Skip to main content

Advertisement

Log in

Decreased Histamine Catabolism in the Colonic Mucosa of Patients with Colonic Adenoma

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Introduction

Alterations in mucosal histamine degradation play an important role in various gastrotinestinal diseases including colonic adenoma. In humans, histamine can be catabolized either by oxidative deamination by diamine oxidase (DAO) or by ring methylation by histamine N-methyltransferase (HNMT). The significance of HNMT in this context was investigated for the first time in this project.

Methods

About 94 colonic biopsies were endoscopically obtained from 23 patients suffering from colonic adenoma and 26 biopsies from six healthy individuals. Each sample was mechanically homogenized, homogenates were cleared by centrifugation and used for determination of protein and histamine concentrations and enzyme activities of DAO and HNMT by radiometric assay.

Results

In adenoma patients DAO activities were slightly and HNMT activities were significantly decreased in normal mucosa compared to controls. Activities of both enzymes were significantly lower in adenoma tissue than in healthy mucosa in the same patients. A significant correlation was found between HNMT and DAO in all investigated samples. Histamine concentrations were elevated in adenoma patients.

Conclusions

Histamine catabolism is decreased in the colonic mucosa of patients with colonic adenoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Markowitz SD, Dawson DM, Willis J, Willson JK (2002) Focus on colon cancer. Cancer Cell 1:233–236

    Article  PubMed  CAS  Google Scholar 

  2. Burt RW (2000) Colon cancer screening. Gastroenterology 119:837–253

    Article  PubMed  CAS  Google Scholar 

  3. Seitz HK, Simanowski UA, Homann N, Waldherr R (1998) Cell proliferation and its evaluation in the colorectal mucosa: effect of ethanol. Z Gastroenterol 36:645–655

    PubMed  CAS  Google Scholar 

  4. Prichard PJ, Tjandra JJ (1998) Colorectal cancer. Med J Aust 169:493–498

    PubMed  CAS  Google Scholar 

  5. Hardy RG, Meltzer SJ, Jankowski JA (2000) ABC of colorectal cancer. Molecular basis for risk factors. BMJ 321:886–889

    Article  PubMed  CAS  Google Scholar 

  6. Leslie A, Carey FA, Pratt NR, Steele RJC (2002) The colorectal adenoma-carcinoma sequence. Br J Surg 89:845–860

    Article  PubMed  CAS  Google Scholar 

  7. Villavicencio RT, Rex DK (2000) Colonic adenomas: prevalence and incidence rates, growth rates, and miss rates at colonoscopy. Semin Gatrointest Dis 11:185–193

    CAS  Google Scholar 

  8. Srivastava S, Verma M, Henson DE (2001) Biomarkers for early detection of colon cancer. Clin Cancer Res 7:1118–1126

    PubMed  CAS  Google Scholar 

  9. Kusche J, Mennigen R, Leisten L (1989) Early alterations of rat intestinal diamine oxidase activity by azoxymethane, an intestinal carcinogen. Agents Actions 27:218–220

    Article  PubMed  CAS  Google Scholar 

  10. Raithel M, Ulrich P, Hochberger J, Hahn EG (1998) Measurement of gut diamine oxidase activity: diamine oxidase as a new biologic marker of colorectal proliferation? Ann NY Acad Sci 859:262–266

    Article  PubMed  CAS  Google Scholar 

  11. Pearce FL (1991) Biological effects of histamine: an overview. Agents Actions 33:4–7

    Article  PubMed  CAS  Google Scholar 

  12. Norrby K (1985) Evidence of mast-cell histamine being mitogenic in intact tissue. Agents Actions 16:287–290

    Article  PubMed  CAS  Google Scholar 

  13. Argento-Cerú MP, Autouri F (1985) Localization of diamine oxidase in animal tissues. In: Mondovi B (ed) Structure and functions of amine oxidases. CRC Press, Boca Raton pp 89–104

    Google Scholar 

  14. Kusche J, Mennigen R, Erpenbach K (1988) The intestinal diamine oxidase activity under the influence of adaptive proliferation of the intestinal mucosa – a proliferation terminating principle? Agents Actions 23:354–356

    Article  PubMed  CAS  Google Scholar 

  15. Code CF (1985) Histamine – whither now? Can J Physiol Pharmacol 63:746–750

    PubMed  CAS  Google Scholar 

  16. Kusche J, Mennigen R, Leisten L, Krakamp B (1988) Large bowel tumour promotion by diamine oxidase inhibition: animal model and clinical aspects. Adv Exp Med Biol 250:745–752

    PubMed  CAS  Google Scholar 

  17. Pacifici GM, Donatelli P, Giuliani L (1992) Histamine N-methyltransferase: inhibition by drugs. Br J Clin Pharmac 34:322–327

    CAS  Google Scholar 

  18. Sattler J, Hesterberg R, Lorenz W, Schmidt U, Crombach M (1985) Inhibition of human and canine diamine oxidase by drugs used in an intensive care unit: relevance for clinical side effects? Agents Actions 16:91–94

    Article  PubMed  CAS  Google Scholar 

  19. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):15076–15085

    Article  Google Scholar 

  20. Kusche J, Richter H, Hesterberg R, Schmidt J, Lorenz W (1973) Comparison of the 14C-Putrescine assay with the NADH test for the determination of diamine oxidase: description of a standard procedure with a high precision and an improved accuracy. Agents Actions 3:148–156

    Article  PubMed  CAS  Google Scholar 

  21. Schwelberger HG, Klocker J, Sattler J, Bodner E (1995) Determination of the activity of diamine oxidase in extremely small tissue samples. Inflamm Res 44:94–95

    Article  Google Scholar 

  22. Brown DD, Tomchick R, Axelrod J (1959) The distribution and properties of a histamine-methylating enzyme. J Biol Chem 234:2948–2950

    PubMed  CAS  Google Scholar 

  23. Barth H, Lorenz W, Niemeyer I (1973) Inhibition and activation of histamine methyltransferase by methylated histamines. Hoppe Seylers Z Physiol Chem 354:1021–1026

    PubMed  CAS  Google Scholar 

  24. Beaven MA, Robinson-White A, Roderick NB, Kauffmann GL (1982) The demonstration of histamine release in clinical conditions: a review of past and present assay procedures. Klin Wochenschr 60:873–881

    Article  PubMed  CAS  Google Scholar 

  25. Verburg KM, Bowsher RR, Henry DP (1983) A new radioenzymatic assay for histamine using purified histamine N-methyltransferase. Life Sci 32:2855–2867

    Article  PubMed  CAS  Google Scholar 

  26. Kufner MA, Ulrich P, Raithel M, Schwelberger HG (2001) Determination of the histamine degradation capacity in extremely small human colon samples. Inflamm Res 50(Suppl 2):96–97

    Google Scholar 

  27. Hesterberg R, Sattler J, Lorenz W, Stahlknecht CD, Barth H, Crombach M (1984) Histamine content, diamine oxidase activity and histamine methyltransferase activity in human tissues: fact or fictions? Agents Actions 14:325–334

    Article  PubMed  CAS  Google Scholar 

  28. Schwelberger HG, Bodner E (1997) Purification and characterization of diamine oxidase from porcine kidney and intestine. Biochim Biophys Acta 1340:152–164

    PubMed  CAS  Google Scholar 

  29. Brown DD, Tomchick R, Axelrod J (1959) The distribution and properties of a histamine-methylating enzyme. J Biol Chem 234:2948–2950

    PubMed  CAS  Google Scholar 

  30. Raithel M, Horauf AM, Matek M, Baenkler HW (1989) Kinetics of histamine released from rectal mucosa. Agents Actions 28:164–167

    Article  PubMed  CAS  Google Scholar 

  31. Backhaus B, Weidenhiller M, Bijlsma P, Hahn EG, Raithel M (2004) Evaluation of spontaneous histamine release from colorectal mucosa in patients with colorectal adenoma, patients with gastrointestinally mediated allergy and in a healthy control group. Inflamm Res 53(Suppl 1):87–88

    Article  Google Scholar 

  32. Petersen J, Raithel M, Schwelberger HG (2002) Histamine N-methyltransferase and diamine oxidase gene polymorphisms in patients with inflammatory and neoplasitc intstinal dieases. Inflamm Res 51(Suppl 1):91–92

    Google Scholar 

  33. Adams WJ, Lawson JA, Morris DL (1994) Cimetidine inhibits in vivo growth of human colon cancer and reverses histamine stimulated in vitro and in vivo growth. Gut 35:1632–1636

    Article  PubMed  CAS  Google Scholar 

  34. Watson SA, Wilkinson LJ, Robertson JFR, Hardcastle JD (1993) Effect of histamine on the growth of human gastrointestinal tumour: reversal by cimetidine. Gut 34:1091–1096

    Article  PubMed  CAS  Google Scholar 

  35. Bodmer S, Imark C, Kneubühl M (1999) Biogenic amines in food: histamine and food processing. Inflamm res 48:296–300

    Article  PubMed  CAS  Google Scholar 

  36. Wantke F, Jarisch J, Götz M (1993) Histamine-free diet: treatment of choice for histamine-induced food intolerance and supporting treatment for chronic headaches. Clin Exp Allergy 23:982–985

    Article  PubMed  CAS  Google Scholar 

  37. Raithel M, Kufner M, Ulrich P, Hahn EG (1999) The involvement of the histamine degradation pathway by diamine oxidase in manifest gastrointestinal allergies. Inflamm Res 48(Suppl 1):75–76

    Article  Google Scholar 

  38. Weidenhiller M, Raithel M, Winterkamp S, Otte P, Stolper J, Hahn EG (2000) Methylhistamine in Crohn´s disease (CD): increased production and elevated urine excretion correlates with disease activity. Inflamm Res 49(Suppl 1):35–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Kuefner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuefner, M.A., Schwelberger, H.G., Hahn, E.G. et al. Decreased Histamine Catabolism in the Colonic Mucosa of Patients with Colonic Adenoma. Dig Dis Sci 53, 436–442 (2008). https://doi.org/10.1007/s10620-007-9861-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-007-9861-x

Keywords

Navigation