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The focus of peptic ulcer disease research has evolved

over the past 50 years. In the past, the greatest interest

understandably has been in studying the regulation of

gastric acid secretion, following the century-old Sch-

warz’s dictum of ‘‘no acid, no ulcer’’ [1]. As a conse-

quence, understanding the regulation of gastric acid

section and the potential causes of gastric acid hyperse-

cretion became a central research focus until 1970, with

major scientific advances including the elucidation of the

role of gastrin, acetylcholine, and histamine as physio-

logical stimulants of acid secretion and the identification

of luminal acid and somatostatin as physiological inhibi-

tors [2]. Afterwards, the emphasis was on the develop-

ment of pharmacological inhibitors of gastric acid

secretion, with the clinically important discovery of

highly effective H2 receptor antagonists (H2RAs) fol-

lowed by the even more efficacious proton pump inhibi-

tors (PPIs) [3–7]. During this same period came the major

discovery by Robert and associates of the role of pros-

taglandins in inhibiting gastric acid secretion, and more

importantly in protecting the gastric mucosa from a

damaging agents and ulcerogenic conditions (e.g., stress),

a remarkable finding at the time, termed ‘‘cytoprotection’’

[8]. The multi-factorial mechanism that underlies prosta-

glandin’s cytoprotective action appears to involve

increasing and/or maintaining tight junctional integrity,

increasing intestinal mucus and bicarbonate section, and

increasing mucosal hydrophobicity, mitochondrial integ-

rity, and blood flow [9, 10]. The development of

prostaglandins as clinical cytoprotective agents, however,

has been disappointing due to the side-effect profile of

these biologically active lipids to stimulate uterine and

intestinal smooth muscle contraction and intestinal

secretion, which may result in miscarriages, bloating, and

diarrhea [11]. Lastly, the discovery of Helicobacter pylori

by Marshall and Warren [12] revolutionized the field of

peptic ulcer disease by implicating a micro-organism in

its pathogenesis, leading to novel antibiotic combination

therapeutic approaches which not only remarkably

reduced the incidence of peptic ulcer disease but of gas-

tric cancer as well [13, 14]. The mechanism by which

H. pylori causes peptic ulcer disease surprisingly has yet

to be fully resolved, but appears to be dependent on the

gastric localization of the infection (antrum vs. body),

gastric acid hypersecretion (mostly linked to antral

infection), and defects in gastroduodenal barrier function

[15, 16].

Nonsteroidal anti-inflammatory drugs (NSAIDs), which

are regularly consumed by a large percentage of our pop-

ulace, represent the other major cause of GI ulceration,

with gastroduodenal erosions and/or ulcers affecting

between 15 and 40 % of those regularly taking NSAIDs

[17], and lower gut pathology being present in [50 % of

chronic NSAID users [18]. The mechanism by which

aspirin and related NSAIDs injure the GI mucosa was once

thought to be strictly due to disruption of the biosynthesis

of cytoprotective prostaglandins via inhibition of consti-

tutive cyclooxygenase- 1 (COX-1) [19], leading to the

development of highly selective COX-2 inhibitors (coxibs)

as safer anti-inflammatory drugs. However, over time this

concept has been challenged, with the demonstration that

NSAIDs can induce GI injury by COX-independent

mechanisms [20], and the demonstration that a number of

highly selective coxibs have unanticipated and potentially
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life-threatening cardiovascular, renal, and hepatic side

effects [21], eventuating in their withdrawal from the US

market.

Although prostaglandins clearly fall in the class of

biologically active lipids, the appreciation of the role of

dietary and intrinsic lipids in mucosal protection has not

been readily accepted by the GI community. This is par-

ticularly surprising, in light of the long-term and widely

accepted use of milk and other dairy products in reducing

ulcer pain and promoting ulcer healing during the first half

of the 20th century [22]. The use and acceptance of this

form of natural therapy, called the Sippy diet, fell into

disfavor in the mid 1970s when it was demonstrated that

milk stimulated gastric acid secretion due to its high cal-

cium content [23] and concern about the possible linkage

of a diet enriched in dairy products and the development of

cardiovascular disease due to the diet’s high concentration

of saturated lipids and cholesterol, which then led to the

widespread use of antacids followed by the aforementioned

anti-secretory drugs. It is also worthy to note, that certain

diets, enriched in omega-6 fatty acids can promote the

biosynthesis of prostaglandins and thereby fortify the GI

mucosal barrier, as originally suggested by Hollander and

Tarnawski [24].

As this transformation from dietary to pharmacological

therapy was taking place, our lab demonstrated that the

mammalian gastric mucosa possessed unique hydrophobic

properties making the tissue non-wettable to luminal acid

[10]. Furthermore, this property appeared to be attributable

to the synthesis and secretion of surfactant-like phospho-

lipids, notably phosphatidylcholine by the surface mucous

cells which were recruited to the luminal interface of

mucus gel layer [10]. We also demonstrated that this pro-

tective layer could be compromised by NSAIDs and

H. pylori-related bacteria [10], the latter findings being

translated to humans by Northfield and associates [25].

Furthermore, other groups demonstrated that a similar

mechanism of GI phospholipid secretion may occur in the

small bowel [26] and colon [27], and that a decrease in

colonic mucosal phospholipid concentration and hydro-

phobicity may contribute to the pathogenesis of ulcerative

colitis [28]. These observations led to the exploration of

novel therapeutic approaches to gastrointestinal mucosal

injury. Revisiting the Sippy diet approach, our lab dem-

onstrated the importance of phospholipids in milk in ulcer

protection and healing (overriding the effects of increased

gastric acid secretion) [29], and also demonstrated that

synthetic and soy lecithin-derived (PC) could protect

against damaging agents or conditions (e.g., stress) [10].

This work led to reports by our lab and those of other

investigators that NSAIDs can induce surface injury to the

GI mucosa by chemically associating with PC present in

mucus and cell membranes [30, 31], thereby compromising

these important barriers. These findings ultimately led to

the development of a family of soy-derived PC–NSAIDs

that have been demonstrated to have reduced GI toxicity in

rodents [30] and in a number of clinical endoscopic trials,

while fully maintaining the therapeutic activity of the

NSAIDs [32, 33].

In addition to phospholipids playing an important

structural role in the extracellular and membrane barriers of

the GI mucosa, a body of work has demonstrated that

metabolites of PC and related phospholipids may play a

key role in cell signaling and defense. The study by Tanaka

and associates in the current issue of this journal [34]

represents an extension of these interesting observations,

demonstrating that phosphatidic acid (PA) and lysophos-

phatidic acid (LPA) provide protection against aspirin-

induced gastric injury in rats. This agrees with studies of

Deng et al. [35] and others that LPA has potent anti-

apoptotic activity via a PI3K–AKT pro-survival pathway

ultimately leading to inactivation of caspase-9 [36]. They

also demonstrated by immunohistochemistry the presence

of the LPA2 receptor, the key G-protein coupled receptor

involved in the anti-apoptotic response [35], on the luminal

surface of rodent gastric epithelial cells (most likely sur-

face mucous cells) and that aspirin-treatment markedly

decreased this immunoreactivity. Furthermore, they

reported that PA and LPA were present in the gastric

contents of rats fed a normal diet, which was expected

since these same phospholipids are present in soybean

extracts, a usual constituent of rodent chow, and crucifer-

ous vegetables such as cabbage [37]. Tanaka and associates

also reported that the activity of phospholipase A2 (PLA2),

which converts PA to LPA in the stomach, was enhanced

by bile acids. Although the authors assumed that bile acids

are not normally present in the stomach in order to enhance

PLA2 activity and LPA formation, duodenogastric reflux of

bile acids and increases in PLA2 in gastric juice has been

described in rodents treated with GI damaging agent,

endotoxin, or lipopolysaccharide (LPS) [38, 39]. These

results suggest a potential mechanism by which cruciferous

vegetables (cabbage) enriched in PA and LPA can promote

ulcer healing as demonstrated in a clinical trial using

cabbage juice in the late 1940s [40], providing potentially

important insight into a new family of GI protective agents

‘‘rooted’’ in traditional medicine.

In conclusion, biologically active lipids, notably phos-

pholipids (e.g., PC) and their metabolites (e.g., LPA) are an

attractive organic means to enhance the barrier properties

of the GI mucosa and to reduce the toxicity of pharmaco-

logical (e.g., NSAIDs) and natural damaging agents (e.g.,

bile acids, LPS), which induce tissue injury and disrupt

membranes. This, indeed is a lesson one can learn from

nature from the study of the phylogeny of biliary PC,

whose presence in bile increases in general proportion to
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the biliary concentration of hydrophobic bile acids, to

counterbalance the highly membrane disruptive activity of

these natural detergents [41].
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