Des Autom Embed Syst (2012) 16:45-69
DOI 10.1007/s10617-012-9084-z

On fast development of FPGA-based SOA
services—machine vision case study

A. Ruta - R. Brzoza-Woch - K. Zielinski

Received: 9 March 2011 / Accepted: 14 March 2012 / Published online: 30 March 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Development of FPGA-based, network-enabled embedded systems in Register
Transfer Level hardware description languages is tedious. Despite the automation of this
process with numerous EDA tools available, no well-established design patterns exist. More-
over, the entire production cycle requires appropriate theoretical background and hardware
design intuition from the developer which discourages the software community. To improve
productivity and minimize time to market when assembling such systems, we propose a new
hardware/software co-design approach to building reconfigurable hardware web services.
The proposed integrated development platform features a programmable FPGA board where
computations of different nature and purpose are logically distributed among a sequential
soft-core processor program, a massively parallel accelerator and an independent commu-
nication module that handles remote clients’ requests. Our second contribution is a set of
tools that make the development of the aforementioned services essentially a software de-
sign undertaking with the extensive use of high-level programming languages. The platform
has been tuned to act as a flexible runtime environment for image processing services, thus
providing functionality of an intelligent camera. Two example services built from scratch
according to the new methodology are discussed. Reduced development time and signifi-
cant performance gain observed prove validity of the proposed approach and unveil a large
potential of the assembled prototype.

Keywords HW/SW co-design - FPGA - Parallel image processing - Service-oriented
architecture - High-level synthesis

The research presented in this paper has been partially supported by the European Union within the
European Social Fund program no. UDA-POKL.04.01.01-00-367/08-00 and the European Regional
Development Fund program no. POIG.01.03.01-00-008/08.

A. Ruta (X)) - R. Brzoza-Woch - K. Zielinski
Department of Computer Science, AGH University of Science and Technology, Krakéw, Poland
e-mail: aruta@agh.edu.pl

R. Brzoza-Woch
e-mail: rabw @agh.edu.pl

K. Zielinski
e-mail: kz@agh.edu.pl

@ Springer

mailto:aruta@agh.edu.pl
mailto:rabw@agh.edu.pl
mailto:kz@agh.edu.pl

46 A. Ruta et al.

1 Introduction

In a modern fast-paced environment humans are more and more heavily dependent on vari-
ous types of embedded devices, such as smart sensors or cameras. The need for processing
large volumes of data and the growing popularity of the “Internet of things” concept will
strengthen this tendency in the forthcoming decades. In this context the traditional comput-
ing paradigms relying on the stationary infrastructure often no longer match our expectations
in terms of the quality of service and/or response time. Such stationary systems enforce the
model of computation in which the role of sensors is reduced to merely data acquisition. This
in turn means suboptimal resource utilization, large communication overhead and increased
costs. In this light, gradual adoption of autonomous, network-enabled hardware services,
capable of running complex data processing straight on chip, is inevitable.

Field-Programmable Gate Array (FPGA) is a leading technology offering reconfigurable
devices where a broad range of algorithms can be implemented in a massively parallel way.
We attempt to show that this feature makes FPGAs a particularly useful tool for building
computation-intensive hardware web services. In our opinion the major problem that has
so far prevented hardware designers from utilizing FPGAs in service-oriented architectures
is the complexity of the development cycle. Unlike in the software engineering domain,
hardware developers lack both high-level programming languages/environments and well-
established design patterns. Besides, deploying even a simple computational process on an
FPGA chip is not approachable to a person without appropriate theoretical background and
a substantial hardware design experience. Our work aims at filling in this gap by allow-
ing software-style design and implementation methodologies in essentially hardware-based
systems development.

In this paper we present an integrated development platform that dramatically simpli-
fies the process of building reconfigurable, FPGA-based services according to the Service
Oriented Architecture (SOA) paradigm [11]. Our contribution includes a versatile hardware
device that can host web services and flexible software tools which together form a novel
alternative to the traditional FPGA development toolkit. Without compromising the general-
ity of the architecture and the design methodologies adopted, we demonstrate our approach
in a machine vision domain by tuning the platform to provide functionality of an intelligent
camera.

Our hardware features an off-the-shelf FPGA chip and a set of appropriately intercon-
nected peripherals that are optimized to give maximum performance for this particular class
of systems. The model of computation adopted assumes a central role of a soft-core proces-
sor that manages data I/O, participates in the client-server-style dialogue between the device
and the remote clients, and optionally performs less demanding sequential data processing.
The desired computational speedup is achieved through offloading the most critical opera-
tions to dedicated logic elements where the advantages of the parallel nature of FPGAs can
be fully exploited.

On the software side we introduce two applications. The first one manages the process of
building and deploying a service by enabling the designer to run appropriate external Elec-
tronic Design Automation (EDA) software packages and configuration scripts from a single
graphical interface. In addition, a service project file is maintained throughout the develop-
ment cycle where all changes made so far can be saved and retrieved at any later time. The
second application is a graphical design front-end for the Impulse CoDevelper software. It
allows the designer to rapidly define the topology of the hardware accelerators. The exact
definition of the parallel processes underlying these accelerators is further specified in an
Impulse C language [21] that is automatically translated into VHDL or Verilog.

@ Springer

On fast development of FPGA-based SOA services—machine vision 47

The rest of this paper is organized as follows. In Sect. 1.1 we review the related work on
FPGA-based services and embedded image processing. In Sect. 2 we introduce the hardware
platform underlying the proposed service runtime environment. Section 3 is focused on the
software tools that were built to manage the process of designing, configuring and deploying
services in FPGAs. In Sect. 4 two example services developed using the aforementioned
tools are discussed. Finally, Sect. 5 concludes this paper.

1.1 Related work

Generally, FPGA is a relatively fresh technology with only a limited number of applications
in embedded image processing. Therefore, it is difficult to find FPGA-based solutions to
many complex problems that are central to computer vision. In most cases FPGAs are used
for basic signal processing under the hardware-software co-design scheme. In this scenario
the hardware acceleration affects the execution of only computationally the most expensive
subtasks within a larger process, i.e. video encoding/decoding or digital filtering. Other tasks
are executed on a soft-core processor, possibly under control of an embedded operating
system, such as in [4].

Typically, the above mentioned image preprocessing is done using well-known algo-
rithms, parallelized to meet the real-time execution requirements. For instance, as early as
in mid 1990s Gent et al. [13] boosted a deformable template image segmentation algorithm
by offloading it to an FPGA-based co-processor. Neoh and Hazanchuk [19] used FPGAs
to implement a real-time Canny edge detector [6]. Djemal et al. [9] implemented a modi-
fied version of Nagao filter for edge-preserving, real-time video smoothing. Baumann and
Tinembart [3] built a library of basic morphological operations for implementation in FP-
GAs. This library was later used to assemble more complex applications involving vision-
based robots. Algorithms for accelerated feature-based image correlation proposed by Vil-
lalpando and Some [27] were used in a similar domain. Many commercial EDA tools used
for analysis and synthesis of HDL designs, such as Quartus II software from Altera, offer
their own IP core libraries for basic image processing.

There are also known applications of FPGAs to solving more advanced machine vi-
sion problems. For instance, Arias-Estrada and Rodriguez-Palacios [2] implemented a high-
speed object tracker based on Hausdorff distance [16] in which part of the computations
involved were offloaded to programmable logic. Ali et al. [1] combined a Xilinx’s FPGA
chip with a Microblaze soft-core processor to build an efficient object tracker based on
a simplified kernel mean shift algorithm. Their system successfully tracks moving targets
within the required frame rate constraint and has good prospects for future extensions. FP-
GAs have already been used for visual pattern recognition too. For instance, Meng et al.
[18] developed a reconfigurable, FPGA-based video processing architecture and deployed a
human action recognition system on it.

The idea of using web services on embedded devices, such as smartphones, or in wireless
sensor networks is not new [15, 23]. A number of web service development toolkits exist
for both J2ME and .NET Compact Framework, as well as a platform-independent gSOAP
toolkit [26]. The implementation is normally done on a microcontroller or microprocessor
with appropriately large computing power [5, 17]. The number of recognizable FPGA-based
implementations is very limited though. For instance, Cuenca-Asensi et al. [8] presented an
architecture based on a Celoxica RC203E FPGA board that supported SOAP web services.
It was used to demonstrate a remote Wake-on-LAN service with the average response time
shorter than that reported using the PC-based implementation. On the other hand, Chang et
al. [7] deployed a HTTP-based REST-ful web service [12] for home device control applica-
tion on an embedded system using a Xilinx Spartan-3E Starter FPGA board.

@ Springer

48 A. Ruta et al.

Another interesting approach was proposed by Gonzalez et al. [14]. They used an FPGA
module located on a PCI board that was attached to a PC. For this module hardware imple-
mentations of C library functions were provided and for each such function a separate web
service was created. As a result, remote users working on PCs not equipped with the afore-
mentioned board could write efficient C programs by simply replacing local library function
calls with the appropriate service invocations. This particular realization of a “remote co-
processor” idea is useful whenever the client implements the main application logic and is
in the same time a source of all input data. Besides, acceleration rate of the operations being
ported to hardware must be large enough to compensate the resulting network delays.

In contrast, the device introduced in this paper can “sense the world” itself, process the
acquired data in an autonomous manner, and optionally react to the environmental changes
while retaining a web service’s functionality. This autonomy distinguishes the class of sys-
tems we target at from the body of previous FPGA applications. Moreover, it can be realized
on such a high functional level (e.g. complete license plate recognition) that only very small
amounts of data need to be sent over the network. This plays a crucial role in limiting the
required network traffic that has to be handled by the system.

Another significant limitation of the previous approaches to embedded web services de-
sign lies in that their core logic was mostly coded using low-level Hardware Description
Languages (HDLs), usually VHDL or Verilog. The system presented by Cuenca-Asensi et
al. [8] is one of the exceptions (Handel-C was used in this case). HDLs have many prop-
erties of modern programming languages which makes them suitable for general-purpose
use. However, implementing algorithms in HDL is generally difficult to the software devel-
opers as they must adopt a completely different programming philosophy where the issues
normally transparent to them, such as parallel execution, process synchronization or elemen-
tary operation timing, now do matter. As a result, it is relatively easy for an inexperienced
programmer to produce code that simulates successfully but cannot be synthesized into a
real device.

The approach adopted in this work offers an adequate solution to the above problems.
Namely, we propose a hardware-software co-design methodology which significantly re-
duces the development effort required. Complex and time-critical tasks are implemented
using a C-to-hardware compiler which preserves much of the HDL code’s performance but
simplifies parallel implementation of algorithms. The computationally less demanding tasks
(such as web server implementation) are conveniently implemented in a microcontroller
core embedded in FPGA so as to maximize the ease of implementation and reusability of
the freely available code (for example an XML parser). Finally, we propose high-level soft-
ware design tools that facilitate creation of optimized source code and output firmware for
the target SOA services.

2 Hardware platform

Embedded service architectures require carefully planned design of hardware components
and their interconnections. Such architectures must not only provide necessary computa-
tional resources, but also deliver means of implementing the required functionalities in con-
formance with the software service design standards. Adopting such standards has a great
impact on the choice of hardware components, as well as on the design of the internal and
external interfaces of the target device. They must allow for clear separation between the ser-
vice’s interface and the underlying application’s logic, as well as enable smooth interaction
between the communicating parties over the network. Domain-specific applications, such as

@ Springer

On fast development of FPGA-based SOA services—machine vision 49

those related to image processing which is in the center of our interest, impose their own
constraints, e.g. use of specialized sensors, specific data flow patterns or increased memory
requirements. All above issues are discussed in the following sections.

2.1 Design requirements and assumptions

In this work by service we implicitly mean a software system designed to support machine-
to-machine interaction over the network, i.e. a web service. Web services are application
components exhibiting several unique properties. First, they are self-contained and self-
describing. Second, they communicate using open protocols and support interoperability.
Third, they are discoverable. When implementing web services in hardware, all above prin-
ciples must be followed as in a regular software realization. To the desired services we
assign the term Hardware SOA, or HSOA for short, to emphasize they are to be deployed on
hardware according to the SOA architectural pattern [11].

For the sake of reconfigurability and computational efficiency required in our particular
application context, FPGAs were chosen to implement the core logic of HSOA services.
Therefore, an FPGA chip plays a managerial role in our hardware design. However, with
FPGA alone an embedded application cannot be turned into a web service. First of all, a
communication layer is required to admit bi-directional message passing between the device
and the remote client applications. Besides, depending on the target functionality, various
peripherals must be added to the design, together with their specific interfaces which will be
used for internal control signal and data exchange with the central unit.

The aforementioned peripheral modules may for instance include a digital camera, a
VGA display or some actuator, e.g. servo motor.

All implementation details of a web service must be made transparent to the outside
world so that the clients only know what it offers and not how exactly it works. Traditionally,
it is achieved by advertising public interface through Web Service Description Language
(WSDL) files [28] that are put in special external registries, called service brokers, so that the
clients can quickly discover at which URL a given functionality can be found. Then, a client
application formats messages that carry requests for invocation of a chosen server method
with appropriate arguments, as discovered in a registry. An XML-based protocol, SOAP,! is
typically used for that purpose, which guarantees platform and language independency.

Mapping the above specifications to the hardware resources that can be integrated in a
compact FPGA mainboard led us to an architectural concept in which:

— An independent Ethernet/WiFi module handles all aspects of network communication up
to the transport layer of the TCP/IP stack, i.e. controls the physical link, formats and
interprets data link and IP layer frames, and manages TCP/UDP client connections.

— FPGA runs the main program of the service and is responsible for controlling internal data
flow path (image acquisition, processing and optional display in our case), formatting and
interpreting the application layer data of the inbound/outbound messages (SOAP serial-
ization/deserialization), executing client-requested server methods and managing com-
munication with peripherals.

— If any computation-intensive data processing is required, it can be delegated to a separate
set of programmable logic components of FPGA.

Figure 1 shows a schematic diagram of the proposed architecture. Currently, we simplify
it by excluding the service broker. It is assumed that a WSDL file with service’s interface

1Simple Object Access Protocol [24].

@ Springer

50 A. Ruta et al.

Fig. 1 General architecture of a

HSOA image processing service Client machine

Client application

Comm. layer
| SOAP over HTTP |

| TCP/IP stack |

Service interface

Comm. layer
P
N
7~ TCP/IP stack
' (comm. module)
SOAP over HTTP

Service logic Image processing

Actuator control Output preview

(optional) (optional) Image acquisition

Service implementation (FPGA)

T

Internal hardware interfaces

] g |
v | 1

Peripherals

Hardware service platform

and web location can be advertised among the potential clients without recourse to external
registry.

2.2 Hardware design overview

Altera family of FPGAs and the associated EDA software have been chosen for hardware
platform development according to the general architecture outlined in Fig. 1. This initial
decision was driven by our rich previous experience with this manufacturer’s products, their
popularity and the extensive technical support available. The FPGA families evaluated at
the development stage varied from low-cost Cyclone II in the initial designs to more pow-
erful Stratix II in the final implementation. We assumed a supervisory role of a Nios II

@ Springer

On fast development of FPGA-based SOA services—machine vision

51

SDRAM Flash memory
memory
4 4
v v
Nios Il CPU SIBIRALY RERITEDS SPI DMA Controller
controller Accelerator
Nios Il
Avalon Bus
Image Sensor VGA Buffer Debug Communication| Clock and
Interface and Controller UART UART Control Logic
4 4 4 4 4
v v v v
Image Sensor VGA DAC RS232 Port Netw’&l)rk Comm. Clock generator,
odule User Interface

Fig. 2 Block diagram of the hardware platform customized for running specialized, network-enabled image
processing services

software microcontroller. The main functionality of the service was coded as a sequential
C++ program executed by the CPU. Additionally, computationally the most expensive im-
age processing operations were offloaded to the hardware accelerator. In order to simplify
and speed up the development, we generated it from a C-style specification using a C-to-
hardware compiler, Impulse C [21]. Below we discuss in more detail the key features of the
proposed hardware platform.

Figure 2 shows a block diagram of the device that has been customized to host specialized
image processing services. Its physical realization is depicted in Fig. 3. The platform is
based on the Terasic’s TREX-S2-TMB board [25] with Stratix II EP2S60 FPGA and custom
peripherals. The FPGA runs a Nios Il software microcontroller. Interconnections between
the CPU and each peripheral module are made with the Avalon bus.? The image processing
accelerator is implemented using the aforementioned Impulse C compiler and the generated
module is used as a peripheral in the Nios Il system.

In the most basic version of the system, there is one block of operating memory with
Avalon interface. This memory block is built upon two 32 MB SDRAM chips with 16-
bit data bus, combined to work as a single double-size SDRAM block with 32-bit data
bus. SDRAM modules operate at clock frequency of 100 MHz with CAS latency set to
2 cycles. The measured transfer performance in such a configuration reaches 332 Mbit/s
in sequential, 32-bit word wide access using DMA channel. However, SDRAM is shared
between the Nios II core and all hardware accelerator’s processes, so it should not be
overloaded with multiple queued transfers. Simultaneous accesses can be avoided by using
the internal memory of FPGA whenever possible (see an example described in Sect. 4.2).
Sharing the external memory between too many processes may lead to undesired system
slowdown. We plan to address this limitation in the future hardware platform that will
optionally support another SDRAM block and where both blocks can be used indepen-
dently.

The VGA interface is added only for preview and debug purposes and will be disabled
in the final version of the platform. The VGA driver consists of a block of SRAM memory,

2Default and the most basic type of interconnection in Nios II systems.

@ Springer

52 A. Ruta et al.

VGA Buffer SRAM and
serial Flash memory
module

Tibbo
Ethernet
Module

Stratix-Il
module

Simple
User
Interface

Fig. 3 Physical realization of the hardware platform from Fig. 2

acting as frame buffer, and a HDL wrapper that allows two-port memory access and drives
video DAC (Digital-to-Analog Converter).

Network communication is handled by EM1206, a specialized programmable Ethernet
module from Tibbo Technology [10]. It can operate using a simple asynchronous serial in-
terface with optional handshaking and hence only one UART (Universal Asynchronous Re-
ceiver Transmitter) is required on the hardware side. The functionality of 7ibbo modules
can be easily tailored to the specific design using provided Tibbo Basic language. In the cur-
rent version of the hardware platform the EM1206 module handles client connections over
TCP transport while the higher-layer communication protocol is implemented in the Nios
II program. The above approach to handling communication with the service clients dra-
matically reduces the development time (on both server and client side) and FPGA resource
usage. Another advantage of using EM1206 is a possibility of expanding its functionality to
WiFi-based communication.?

In order to ensure flexible, non-volatile FPGA configuration backup and Nios II pro-
gram storage, a few auxiliary memories are used in the system. The FPGA configuration
is stored in EPCS16 Flash memory and loaded to FPGA each time the system is powered
on. Once the FPGA has been configured, a sequence of reset signals is applied and the
Nios II processor starts executing its program from the reset vector. The latter is located in
an internal block of FPGA memory which is configured as ROM. Since that memory has
small capacity, it stores only a simple bootloader program. The Nios II program is stored
in an external Flash memory. Prior to its execution it is copied to SDRAM by the boot-
loader.

31t can be done using Tibbo’s GA1000 WiFi SPI expansion module.

@ Springer

On fast development of FPGA-based SOA services—machine vision 53

= f e e Image Sensor Interface o :
o o ! ideo inpu | o
& 2 preprocessing — Word Packing —# Avalon DMA Lo—»
£ ol Master wE
=0 and FIFO <3
i o . =
L c ' []
Sttty = Pl ®
5 & i S— Display Preview Path . 5 %
> 9ol . VGA Buffer VGA Image s o
D |-t -t - O O |lag
F-1RE VEGADAC 1= and Logic [Copier |* e S
l::::::::::::::::::'.::'.::'.::'.::'.: ''' al E §
gl | Results Processing Path i B
o 1 '
2 % <—| Ethernet/WiFi [«—Communication/ Results | % e =
2E—>» Module > UART »| Formatting | a5
o # x®@
[Optional simple user interface for parameters adjustment SDRAM:;

Fig. 4 Image data flow diagram. Dark gray fields denote hardware processing modules, and white denote
software components

An additional feature of the development version of our platform is that it allows one
to modify the selected internal hardware and software parameters of the service being run
using a simple user interface attached to the platform’s mainboard, as shown in Fig. 2. It
consists of eight programmable push-buttons and four 4-bit DIP switches.

2.3 Image processing pipeline from the hardware perspective

Figure 4 shows the data processing path. A PPV401 image sensor from PixelPlus is respon-
sible for video data acquisition. The sensor is connected to the system using custom-made
hardware drivers (Image Sensor Interface block in Fig. 4). In the first step, the driver reads
video data from the sensor, which by default outputs pixels in YCbCr422 format, and ex-
tracts gray-scale information. It is also possible to synthesize a color-aware version of this
block.

In order to increase DMA transfer efficiency, image data is packed into a contiguous
stream of 32-bit words using FIFO buffers with additional logic. Packed data is sent to
the predefined SDRAM locations (Input Frame Buffer in Fig. 4) with Avalon DMA Master
module. Using additional synchronization signals, software can request image acquisition
to Input Frame Buffer and determine end of the buffer filling operation. Once this buffer has
been filled with new data, it can be used by the Hardware Accelerator module, if present.
There is also a possibility of generating preview image for accelerator development and
debugging purposes. The preview functionality is implemented within the Display Preview
Path shown in Fig. 4.

Depending on its format and size, output from the Hardware Accelerator is either stored
in shared operating memory (e.g. fragments of the processed images) or received by the
NIOS II program via buffered streams (e.g. images processed in a pixel-by-pixel manner),
signals or registers (e.g. single numeric values). Further processing, if necessary, is done
sequentially within the main program of the service. It is aimed at producing data of a format
and meaning that is defined by the interface of the operation referred to in the currently
processed client request. The obtained results are ultimately packed into an XML envelope
that is passed to the 7ibbo communication module. The latter emits the resulting XML as a
response of the service.

@ Springer

54

A. Ruta et al.

Creating new
service project

Generating skeleton
of the accelerator

Editing and building
accelerator project

1

Building the main
program of
the service

Uploading FPGA
configuration to
the target board

Customizing FPGA
configuration

1

Uploading service Configuring
program to the target communication Running the service
board module

Fig. 5 Main steps of the HSOA service development cycle

3 Software development tools

The proposed embedded service platform requires several independent EDA tools to prepare
the constituent hardware components for operation and integrate them together. The tasks
involved in this process include among others:

— programming an FPGA-based co-processor to handle computationally the most demand-
ing image processing operations,

— implementing the service’s main program that will be executed on an embedded proces-
sor,

— building the communication interface of the service based on the programmable Ether-
net/WiFi module,

— deploying the service.

All these tasks, when performed in an unstructured way, introduce large burden and in effect
decrease the productivity of the build process. To manage the above design, implementation
and installation steps, as well as the heterogeneity of the used tools, languages and tech-
niques, appropriate development software has been introduced. It is available as a HSOA
Service Builder suite.

The rest of this section briefly discusses the usage of the suite. Specifically, in Sect. 3.1
the overall service development flow is described. In Sect. 3.2 we focus on the Impulse C
language and the corresponding visual designer tool that, compared to the traditional HDL
programming approach, dramatically simplify the implementation of parallel algorithms to
be executed in FPGAs. Section 3.3 outlines the service’s core logic programming in C++
language. Finally, in Sect. 3.4 we describe how to deploy an already built service.

3.1 Service development flow

The proposed methodology of building hardware services for intelligent image processing
has been illustrated in the flow diagram in Fig. 5. The service designer starts with creating a
new hardware service project or opens an existing one. The project settings are stored in an
XML file. These settings include among others the name of the service, its root directory,
where all project-related files are kept, endpoint URL and (optionally) a path to the associ-
ated FPGA accelerator project file, which will be discussed in more detail in Sect. 3.2. In
addition, the designer is supposed to provide the details of the operations exposed by the
service, including their names, as well as arguments, return values and their datatypes.

@ Springer

On fast development of FPGA-based SOA services—machine vision 55

In the next step the designer can decide upon whether or not to offload part of the ser-
vice’s functionality to the dedicated block of programmable logic for faster computation.
Note that in the case of video processing, i.e. moving target tracking, it will often condition
real-time execution. From the main window of the HSOA Service Builder application the
FPGA Accelerator Designer tool is first invoked to quickly define the architecture of the
accelerator. Then, the generated project skeleton can be edited in the Impulse CoDeveloper
environment so as to define the behavior of the desired hardware module. The HDL code of
the accelerator is automatically synthesized from the C language specification, so essentially
no hardware programming skills are required.

We provide a basic FPGA configuration that contains Nios II processor core, the con-
trollers of necessary peripherals and the bootloader program. The just created accelerator
is treated as a standalone hardware module that can communicate with the Nios II service
program through the Avalon bus. To enable this communication, one has to customize the
hardware design using standard Alfera tools: Quartus II and SOPC Builder. Again, they
can be called directly from the HSOA Service Builder window. The previously generated
accelerator is automatically recognized as a custom IP core. The built configuration is then
uploaded to the flash memory of the target board using Quartus Il Programmer tool.

The key step in the development process involves building the main program of the ser-
vice. To do that, one edits a template Nios Il IDE project by adding service-specific C++
code. In this code the developer should define how the incoming video stream will be pro-
cessed, as well as provide the implementation of the service’s public interface. Moreover,
methods of XML serialization and deserialization are provided so that the client requests
can be interpreted and the responses containing processing results properly formatted. If
the FPGA accelerator is used, from the program’s main loop appropriate Impulse C API
calls can be made to exchange data with it. Once the logic of the service has been defined,
the project has to be compiled and the resulting binary program uploaded to the data flash
memory on the target board.

Finally, the designed electronic circuit must be turned into a network-enabled device. It
is done by invoking the Tibbo IDE software from the HSOA Service Builder window and
again editing a template project using vendor-specific programming language, called Tibbo
BASIC. The provided Tibbo program requires minimal customization. It manages data ex-
change with the clients at the TCP/IP layer using sockets API. However, it does not interpret
client requests. These are relayed via UART to the Nios II program for interpretation. Simi-
larly, server responses are sent back to the 7ibbo program and further relayed to the original
server method’s callers. The compiled project is uploaded to the Ethernet/WiFi module as a
binary file.

Upon completion of the above steps the device is ready for operation. To advertise the
service in the web and enable fast implementation of client programs in conformance to the
Web Service standards, a Web Service Description Language (WSDL) [28] file can be gen-
erated automatically from the HSOA Service Builder window. The following sections give a
more specific description of each development step and in Sect. 4 concrete implementations
of two example image processing services are discussed.

3.2 Building hardware accelerators
Offloading execution of the computationally expensive operations to a dedicated hardware
unit for performance speedup is a common design pattern [1, 13]. In embedded processor

based architectures the role of such specialized co-processors is particularly important as
soft-core CPUs are known to be relatively slow. For instance, the Nios II core used in our

@ Springer

56 A. Ruta et al.

experiments can run at the maximum clock speed of only 100 MHz which is 20-30x lower
than the clock rates of modern microprocessors. In our context what requires speedup are
various operations that scan and/or modify the contents of the images.

To implement algorithms that exploit the massively parallel architecture of FPGAs, we
employ the Impulse CoDeveloper software from Impulse Accelerated Technologies and an
additional utility application that serves as its graphical front-end. The former software
package is based on the familiar C programming language that has been extended by a
set of additional constructs providing convenient abstractions of coarse- and fine-grained
parallelism [21]. It allows the developer to quickly code parallel algorithms in a form of
C functions and simulate their behavior in a software test-bench. To generate functionally
equivalent hardware modules, HDL code can be automatically synthesized from the C spec-
ification.

One problem with the Impulse C compiler (as well as other C-to-hardware compilers of
this kind), is that it does not support dynamic data structures. As a result, the processes and
the components used for their interconnection must be explicitly declared at compile time.
This, in turn, produces large code that is difficult to write from scratch, even if multiple
processes provide exactly the same functionality, but on different data. FPGA Accelerator
Designer utility helps resolve this problem. It offers a convenient GUI that allows the ser-
vice designer to indicate the number of required components of each type: memory blocks,
processes, streams, signals, registers and constant parameters, as well as their names, mu-
tual relations and supported data types. When the design is ready, the user simply clicks a
button to generate the entire Impulse C project with all necessary declarations and function
skeletons in place. The remaining work to be done only involves filling in bodies of these
skeleton functions according to the intended accelerator’s behavior, followed by HDL syn-
thesis. This way, even very complex accelerator topologies that span several thousand lines
of C code, can be programmed in a reasonable time.

An example of how specific settings made in FPGA Accelerator Designer’s GUI map to
the generated Impulse C code is given in Fig. 6. Only the top-level configuration function
with necessary declarations and process initialization is shown. Note that in the Processes
tab page the user can define the actual links between the parallel processes by selecting each
process function’s parameters from among the components previously added.

Finally, the generated accelerator module must be connected to the Nios II system. To
do this, the designer is supposed to use SOPC Builder, a standard Altera’s tool for software-
hardware components integration. The tool can be invoked from Quartus software that is
in turn started with the associated project upon clicking an appropriate button in the HSOA
Service Builder application window. The developer must then connect all of the accelerator
module’s signals to the Nios Il Avalon bus. Upon generating the system in SOPC Builder
the module can be referenced in the service program’s code by its uniquely assigned base
address.

A well-weighted architecture of the FPGA Accelerator Designer application is worth
noticing. It supports accelerator topology templates with a generic template allowing all
types of hardware components to be connected in any semantically acceptable way. In this
case the service designer takes responsibility for how sensible the resulting design might be
in a concrete application context. More specialized templates, a few of which are provided
in the current version of the HSOA Service Builder suite, impose various constraints on the
components (and the related GUI controls) the designer may include in the topology and the
means of tying them together. This design pattern prevents generating erroneous accelerator
code and allows easy addition of new templates.

@ Springer

On fast development of FPGA-based SOA services—machine vision 57

| Ganaral| Memory | Processes | Steams | Signals | Registors | Parameters

Mamory 1 name: mamary

aly

Mamory 1 size: 100

[Gonarai [Mamory | Processes Sweams [Signais [Regisers [Paramoters]
Count 1 =
Stream 1 name: data_stream

Saream 1 data type: INT_TYPE(16) -

Stream 1 buffer size: 5 &

| General | Memory | Processes |Sueams [Signais | Regters | Parameters|

Count 2 &
Process 1 name: peoct
Process 1 function namea: peoet_run

Process 1 function parameters:

Process 2 function name: peoc_run

Process 2 function parameters:

T ——

#include "co.h"
#include "TestAccelerator.h"
#include "TestAccelerator_ parameters.h"

void module_config(void *arg)
{
// Memory declarations
co_memory memoryl;

// Stream declarations
co_stream data_stream;

// Signal declarations
co_signal in_sig;
co_signal out_sig;
// Process declarations
co_process procl;
co_process proc2;

// Initialization

[General | Memory | Processes | Sweams| Signals |Registers [Parameters]

Count 2 =

Signal 1 name: in_sig

Signal 1 data type- UINT_TYPE(S) =
Signol 2 nama: out_sig

Signel 2 dats typa: UINT_TYPE[1E) -

memoryl = co_memory_ create ("memoryl", "heapO",102400) ;

data_stream = co_stream create("data_stream", INT_TYPE(16),5);

in_sig = co_signal_create("i

sig",UINT TYPE(8));

out_sig = co_signal_create("out_sig",UINT_TYPE(16));

procl

co_process_create ("procl", (co_function)procl_run,3,memoryl,data_stream,in_sig);

proc2 = co_process_create ("proc2", (co_function)proc2_run,2,memoryl,data_stream,out_sig);

// Process-to-hardware assignment function calls

co_process_config(procl,co_loc,"pe0");
co_process_config(proc2,co_loc,"pe0");

}

co_architecture co_initialize (int param)
{

return co_architecture_create("TestAccelerator","altera_nios2",module_config,NULL) ;

}

Fig. 6 Example usage of the FPGA Accelerator Designer tool. At the top a user-defined accelerator’s topol-
ogy is enforced by the appropriate state of the GUI controls. Beneath, a listing from the generated Impulse C
project code shows the top-level configuration function reflecting the visual designer’s specification

@ Springer

58 A. Ruta et al.

Contents of main.cpp
#include directives, hardware platform macros

Declarations of external functions

for Impulse C interface External modules

and drivers

: Impulse C module initialization

Image Sensor Driver
) Image processing function]

main function VGA Module Driver

Hardware and Impulse C module init. L .
Communication Driver

A

RequestProcessor

Main loop

. 1
Implementation of
service interface]

Fig. 7 Layout of the source code defining the Nios II program. The developer is supposed to modify the
parts framed with dashed line while the remaining parts are provided as a template or auto-generated at the
time of service project creation. Arrows represent references to sections defined elsewhere in the code

3.3 Customizing the main program of the service

Services developed using the proposed hardware platform run under control of a sequential
C++ program that is executed by the Nios II processor. For ease of development, a template
of this program has been prepared and each new hardware service project created in HSOA
Service Builder application automatically makes a copy of this template. The primary tasks
of the service’s designer at this point include:

— specifying the operations to be exposed by the service,
— customizing the service program code using Nios II IDE software,
— compiling and uploading the service program to the target board.

As mentioned in Sect. 3.1, specification of the service’s public interface is given by the
developer as early as at the time of creating the service project. As a result, source files
with appropriate method declarations and empty definitions are generated. These files are
also automatically added to the list of source files constituting the main program of the
service. Further tasks involve customizing the behavior of this program by editing a Nios II
IDE template project which comes with an associated system library. The latter provides a
hardware abstraction layer to the service program.

Figure 7 schematically shows the layout of the service program’s source code where
main. cpp is the top-level file defining the entry point. Bulk of this code is either provided
as a template or auto-generated at the time of project creation. As the template service only
performs a dummy input-output image copy operation and uses no hardware acceleration,
the programmer is expected to fill in the missing fragments with own code, depending on
the target service’s functionality and the hardware accelerator’s interface. Similarly, imple-
mentation of the service’s public interface must be provided. Major code sections requiring
modification by the developer are highlighted in Fig. 7.

Regarding interaction with the FPGA accelerator, if needed, the most important aspect is
the Impulse C module initialization. It requires appropriate declarations of the internal hard-

@ Springer

On fast development of FPGA-based SOA services—machine vision 59

// Declaration of global variables // Declaration of global variables
static volatile co_signal sigl, sig2; static volatile co_stream strl, str2;
static volatile co_memory mem;

// Initialization in the ICInit function
// Initialization in the ICInit function strl = co_stream create("namel", datatypel, npacketsl);
mem = co_memory_create ("name","heap0",SIZE, malloc); str2 = co_stream create("name2",6datatype2,npackets2);
sigl = co_signal_create("namel") ;

sig2 co_signal_create ("name2") ;
- - // Opening streams

co_stream open(strl,model,datatypel) ;

// Writing data to shared memory co_stream open (str2,mode2,datatype2) ;

// Sending data to the accelerator

+ ite (strl,bufl,nbytesl) ;
// Sending a signal to the accelerator co_stream write(strl,bu ytesl)

co_signal post(sigl,vall); // Receiving data from the accelerator

co_stream read(str2,buf2,nbytes2) ;
// Possibly doing some extra processing - -

// Closing streams

co_stream_close (strl);
// Receiving a signal from the accelerator co_stream close (str2);
co_signal_wait(sig2,&var2); - -

// Reading data from shared memory

Fig. 8 Two methods of communication between the main service program and the hardware accelerator: via
shared memory and signal-based synchronization (left listing) and via buffered streams (right listing). Only
the software-side code is shown and the declarations of some variables are omitted

ware components interfaced on the software side, such as shared memory blocks, streams
or registers, as well as their instantiation based on the addresses generated by the SOPC
Builder and defined in the system library project. In addition, the top-level image process-
ing function, called in every iteration of the program’s main loop, has to be augmented with
additional code where the accelerator module is called and the optional image pre-/post-
processing is done.

If FPGA algorithm acceleration is enabled, the actual structure of the code will depend
on the type of communication between the software program and the Impulse C module. For
instance, a DMA image transfer pattern necessitates the use of Impulse C’s shared memory
interface and signal-based synchronization. It is appropriate for all operations that require
random access to the pixels of an image that is already available in memory as a whole. On
the other hand, pixel-by-pixel image processing, adequate for many simple operations, such
as digital filtering, makes it sufficient to use functions from the Impulse C stream API. These
two communication patterns are depicted in Fig. 8. Note that the extra processing done on
the software side between the signal post and wait calls must be cheap enough to avoid
deadlock when the return signal from the accelerator is not captured on time. For details on
how to use all communication mechanisms offered by the Impulse C language, refer to [21].

As far as service orientation is concerned, we regard HTTP and XML protocols as a
basic medium for encoding clients’ requests and service’s responses. From the developer’s
perspective all aspects of network communication up to the transport layer of the TCP/IP
stack are handled by the Tibbo’s EM1206 module which acts as a simple server and offers a
convenient sockets API. This server project is provided as a template and its copy can be cus-
tomized upon invoking the 7ibbo IDE tool from the HSOA Service Builder window. When
the device is powered on, the server opens a socket and waits for the incoming client connec-
tion requests on a predefined port. If such a request is received, the server only forwards (via
serial interface) the HTTP/XML message content to the Nios Il program where deserializa-
tion of arguments and the appropriate service method’s invocation is made. The service’s
response, once XML-serialized, follows exactly the same way but in the opposite direction.
Although multiple simultaneous client connections can be established, currently only one
request at a time is processed. As a result, other clients that simultaneously request access
to the web resource immediately receive a HTTP 503 “service unavailable” notification.

@ Springer

60 A. Ruta et al.

3.4 Deployment

As mentioned in Sect. 2.3, new service’s configuration is accompanied with a specialized
bootloader program which is uploaded to the FPGA together with its configuration. The
bootloader’s objective is to copy the service’s main program code from the serial Flash chip
to SDRAM memory and then start its execution. It can also perform some additional tasks,
such as:

— transferring Nios II executable code from Debug UART to SDRAM via Xmodem proto-
col, and then executing it (leaving serial Flash memory contents unchanged, which is a
convenient feature for development purposes),

— uploading Nios II executable code to Flash using Debug UART and Xmodem protocol.

The actual boot mode selection can be made using one of the DIP switches available in the
user interface extension board mounted to the hardware platform’s mainboard.

To ensure proper FPGA configuration and smooth start of the service, the developer
should power up the platform, program the EPCS16 Flash memory with FPGA configu-
ration, and then upload the Nios II main executable code to serial Flash using the above
described bootloader program. The actual bootloader’s operation mode can be selected by
providing correct logic levels on its control inputs during power-on or system reset.

Finally, to facilitate client-side code creation, our tool allows the service provider to gen-
erate a WSDL file which contains the standardized specification of the public interface to
the web service based on the information provided at the time of project creation (refer to
Sect. 3.1 for details). For this purpose we employ the open source gSOAP toolkit [26] which
is included in the distribution of the HSOA Service Builder suite. WSDL generation is trig-
gered upon clicking an appropriate button in the main window of the managing application.
The resulting web service description file can be further advertised among the potential ser-
vice clients.

4 Use cases

To demonstrate the advantages of the proposed methodology of building embedded ser-
vices, we outline below two example applications that were developed using the HSOA Ser-
vice Builder suite. In Sect. 4.1 a moving object detection service is introduced. Section 4.2
describes an algorithmically more complex design — trainable object classifier.

4.1 A simple example: motion detector

A simple implementation of motion detector has been chosen to demonstrate the usage of
our hardware/software platform in the HSOA service development process. This detector
operates by subtracting the current input video frame from the background frame, followed
by appropriate thresholding. In the resulting motion map a connected component analysis
(CCA) is run to identify consistent moving blobs. The background frame is periodically
updated. In the demo implementation the service is available at a pre-defined IP address and
port number and a WSDL file with the interface description is placed in a public repository.

The service exposes several operations that help the client discover whether and, if so,
where and when exactly any motion was detected in a scene observed by the device-mounted
camera. We have built a simple client application where the user can specify the appropri-
ately quantized past time interval of interest along with the portion of the scene where the

@ Springer

On fast development of FPGA-based SOA services—machine vision 61

5! Mation Detector Service Client N Tl i e

Motion history

- -

Time resolution: 05

Background updata
frequency: e

Minimum stationary |-
background paniod

Time interval 15 = Query

client application

Ethemet IP TCP HTTP HTTP payload with Ethemet
header header header header SOAP request/response footer

Fig. 9 Realization of the motion detection service

presence of moving objects should be checked. Upon reception of the motion query on the
server side the device responds with a byte array encoding the detected objects’ positions in
the image over the requested period. Figure 9 shows how motion detection service works.

To make the detector insensitive to noise, which would normally cause many accidental
pixels to be classified as motion pixels, we convolve each difference image with a sum filter
and threshold the block-aggregated values. This simple algorithm has been efficiently imple-
mented as an FPGA-based accelerator which we built using the tools presented in Sect. 3.2.
Within the same accelerator also the aforementioned connected component analysis is run.
However, in this case no significant computation speedup is achieved due to the recursive
nature of this algorithm and the non-contiguous access to the motion map that must be en-
tirely stored in shared memory. In Fig. 10 we illustrate the idea of accelerated smoothed
difference image computation.

Assuming nxn pixel block* the algorithm proceeds as follows. First, n — 1 beginning
rows of each input image are read and stored in n — 1 out of n on-chip memory buffers and
the first n,/2 rows of the output image are filled with zeros (no motion). Then, the subsequent
row of pixels from each input image are read into the corresponding n-th buffer. Regarding
the output image, the first n/2 pixels of the new row are again set to zero. Value of the next

4In general, n must be an odd number.

@ Springer

62 A. Ruta et al.

image 1 image 2 difference image

Fig. 10 The idea of the block-wise difference image computation with block size equal to 5 pixels

output pixel (output image’s cell at position (3, 3) in Fig. 10) is determined by computing
the modulus of the sum of the input pixel differences within the top-left corner nxn pixel
block. As the values of pixels from this block are stored in the on-chip memory, the entire
sum can be calculated in a single clock cycle. The modulus is compared to a pre-defined
threshold to determine if the block can be classified as a motion block.

The following output pixel (the thick-framed and strip-patterned output image cell in
Fig. 10) does not require computation of the full sum of differences. To obtain the mo-
tion flag for the corresponding n xn block it is sufficient to subtract from the old sum-of-
differences value the sum of pixel differences within the block’s left-most column, shift the
block to the right by one, add the sum of pixel differences within the block’s right-most col-
umn and then apply threshold. Again, as all required pixel values are already stored in the
independent buffers of the FPGA internal memory and thanks to the loop pipelining offered
by the Impulse C compiler, each new output value computation requires a single clock cycle
to complete. It should be noted that full sum must be again calculated only at the beginning
of each new row.

Once the entire region of the input frames has been scanned, the number of the above-
threshold output values is counted and the resulting value is compared against another
threshold which determines whether or not the scene can be thought of as containing mo-
tion. If, so the aforementioned connected component analysis is run on the obtained motion
map so as to determine the locations of the individual moving objects. In the practical im-
plementation, the average processing speed of this part of the system, including CCA and
optional output image generation, is estimated at 59 clock periods per pixel. It is sufficient
to achieve frame rates of 11.1 fps for QVGA resolution or 5.4 fps for VGA using the main
clock signal at the frequency of 100 MHz.

On the Nios II program side the communication with the accelerator module is handled
using a pair of signals according to the scheme depicted in Fig. 8. From the main pro-
gram’s perspective the outbound signal notifies the accelerator of the new video frame being
available in SDRAM. The inbound signal contains the number of objects detected in the
current frame. If it is non-zero, saved objects’ positions are retrieved from the shared mem-
ory. A queue containing motion history over a reasonably long time period is maintained in
the service’s main program. After each (adjustable) quantization period, e.g. 1 second, the
positions of up to n objects detected within this period are pushed into the queue, where n
is configurable.

The video processing path runs independently of the code responsible for capturing client
requests. If such an even occurs, the current state of the motion history queue is XML-
serialized according to the Web Services specification. The appropriately formatted SOAP
response is sent back to the communication module via UART and then to the client over the
network. A simple C++ client application, thumbnail of which is shown in Fig. 9, receives
the motion history and displays it overlapped on a miniature of the scene image. This minia-
ture can be obtained upon calling another operation of the same web service. Additionally,

@ Springer

On fast development of FPGA-based SOA services—machine vision 63

a rectangular panel indicates the time points within the requested interval when the objects
appeared in the scene.

The implementation of motion detector service requires several software tools to build
the configurations and programs which reside in the programmable logic. A template for
Impulse C processing core was generated using the FPGA Accelerator Designer utility and
then filled with application-specific code—in this case the motion detection algorithm de-
scribed above (3.2). A similar procedure simplified creation of the firmware for embedded
Nios Il microprocessor. The core of the program was auto-generated according to given in-
terfaces description and then, using the Nios II system, only the main server program logic
was added (3.2). Other tasks, which were automated in the motion detector application in-
clude:

Generating Nios Il microcontroller system with standard peripherals including the previ-
ously designed hardware accelerator,

Creating hardware description for the system using Verilog HDL,

Generating code template for the 7ibbo communication module,

Compiling and uploading the configuration and firmware files to the appropriate devices.

It should be noted that a large amount of code (especially C++ and HDL templates) is
reusable, i.e. common to many hardware services deployed in the proposed device.

4.2 An advanced example: trainable object classifier

While simple image filters, such as the one presented in Sect. 4.1, can be executed suffi-
ciently fast on sequential machines, there are algorithms that give computational speedup
by even two orders of magnitude if implemented on parallel architectures. To demonstrate
the usefulness of the proposed embedded services design methodology in implementing
such algorithms, we have built a trainable object classification service.

The underlying classifier is based on the so-called Kernel Regression Trees introduced in
[22]. Such trees are trained from pairs of images labeled “same” or “different”, depending
on whether or not they depict the same object. The training procedure is executed on a stan-
dard PC. Abstracting from the details, which can be found in the above cited reference, the
learning algorithm builds a tree-like hierarchy of fuzzy decision stumps. Each stump, called
kernel function, is adjusted such that it possibly best separates the pairs containing images
that are similar with respect to a selected image descriptor, e.g. local gradient orientation
histogram, from the pairs of images that significantly differ with respect to this descriptor.

The specific property of Kernel Regression Trees is that due to the local discrimination
ambiguity the image pair passing through a given node may simultaneously follow paths
leading to both subtrees. Formally, such a pair, x, does not strictly belong to any child node of
a given node. Instead, it is assigned a degree of membership to each node D, up(x) € [0, 1].
The degree of membership to the root node, i gy (X), is by default set to unity. The degree

of membership to the child nodes D, and Dy of a given node D is defined recursively:
MDL(X) = pup(X) fpre(X),)
mpp(X) = upX)(1 — fpre(x)),

where up, (x) and pp,(x) denote the degrees of membership of the pair x to the left/right
child node of node D, fp x e(X) is the response of the local kernel function, k is the index
of the selected image descriptor underlying this function and ® denotes a vector of its
parameters.

@ Springer

64 A. Ruta et al.

o object's class
»| Classifier program
loading input (C++)
image |y
- preprocessing
storing ROI i
shared passing template
memaory address
» dispatcher process
loading _
discriminative Oﬂ-ChIPH
ROI fragments memory buffers
P

passing fragments

to parallel processes similarity
> score
node
proc.
node node L node
proc. proc. proc.
t } f
node I node <
proc. proc.
) A A
signal-based
synchronization
—_—>
node
proc.

[

Fig. 11 Architecture of the object classification system implementing a parallelized version of a Kernel
Regression Tree classifier

The ultimate response of the tree expresses overall similarity between two images. For
a given input pair it is obtained according to (2) by summing the products of the terminal
node labels, Lp,, which give the local estimation of the output along each path, and the
probabilities 1 p, (x) of reaching these terminal nodes by the input pair:

Zieleaves Hb; (X)LDi
Zieleaves Kb, (X)

To classify a new image, it has to be compared to the prototypes of each class. The
prototype maximizing pairwise similarity determines the unknown object’s category. Due
to the fuzziness introduced, the average number of local image comparisons and kernel
evaluations grows exponentially with the tree’s depth. With an observation that the increase
in the number of classes leads to more complex trees, it can be concluded that a sequential
implementation of the classifier is not scalable and hence unsuitable for real-time execution.
However, Kernel Regression Trees have a nice property of being highly parallelizable which
we have exploited implementing the classifier in FPGA.

Standard steps were followed when developing the service using the HSOA Service
Builder suite. The main difference between this service and the previously discussed motion
detector lies in the complexity of the hardware accelerator and the C++ code that manages
a communication with it. The system’s architecture is shown in Fig. 11.

(@)

j}:

@ Springer

On fast development of FPGA-based SOA services—machine vision 65

A shared SDRAM memory block acts as a storage for a copy of the original input im-
age to be analyzed, all class prototypes and various auxiliary data structures utilized by the
software-side program code. When a new image is to be recognized, this program sends a
triggering signal to the accelerator’s module. It contains the address in memory where the
first prototype image is located. The dispatcher process, which knows the trained classifier
parameters, reads appropriate portions of both input images to the local on-chip memory
buffers. Then, each node process receives the corresponding portion from the dispatcher,
evaluates the underlying image descriptor, calculates the local distance, determines the re-
sponse of the kernel function and upon completion waits for a signal sent by the parent node
process. This signal contains the parent’s membership degree and kernel response for the
input image pair. When received, the current node calculates its own membership degree,
posts an update signal to both successor nodes, if present, and then blocks. This enables
correct recursive computation of the membership degree of an input example to the terminal
nodes according to (1).

Once a given component of the sum in (2) has been calculated by the corresponding
terminal node process, a signal is sent to the parent node process. A cascade of such asyn-
chronous signals reactivate the blocked processes which allows the ultimate tree’s response
to be computed on the way back from the recursion. The operation of a single non-terminal
node process is shown in Algorithm 1.

Algorithm 1 Single cycle of operation of a non-terminal node process participating in a
distributed computation of the Kernel Regression Tree’s response for an input image pair
according to equations (1) and (2). yp, and yp, denote the output of subtrees rooted at the
child nodes of node D and y, is the output of a subtree rooted at D.
1: receive portion of the input images X via a stream from the dispatcher process
: calculate fD,k(D),@(D) (x)
: wait for the parent node process’ signal with fp (p) @(p)(X) and 1 p (X)
: calculate up(x)
: post a signal with fp (p),@(p)(X) and p p(x) to the child node processes
: wait for child node processes’ signals with p, and $p,
: caleulate §p = Ip; + Ipg
: post a signal with y to the parent node process

0 O W AW

The root node process finally sends a signal with the response to the software-side clas-
sifier’s program. This in turn triggers estimation of the similarity of an input image to the
next prototype. When all prototypes have already been compared to, the most similar ones
are determined according to a k Nearest Neighbors rule. Note that in the above distributed
tree evaluation scheme the most intensive computations, i.e. computation of the image de-
scriptor and local distance followed by kernel evaluation (line 2 in Algorithm 1), are done
in parallel.

Regarding the test implementation, we trained a sample classifier to recognize 12 car
models from the dataset used in [22]. The resulting tree consists of 17 nodes, as shown in
Fig. 12. The Impulse C code of the accelerator module implementing the distributed tree
evaluation algorithm contains over 2000 lines of code, most of which were automatically
generated using the FPGA Accelerator Designer tool. In order to simplify this process even
more, a specific design template was defined so as to restrict the types of hardware compo-
nents and their relationships to just those required by a tree topology.

@ Springer

66 A. Ruta et al.

. .

12
N - N -0 --0--40---0 |
?;’11 - e 62917 65917 67639 68056
_ -
S 10}, |
2 25389
5
a 9r]
7]
1Y
o 8r]
(o]
o
e 7t |
©
bS]
e 6f 250 278 333 ‘333 333 |
£ 9 g o 333 361
S e 250 250
5' 4
=8 194
3 —O— FPGA
ol sg - O =NIOS []
@ CPU
3 . . L ,)) .
2 4 6 8 10 12 14 16 18

Number of node processes

Fig. 13 Comparison of the average response time of the Kernel Regression Tree from Fig. 12 using: a parallel
FPGA-based co-processor controlled by the NIOS II program, both working at 100 MHz, and the sequential
implementations on: (1) a PC equipped with 2-core, 32-bit CPU (Intel T9600, 2.8 GHz), 4 GB RAM, 1 GB
RAM GPU, and (2) NIOS II embedded processor without hardware acceleration. The graphs are shown in
logarithmic scale as functions of n, the number of tree nodes participating in the distributed computation. The
data points have been annotated with the original execution times measured in microseconds

A hardware service exposing the object recognition functionality, which is currently un-
der development, was designed according to a simplified publish-subscribe model. Specif-
ically, the only public methods available to clients allow them to enroll on or to disenroll
from the list of recipients of notifications which are broadcast whenever an object is rec-
ognized. We do not yet have a working detection module allowing the device to trigger the
recognition automatically when an interest object arises in the field of view of the camera.
Therefore, it is currently triggered manually by the operator who presses one of the push-
buttons on the device’s mainboard.

The experiments done using our device led to the correct classification rate reaching over
90 %, which corresponds to the accuracy of the sequential implementation reported in [22].
Neglecting this aspect, we focused on measuring the computational speedup contributed by
the FPGA usage. Figure 13 shows a comparison of the processing speed of a single frame
from the input video between the parallel and sequential classifier implementations. The
obtained results clearly show that when implemented using hardware accelerator, the classi-
fier runs comparatively fast to the sequential version deployed on a modern PC with nearly
30 times faster system clock. In the same time it is dramatically faster than the sequential
algorithm executed solely by an embedded processor.

@ Springer

On fast development of FPGA-based SOA services—machine vision 67

The computational speedup results from both: parallel implementation of the algorithm
and the independence of working memory blocks for each parallel execution path. Since
each of those memories are synthesized from FPGA internal memory blocks, they can op-
erate simultaneously at the main clock’s frequency of 100 MHz and with low latency re-
gardless of the access manner (sequential or random). Moreover, the achieved speedup fully
compensates the data transmission overhead as the web service requests and responses are
avoidably small in size compared to the volume of data processed straight on chip. In addi-
tion, the FPGA-based realization of the service has a not-to-be-missed property of consum-
ing much less power than the implementation run on a PC—Iless than 5 W in full-operation
mode. This opens up possibilities of utilizing the design in miniaturized smart cameras with
economical battery backup or adopting non-standard power supply, such as solar power.

5 Conclusions

In this study a comprehensive approach to building embedded web services has been pre-
sented. It is based on an innovative combination of custom-built hardware, off-the-shelf
EDA software and our own development tools, altogether referred to as HSOA Service
Builder suite. The intention of our work was to show that using the herein proposed hard-
ware/software platform one can rapidly build networked applications that, although run in
palm-sized devices, act and are perceived as regular web services.

Regarding the hardware side, we make use of a general-purpose FPGA development
kit that was augmented with custom peripherals and tuned to act as an intelligent camera.
Through the ease of reconfiguration, this flexible design allows the resulting device to re-
place its functionality, both in terms of internal data processing path and the public interface
exposed to the service clients. It also offers other benefits. First, redirecting expensive com-
putations to parallel logic reduces required maximum clock rate, power consumption and
execution time. Second, the use of customized DMA channels and burst reads/writes for
peripheral-to-memory and memory-to-memory data transfers enables further gain in paral-
lelism and maximizes memory bandwidth utilization. Third, the platform is equipped with
a highly customizable network interface which takes over the communication with the ex-
ternal world from the microcontroller. Finally, the proposed architecture gives freedom in
adding further peripherals to the system, which would have been much more difficult for the
systems based on a general-purpose digital signal processor or microcontroller.

On the software side we introduce two development tools that greatly facilitate the de-
sign, implementation and deployment of FPGA-based services according to the SOA archi-
tectural pattern. The first tool enables one to create a new service project and persist its state
in a form of several constituent sub-projects, each giving control over a given programmable
component of the hardware platform. This state can be restored and modified at any time
by invoking appropriate third-party EDA package from a common graphical interface. A set
of related scripts further automate the development process by ensuring naming and storage
path consistency across sub-projects and enabling one-click actions, such as compilation
or flash memory programming. The other tool provides a graphical design front-end to the
Impulse CoDeveloper software which we adopted for rapid implementation of parallel al-
gorithms in an ANSI C based language and automatic HDL synthesis. Our utility comes
into play at an early stage of the design process. It facilitates quick GUI-based specification
of the accelerator’s topology and internal interconnections so that the design best fits the
resources of target FPGA.

@ Springer

68 A. Ruta et al.

Future work will focus on two main aspects. On the software side we would like to
build a library of parallelized, low-level image processing functions and associated accel-
erator design templates that could be re-used in various application scenarios. The planned
improvements of the hardware platform include changes in the architecture that will allow
both the FPGA configuration and the service program to be upgraded remotely and on the
fly. Moreover, future version of the platform will be developed on a custom-made, reduced-
size printed circuit board.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Ali U, Malik MB, Munawar K (2009) FPGA/soft-processor based real-time object tracking system. In:
Proc of the Sth southern conf on programmable logic, pp 33-37
2. Arias-Estrada M, Rodriguez-Palacios E (2002) An FPGA co-processor for real-time visual tracking. In:
Proc of the 12th international conf on field-programmable logic and applications, pp 710-719
3. Baumann D, Tinembart J (2005) Designing mathematical morphology algorithms on FPGAs: an appli-
cation to image processing. In: Proc of the 2005 international conf on computer analysis of images and
patterns, pp 562-569
4. Ben Atitallah A, Kadionik P, Masmoudi N, Levi H (2008) FPGA implementation of a HW/SW platform
for multimedia embedded systems. Des Autom Embed Syst 12(4):293-311
5. Bucci G, Ciancetta F, Fiorucci E, Gallo D, Landi C (2005) A low cost embedded web services for
measurements on power system. In: Proc of the IEEE international conf. on virtual environment, human-
computer interface, and measurement systems, pp 7-12
6. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell
8(6):679-698
7. Chang CE, Mohd-Yasin F, Mustapha AK (2009) An implementation of embedded RESTful web ser-
vices. In: Proc of the 2009 conference on innovative technologies in intelligent systems and industrial
applications, pp 45-50
8. Cuenca-Asensi S, Ramos-Morillo H, Llorens-Martinez H, Mdcia-Pérez F (2008) Reconfigurable archi-
tecture for embedding web services. In: Proc of the 4th southern conf on programmable logic, pp 119—
124
9. Djemal R, Demigny D, Tourki R (2005) A real-time image processing with a compact FPGA-based
architecture. J Comput Sci 1(2):207-214
10. EM1206 BASIC-programmable Ethernet Module, (2011) http://www.tibbo.com/products/modules/x20x/
em1206.html, [last accessed: March 2]
11. Erl T (2005) Service-oriented architecture: concepts, technology, and design. Prentice Hall, New York
12. Fielding RT, Taylor RN (2002) Principled design of the modern web architecture. ACM Trans Internet
Technol 2(2):115-150
13. Gent GJ, Smith SR, Haviland RL (1994) An FPGA-based custom coprocessor for automatic image
segmentation applications. In: Proc of the IEEE workshop on FPGAs for custom computing machines,
pp 172-179
14. Gonzalez I, Sanchez-Pastor J, Hernandez-Ardieta JL, Gomez-Arribas FJ, Martinez J (2004) Using re-
configurable hardware through web services in distributed applications. In: Proc of the 14th international
conference on field programmable logic and applications, vol 3203/2004, pp 1110-1112
15. Groba C, Clarke S (2010) Web services on embedded systems—a performance study. In: Proc of the 1st
international workshop on the web of things, pp 726-731
16. Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the Hausdorff dis-
tance. IEEE Trans Pattern Anal Mach Intell 15(9):850-863
17. Machado GB, Siqueira F, Mittmann R, Vieira CAV (2006) Embedded system integration using web
services. In: Proc of the international conference on networking, international conference on systems
and international conference on mobile communications and learning technologies, pp 18-24
18. Meng H, Freeman M, Pears N, Bailey C (2008) Real-time human action recognition on an embedded,
reconfigurable video processing architecture. J Real-Time Image Process 3(3):163—-176
19. Neoh HS, Hazanchuk A (2004) Adaptive edge detection for Real-time video processing using FPGAs.
In: Proc of the 2004 global signal processing expo and conference, pp 27-30

@ Springer

http://www.tibbo.com/products/modules/x20x/em1206.html
http://www.tibbo.com/products/modules/x20x/em1206.html

On fast development of FPGA-based SOA services—machine vision 69

20.

21.
22.

23.
24.

25.

26.

217.

28.

Olaru C, Wehenkel L (2003) A complete fuzzy decision tree technique. In: Fuzzy Sets and Systems,
vol 138, pp 221-254

Pellerin D, Thibault S (2005) Practical FPGA programming in C. Prentice Hall, New York

Ruta A, Li Y, Liu X (2010) Robust class similarity measure for traffic sign recognition. IEEE Trans Intell
Transp Syst 11(4):846-855

Schall D, Aiello M, Dustdar S (2006) Web services on embedded devices. Int J Web Inf Syst 2(1):45-50
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)—W3C Recommendation 27 (2007).
http://www.w3.org/TR/soap12-part1/ [last accessed: March 2, 2011]

Stratix II FPGA Prototyping System (2011) http://www.terasic.com.tw/cgi-bin/page/archive.pl?
Language=English&CategoryNo=44&No=66 [last accessed: March 2]

van Engelen RA, Gallivan K (2002) The gSOAP toolkit for web services and peer-to-peer computing
networks. In: Proc of the 2nd IEEE international symposium on cluster computing and the grid, pp 128-
135

Villalpando C, Some R (2010) Reconfigurable machine vision systems using FPGAs. In: Proc of the
2010 NASA/ESA conf on adaptive hardware and systems, pp 31-35

Web Services (2007) Description language (WSDL) Version 2.0 Part 1: Core Language—W3C Recom-
mendation 26. http://www.w3.org/TR/wsdl20/ [last accessed: March 2, 2011]

@ Springer

http://www.w3.org/TR/soap12-part1/
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=44&No=66
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=44&No=66
http://www.w3.org/TR/wsdl20/

	On fast development of FPGA-based SOA services-machine vision case study
	Abstract
	Introduction
	Related work

	Hardware platform
	Design requirements and assumptions
	Hardware design overview
	Image processing pipeline from the hardware perspective

	Software development tools
	Service development flow
	Building hardware accelerators
	Customizing the main program of the service
	Deployment

	Use cases
	A simple example: motion detector
	An advanced example: trainable object classifier

	Conclusions
	References

