Skip to main content
Log in

Clinical Impact of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Patients with Biliary Tract Infection

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Clinical outcomes associated with Gram-negative bacterial isolates with extended spectrum beta-lactamase (ESBL) in patients with biliary tract infection are largely unknown. The objective of the present study was to compare the demographics, risk factors, and clinical outcomes between patients with biliary tract infection caused by ESBL-producing and non-producing Klebsiella pneumoniae and Escherichia coli.

Methods

Between February 2005 and August 2010, we collected 159 cases with biliary tract infection caused by K. pneumoniae and E. coli identified by blood or bile cultures obtained before endoscopic or surgical treatment performed at our institution. We also retrospectively collected the data of patients’ demographic characteristics, co-morbid conditions, antimicrobial therapy, and clinical outcomes.

Results

Among the 159 strains isolated, 21 strains (13.2 %) were positive for phenotypical ESBL-test. Sepsis was more common in ESBL-positive strains, but did not reach statistical significance (23.8 % for ESBL-positive strains and 9.4 % for ESBL-negative strains, P = 0.066). Thirty-day mortality was significantly higher in ESBL-positive strains (3/21, 14.3 %) compared to ESBL-negative strains (4/138, 2.9 %, P = 0.049). However, there were no significant differences in overall survival between ESBL-positive and ESBL-negative strains. By multivariate analysis, inadequate antimicrobial therapy (HR 4.06, 95 % CI 1.08–16.46, P = 0.049) and sepsis (HR 6.54, 95 % CI 1.26–33.85, P = 0.025) were independent and significant predictors of 30-day mortality.

Conclusion

ESBL status of bacterial isolates for patients with biliary tract infection caused by K. pneumoniae and E. coli has clinical impact, especially on the short-term outcomes of those patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

AUROC:

Area under receiver operating characteristics

CBD:

Common bile duct

CI:

Confidence interval

CRP:

C-reactive protein

ERCP:

Endoscopic retrograde cholangiopancreatography

ESBL:

Extended spectrum beta-lactamase

EST:

Endoscopic sphincterotomy

HR:

Hazard ratio

MIC:

Minimum inhibitory concentration

PTBD:

Percutaneous transheaptic biliary drainage

SD:

Standard deviation

Spp.:

Species

WBC:

White bold cell

References

  1. Melzer M, Toner R, Lacey S, Bettany E, Rait G. Biliary tract infection and bacteraemia: presentation, structural abnormalities, causative organisms and clinical outcomes. Postgrad Med J. 2007;83:773–776.

    Article  PubMed  CAS  Google Scholar 

  2. Attasaranya S, Fogel EL, Lehman GA. Choledocholithiasis, ascending cholangitis, and gallstone pancreatitis. Med Clin N Am. 2008;92:925–960.

    Article  PubMed  Google Scholar 

  3. Claesson BE, Holmlud DE, Matzsch TW. Microflora of the gallbladder related to duration of acute cholecystitis. Surg Gynecol Obstet. 1986;162:531–535.

    PubMed  CAS  Google Scholar 

  4. Shimada K, Noro T, Inamatsu T, Urayama K, Adachi K. Bacteriology of acute obstructive suppurative cholangitis of the aged. J Clin Microbiol. 1981;14:522–526.

    PubMed  CAS  Google Scholar 

  5. Thompson JE Jr, Tompkin RK, Longmire WP Jr. Factors in management of acute cholangitis. Ann Surg. 1982;195:137–145.

    Article  PubMed  Google Scholar 

  6. Lee CC, Chang IJ, Lai YC, Chen SY, Chen SC. Epidemiology and prognostic determinants of patients with bacteraemic cholecystitis or cholangitis. Am J Gastroenterol. 2007;102:563–569.

    Article  PubMed  Google Scholar 

  7. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic co-morbidity in longitudinal studies: development and validation. J Chron Dis. 1987;40:373–383.

    Article  PubMed  CAS  Google Scholar 

  8. Schwaber M, Navon-Venezia S, Kaye K, Ben-Ami R, Schwartz D, Carmeli Y. Clinical and economic impact of bacteremia with extended-spectrum-beta-actamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2006;50:1257–1262.

    Article  PubMed  CAS  Google Scholar 

  9. Pfaller M, Segreti J. Overview of the epidemiological profile and laboratory detection of extended-spectrum β-lactamases. Clin Infect Dis. 2006;42:S153–S163.

    Article  PubMed  CAS  Google Scholar 

  10. Ramphal R, Ambrose PG. Extended-spectrum β-lactamases and clinical outcomes: current data. Clin Infect Dis. 2006;42:S164–S172.

    Article  PubMed  CAS  Google Scholar 

  11. Goossens H, Grabein B. Prevalence and antimicrobial susceptibility data for extended-spectrum β-lactamase- and AmpC-producing Enterobacteriaceae from the MYSTIC program in Europe and the United States (1997–2004). Diagn Microbiol Infect Dis. 2005;53:257–264.

    Article  PubMed  CAS  Google Scholar 

  12. Kaye K, Engemann J, Fraimow H, Abrutyn E. Pathogens resistant to antimicrobial agents: epidemiology, molecular mechanisms and clinical management. Infect Dis Clin N Am. 2004;18:467–511.

    Article  Google Scholar 

  13. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Fifteenth Informational Supplement. M100S15. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2005.

  14. Bush K. New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis. 2001;32:1085–1089.

    Article  PubMed  CAS  Google Scholar 

  15. Jacoby GA, Medeiros AA. More extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991;35:1697–1704.

    Article  PubMed  CAS  Google Scholar 

  16. Cosgrove SE, Carmeli Y. The impact of antimicrobial resistance on health and economic outcomes. Clin Infect Dis. 2003;6:1433–1437.

    Google Scholar 

  17. Winokur PL, Canton R, Casellas JM, Leqakis N. Variations in the prevalence of strains expressing an extended-spectrum beta-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region. Clin Infect Dis. 2001;32:S94–S103.

    Article  PubMed  CAS  Google Scholar 

  18. Spanu T, Sanguinetti M, Tumbarello M, et al. Evaluation of the new VITEK 2 extended-spectrum beta-lactamase (ESBL) test for rapid detection of ESBL production in Enterobacteriaceae isolates. J Clin Microbiol. 2006;44:3257–3262.

    Article  PubMed  Google Scholar 

  19. Tumbarello M, Spanu T, Sanguinetti M, et al. Bloodstream infections caused by extended spectrum-beta-lactamase-producing Klebsiella pneumoniae: risk factors, molecular epidemiology, and clinical outcome. Antimicrob Agents Chemother. 2006;50:498–504.

    Article  PubMed  CAS  Google Scholar 

  20. Tumbarello M, Sanguinetti M, Montuori E, et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother. 2007;51:1987–1994.

    Article  PubMed  CAS  Google Scholar 

  21. Russell JA. Management of sepsis. N Engl J Med. 2006;355:1699–1713.

    Article  PubMed  CAS  Google Scholar 

  22. Canton R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol. 2006;9:466–475.

    Article  PubMed  CAS  Google Scholar 

  23. Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother. 2007;60:913–920.

    Article  PubMed  CAS  Google Scholar 

  24. Anderson D, Engemann J, Harrell L, Carmeli Y, Reller LB, Kaye KS. Predictors of mortality in patients with bloodstream infection due to ceftazidime-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother. 2006;5:1715–1720.

    Article  Google Scholar 

  25. Rodriguez-Bano J, Navarro M, Romero L, et al. Bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin Infect Dis. 2006;43:1407–1414.

    Article  PubMed  Google Scholar 

  26. Mezler M, Peterson I. Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. J Infect. 2007;55:254–259.

    Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Joo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.J., Park, J.H., Park, D.I. et al. Clinical Impact of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Patients with Biliary Tract Infection. Dig Dis Sci 58, 841–849 (2013). https://doi.org/10.1007/s10620-012-2398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2398-7

Keywords

Navigation