal electronic device. But with the

proliferation of high volume genomics, redundant data

entry will become increasingly impractical since no clini-

cian will be able to identify all of the pertinent interactions

with medical needs. As the intelligent storehouse of the

patient’s entire database, the laboratory is the information

nexus where meaningful clinical information is most sim-

ply and easily generated. Few treating physician would be

sufficiently facile with genomics pertinent to the manage-

ment of acute respiratory distress syndrome, for example,

to identify the most relevant data latent in a stored genome.

In contrast, the simple addition of the ARDS diagnosis to

the patient’s profile could provoke the laboratory to select

and report the clinically meaningful information [11].

A report on the ‘‘Precision Medicine: Personal Genomes

and Pharmacogenetics’’ meeting in November 2013 sug-

gests a world in which clinicians cannot keep track of

genomic data relevant to care without the circumscribing

context of individualized clinical information [12]. But

prescriptions in the intelligent laboratory database could

instantly trigger reporting of sequences pertinent to that

patient’s drug metabolism and a diagnosis of neuropathy

could generate review of the growing number of sequences

relevant to cause. Rapidly increasing knowledge of muta-

tions underlying disease phenotypes and responses to

clinical treatment will necessitate regular updates, but

reports would be individualized for relevance.

If the future is near, it is not too soon to re-conceive the

clinical laboratory not as a mere results broadcaster, but as

a patient’s memory and a physician’s auxiliary brain. The

intelligent laboratory will provide not only individual test

results but clinically important patient-specific information.

It will prompt the physician when old data—or new

meaning [1]—can be extracted from the archive and

assume a more robust more active presence in clinical care.
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