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Abstract This paper studies the emergence of contrarian behavior in information
networks in an asset pricing model. Financial traders coordinate on similar behavior,
but have heterogeneous price expectations and are influenced by friends. According to
apopular belief, they are prone to herding. However, in laboratory experiments subjects
use contrarian strategies. Theoretical literature on learning in networks is scarce and
cannot explain this conundrum (Panchenko et al. in J Econ Dyn Control 37(12):2623—
2642,2013). The paper follows Anufriev et al. (CeNDEF Working paper 15-07, 2015)
and investigates an agent-based model, in which agents forecast price with a simple
general heuristic: adaptive and trend extrapolation expectations, with an additional
term of (dis-)trust towards their friends’ mood. Agents independently use Genetic
Algorithms to optimize the parameters of the heuristic. The paper considers friendship
networks of symmetric (regular lattice, fully connected) and asymmetric architecture
(random, rewired, star). The main finding is that the agents learn contrarian strategies,
which amplifies market turn-overs and hence price oscillations. Nevertheless, agents
learn similar behavior and their forecasts remain well coordinated. The model therefore
offers a natural interpretation for the difference between the experimental stylized facts
and market surveys.
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1 Introduction

In this paper, I study the effect of information networks on learning in a non-linear
asset pricing model. The main question of this work is how agents react to optimism or
pessimism of their friends: do they learn herding, or rather contrarian behavior? And
how does this affect the emerging market dynamics and stability of the fundamental
equilibrium? In order to address this issue, I consider a model, in which the agents
apply genetic algorithm (GA) to optimize a simple linear price forecasting rule. The
agents learn whether to follow the observed price trend, but also whether to trust the
past trading decisions of their friends, which allows for an explicit learning of either
herding or contrarian behavior.

One of the fundamental debates of contemporary economics is whether economic
agents can learn rational expectations (RE), that is model-consistent predictions of
future market prices (Muth 1961). In the context of financial markets, RE require the
agents to form a self-fulfilling infinite sequence of forecasts (Blanchard and Watson
1982). Even under a linear relation between the expectations and realized prices, this
taskis far from being trivial (Sims 2002; Lubik and Schorfheide 2003; Anderson 2008).
Furthermore, agents may face additional information constraints (Kormilitsina 2013)
or lack the knowledge about the underlying law of motion of the market (Carravetta
and Sorge 2010), which further complicates finding the RE solution. Therefore, real
economic actors may be unable to bear the cognitive load that is required to form RE.
In this case, they would have to learn to predict prices, which does not necessarily
lead to ‘as if” rational expectations equilibria (Hommes and Zhu 2014; Anufriev et al.
2015).

Among other evidence, experiments suggest that people use simple forecasting
heuristics (Hommes 2011; Heemeijer et al. 2009; Hommes et al. 2005). In the case of
asset markets, this leads to price oscillations that repeatedly over- and undershoot the
fundamental (RE) equilibrium. Nevertheless, many economists question the empirical
validity of such experiments, as these are based on economies with no or limited
information flows between the agents. An informal (yet popular) belief is that in real
financial markets the agents can share knowledge about efficient and inefficient trading
strategies, and so an information network facilitates convergence towards RE.

Informal information sharing is indeed common among financial traders (Nofsinger
2005; Bollen et al. 2011). Being closer to the core of an information network leads to
higher profits (Cohen et al. 2008), but some researches have also argued that networks
are a cause of herding (Shiller and Pound 1989; Acemoglu and Ozdaglar 2011). The
latter argument became popular after the 2007 crisis in the non-academic discussion'
and in behavioral economics (for example Akerlof and Shiller 2010, refer to animal
spirits as the driving force of financial bubbles). This leads back to the two conflicting
views on the rationality of financial agents, which can be associated with Keynes
(Akerlof and Shiller 2010) and Muth (1961). How important is therefore herding for

1 Among other examples, Robert R. Johnson wrote in Financial Times (20/09/2009) that ‘managers might
augment their existing strategies to avoid herding, over-reaction, regret aversion, and other behavioral biases
that interfere with (...) effective implementation [of finance investment strategies].’
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market stability, and is herding propagated by information networks? There is no clear
answer neither from theoretical nor from empirical work.

Herding is understood as behavior such that individuals, facing strategic uncertainty,
disregard their individual information and instead follow the ‘view of the others’,
such as the mood of their friends or general market sentiment (see also Sect. 2.6
for a detailed discussion). From the RE perspective, market price should contain all
necessary information about the stocks, hence perfect rationality rarely leaves room
for herding or networking. The exception would be the case of significant private
information (Park and Sabourian 201 1) or sequential trading (with the famous example
of information cascades, see Anderson and Holt (1997), for a discussion), but neither
approach has a clear empirical motivation.

Alternatively, models that depart from rational expectations often investigate some
form of social learning. The seminal paper by Kirman (1993) stands as the bench-
mark for the studies of economic herding (see Alfarano et al. 2005, for a more recent
example and a literature review). In this ‘ant-model’, agents are paired at random and
imitate each others choices with some exogenous probability, which leads to interest-
ing herding dynamics. The problem with this approach, however, is that individual
imitation is assumed as given, instead of being learned by the agents.

Another approach comes with the classical Brock-Hommes heuristic switching
model (HSM; Brock and Hommes 1997), in which agents coordinate on price pre-
diction heuristics that have a better past forecasting performance. A more general,
agent-based counterpart of HSM comes with genetic algorithm (GA) based models
of social learning (see Arifovic et al. 2013, for an example and a literature overview).
This approach can explicitly account for social learning (agents switch to better strate-
gies), but does not fit our intuition of herding, which is understood as following the
beliefs of others, instead of using similar trading or forecasting strategies.

Empirical studies give ambiguous results on the existence or importance of herding,
with the main issue being that such behavior cannot be directly observed in market data.
Chiang and Zheng (2010) show that the stock indices between industries are sometimes
more correlated than the fundamentals would imply, which can be understood as a
sign of herding. However, this effect is absent in Latin America and US data, and its
interpretation is subject to debate. An alternative approach is to use experiments, where
the information structure is controlled by the researcher. This leads to a surprising
result, however: experiments suggest that contrarian (anti-herding) behavior is more
common than herding. Two such experiments, both including professional traders as
subjects, were reported by Drehmann et al. (2005) and Cipriani and Guarino (2009).

As a result, existence of herding or contrarian behavior in financial markets is not
a clear-cut fact. Furthermore, it is not clear whether herding would bring economic
agents closer to the rational outcome, or rather to volatile price dynamics (Shiller and
Pound 1989). In order to understand the empirical evidence, we require a theoretical
inquiry into how herding or contrarian behavior may be learned. Furthermore, such
a learning may depend on the structure of ‘information flows’, and thus we need to
study it in a context of different information networks.

Recent years have seen a rising popularity of studies devoted to the agent interac-
tion within networks. Probably the most famous example comes with the Siena model
(Snijders et al. 2010), which offers a valuable insight into peer effects on the individ-
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ual decision making. In the financial literature, researchers became interested in the
balance sheet interconnections of financial agents such as banks (in’t Veld and van
Lelyveld 2014; Fricke and Lux 2014). Nevertheless, theoretical studies of networks in
the economic literature typically focus on static environments (such as the mentioned
balance sheet connections). Models with explicit learning and expectations formation
are scarce, and tend to rely on simple behavioral rules of imitation, since adding real-
istic learning features into such models easily makes them analytically intractable (see
Jadbabaie et al. 2012, for a discussion).

To the best of my knowledge, Panchenko et al. (2013) (henceforth PGP13) are
the only authors who conduct a full-fledged theoretical study of the effect of the
information network on expectation formation in an asset pricing model. The authors
use a HSM model to show that price oscillations are not tamed by the presence of
the network. Their interesting paper is, however, subject to some limitations from
the perspective of the research problem of this paper. First, in PGP13 the agents can
only choose between two predefined forecasting heuristics, leaving little space for
any real learning. Second, these two heuristics (chartist and fundamental rules) do not
depend on the decisions or beliefs of agent’s friends, but only on realized aggregate
market conditions (prices). Third, in PGP13 the network provides information about
the realized profitability of the two heuristics, but no insight into the beliefs of one’s
friends. The agents are then assumed to fully incorporate this information into their
heuristic choice, instead of learning whether to trust it or not. As a result, PGP13 offer
a valuable insight into spread of chartist strategies, but not into learning of herding or
contrarian behavior itself, which is the topic of this paper. Finally, PGP13 limit their
attention to random networks, whereas information networks in many real markets
may be much more complicated.

The goal of my paper is to investigate a much more involved learning model. I
will use the GA model proposed by Anufriev et al. (2015) (henceforth AHM15),
which explains well the individual forecasting heterogeneity of Learning to Fore-
cast experiments. This approach has two advantages: (1) I will work with a realistic,
experimentally tested model and (2) I will obtain further insight into the original exper-
iments: to what extent their results (such as the price bubbles) depend on the lack of
information networks.

The GA model by Anufriev et al. (2015) is an agent-based model (ABM) based
on the work of Hommes and Lux (2011). Its idea is that agents, who are asked to
predict a price, follow a simple linear forecasting rule, which is a mixture of adaptive
and trend extrapolation expectations. This rule requires specific parametrization, and
each agent is endowed with a list of possible specifications of the general heuristic.
The agents then observe the market prices and update the list of rules with the use
of the GA stochastic evolutionary operators. For instance, if the market generates
persistent price oscillations, the agents will experiment with higher trend extrapolation
coefficients. Since the agents use the GA procedure independently, the model allows
for explicit individual learning. Anufriev et al. (2015) show that the model replicates
well the experimental degree of individual heterogeneity, as well as aggregate price
dynamics.

In this paper I extend the GA model of Anufriev et al. (2015), to include an infor-
mation network in such a way that agents may learn herding or contrarian strategies.
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Agents observe the past trading behavior of their friends and can learn whether to trust
it, just as they learn whether to extrapolate the price trend. The model by its ABM
structure can evaluate the effects of different, also asymmetric, information networks
on price dynamics. Furthermore, the model explicitly accounts for individual learning,
and so I can also study the formation of herding/contrarian behavior at the individual
level.

The paper is organized in the following way. Section 2 will introduce the theoretical
agent-based model, describing a two-period ahead non-linear asset pricing model with
GA agents and robotic trader. The third section will present the parametrization of the
model, including the investigated network structures, and the setup of the Monte Carlo
numerical study of the model. Section 5 will be devoted to small networks of six agents,
with which I will highlight the emerging properties of individual learning and resulting
price dynamics. The fifth section will move to large networks of up to 1000 agents.
Finally, the last section will sum up my results and indicate potential extensions.

2 Theoretical Model

In this section I present the building blocks of the model: an asset market with het-
erogeneous agents and an information network. The model is based on the standard
two-period ahead asset market, used for example by Hommes et al. (2005). For the
sake of presentation, most of the analytical results concerning the rational solution of
the model are given in Appendix 1.

2.1 Market

Consider / myopic mean-variance agents who can choose between a safe bond with a
gross return R = 1 4 r (with » > 0) or a risky asset. The asset can be bought at price
p;: in period ¢, yields a stochastic dividend y, and hence can be sold at price ¢ + 1 in the
next period t 4 1. It is commonly known that y, ~ NID(y, 03). Then the expected
return on a unit of the asset bought at p; is

Ei:{pr41} = Pie,,H =E;{pis1} +y— Rpy, (1)

where E; ,{-} stands for the individual forecast, which does not have to coincide with
the (true) conditional expected value operator [E{-}.

Denote the agent i ’s expectation of the price in the next periodt+1asE; ; (p;+1) =
pi 41+ We assume that the agent perceives the variance of one unit of the asset return
as a constant, Var:(p;4+1) = %2.2 Conditional on the realized price in the current
period ¢, the agent’s i risk adjusted utility at period ¢ is given by

2 One easily find aaz such that in the RE solution, the perceived and realized variances of the asset return
coincide. Namely, 03 =1+ R)ZO’% + 0)2,.

@ Springer



236 T. Makarewicz

a
U1 = Ui + 2itEir (pr41) — EVth(Zi,tptH)
a

= Uii+ 20 (D1 +3 = Rpe) = 0020, @

where a is the risk-aversion factor. Hence, define agents’ i optimal demand at period
t as zi,t, which becomes a linear demand schedule of the form

pit+1+y—Rp,=pit+l+y_ Rp 3
ac? ao? a2t

zig(pr) =

For simplicity I assume that the agents face no further liquidity constraints. Agents
can take short positions, so z; ; < 0 is viable.

The market operates in the following fashion. At the beginning of every period ¢,
each agent i has to provide her demand schedule z; ; (3). Notice that because the agents
are asked for a demand schedule, they do not have to forecast the contemporaneous
price p;. Nextto the agents’ demands, there is no additional exogenous supply/demand
of the asset. The market clears if the following equilibrium condition is fulfilled:

1
Demand, = ZZi,t = 0 = Supply;. )

i=1

Denote the average prediction of the agents of the price at # + 1 as p; | =

%21'1:1 Py 141+ Substituting the demand schedules (3) into the market equilibrium
condition (4), we have that the realized market clearing price is given by

. P Ty

20’ 5
R + (5)

Pt

where n, ~ NID(0, 03) is a small idiosyncratic price shock.? The price cannot be
negative, so it is capped from below at zero. Furthermore, the price p; is capped at
level p;, < M for any period ¢ and some arbitrary large constant M, which excludes
explosive rational solutions (Blanchard and Watson 1982).

This market has a straightforward RE stationary solution such that py, , =

E{pi1} = p/ with ,
pl==. ©)

Without any additional assumptions, the model could explode under non-rational
expectations (c.f. Hommes et al. 2008). Following the experimental design of Hommes
et al. (2005), I introduce a robotic trader to act as a stabilizing force on the market.

Robotic trader at period ¢ trades as if the next price would be at the fundamental,
i.e. his price forecastis p% 5 04+l = p/ . He becomes more active when the realized

3 One can provide microfoundations for n; with additional supply shocks or demand of noise traders.
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asset price p; moves away from the fundamental solution. Define

n =1—exp (—d) ‘Pt—l - pf‘) (7)

as the relative trading share of the robotic trader, which depends on his sensitivity ¢.
Denote

I
) : _ : 1—n
Pl =npl + (L —n)ptyy = pln + - > i (8)
i=1
that is py, | denotes the ‘total’ market price expectations, averaged over the robotic
trader and the GA agents. Then the actual realized price including the robotic trader
becomes

(I —n)péy +mpl +y

pr = R +

Pl Ty
= 9
R + 1 ©
which is a two-period ahead nonlinear price-expectations feedback system. Notice
that the introduction of the robotic trader does not change the steady state RE solution
(see Appendix 1). Importantly, in the model simulations the robotic trader will prevent
exploding price paths (c.f. Hommes et al. 2005).%

2.2 Network

The agents are not fully isolated. Instead, they are positioned on an unweighted sym-
metric, irreflexive and a-transitive information network I. Let I; denote the set of
friends of agent i and I = |I;| denote the number of her friends. Throughout the
paper, I assume that for a particular market this information network is fixed and
exogenous. A natural extension is to relax this assumption and allow for endogenous
network formation, but I leave this for future research. See Albert and Barabasi (2002),
Newman (2003), Goyal (2002) for a general introduction into networks and Bala and
Goyal (2000) for endogenous network formation. In the next section I will discuss the
specific networks used in the numerical simulations of the model.

Within the network, an agent cannot directly observe the price expectations of her
friends, but she knows whether in the recent past they were buying or selling the
asset. This is a realistic setting, as real asset traders are likely to share only qualitative

4 The price expectation feedback (9) is likely the simplest and the most studied asset pricing model with the
market clearing condition. It therefore offers a natural testing ground for the topic of this paper, i.e. emergence
of contrarian behavior in financial markets. As will become apparent in later sections, under the presence of
information networks the agents in my model are unable to coordinate on the unique fundamental solution,
in spite of it being globally stable under RE. Instead, the model generates non-equilibrium oscillatory
(‘sticky’) price paths. It is therefore likely that in a more complicated asset market (e.g. with multiplicity
or indeterminacy of the RE solution), the model would again yield complex non-fundamental dynamics,
such as complicated orbits around a subset of the potential steady states. I leave this interesting problem
for future studies.
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information (‘this stock is profitable, I just bought it!’). I emphasize that an agent
cannot see the contemporary trade decisions of her friends, and moreover agents have

no private information about the future price shocks n;, 741, 742, . . .. Consider agent
j and define
+1 ifz;y >0,
mjs=10 ifzj, =0, (10)

—1 iij,s <0

a simple sign function of her realized demand in period s.
The agents have memory length t and use the simplest possible index Mood; ;—1,
defined as the average mood of agent j in periods [t — 7,1 — 1]

1 t—1
Mood; -1 = — > mys. (11)

S=t—71

For instance, if during the last T periods the agent j was always buying (selling) the
asset, her index is +1 (—1). If she was more likely to buy (sell) the asset, her mood
index is positive (negative) and so a positive (negative) index means that the agent j
remained optimistic (pessimistic) about the asset profitability. A special case of short
memory is T = | when the mood index becomes the sign of the agent’s j very last
transaction at period ¢ — 1.

By assumption, the mood of agent j Mood ;1 is visible to all of her friends, that
is agent i can access all Mood; ;_; for which j € I;. However, in order to study the
effect of herding, I assume that the agents do not distinguish between their friends and
instead rely on the mood of their peers, that is the mood index (11) averaged among
all J; of their friends:

1
Peer; ;1 = IT ZMoodj,,_l

bjel
1 t—1
== Z Z mjs. (12)
L jel; s=t—t

I will refer to (12) as the measure of agent i’s friends’ mood. It has a straightforward
interpretation as the average mood of i’s friends. Hence if the agents learn to herd,
their price expectations should depend positively on the peer mood (12).

2.3 Fundamental Solution Benchmark

I define the fundamental solution to the model as the rational expectations (RE) equi-
librium. The information provided within network is specified in such a way that it
has no effect on the RE solution. In fact, network’s presence or particular structure
makes no difference on the behavior of perfectly rational agents. Therefore, the RE
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framework gives a strong prediction that adding a network into the model will result
in the same (long-run) dynamics. See Appendix 1 for a discussion.

2.4 Experimental and Genetic Algorithms Benchmark

The model is based on the experimental market investigated by Hommes et al. (2005),
with almost the same parametrization (see later discussion). The authors report that
their subjects typically coordinated on price trend extrapolation rules. As a result,
realized prices were unlikely to settle on the fundamental value, and often oscillated
around the fundamental in an irregular fashion. Robotic agent prevented large bubbles,
however. Hommes et al. (2008), who studied an experimental two-period ahead asset
pricing model without the robotic trader, found their prices to explode instead of
oscillating.

As discussed, AHM15 already investigate the model without the networks. They
report that the GA agents learn to use trend following heuristics in a similar fashion to
the experimental subjects. Furthermore, long-run simulations of the model revealed
that it contains two attractors. The market could switch between periods of stability
(prices settling down on the fundamental steady state) and oscillations of varying
amplitude. A basic question is whether the introduction of a network will change this
outcome, and in particular whether both attractors are robust against the presence of
networks.

2.5 Price Expectations and Learning

Agents consider themselves as price-takers and so their task is simply to predict the
next price p,41 as accurately as possible, conditional on the market events and friends’
behavior until and including period # — 1. The GA agents are not perfectly rational
and instead rely on a simple rule of thumb, a linear heuristic of the form

Pie,t+1 = pr—1+0~- Oli,t)Pi; + Bit(pr—1 — pr—2) + i TPeeri;—1 .  (13)

adaptive expectations trend extrapolation herding/contrarian

The first two elements of the rule, adaptive and trend extrapolation expectations, come
directly from the baseline GA model by AHM15. The new part of the above rule is
the last term, the peer effect, which is a weighted sum of the moods of all friends of
agent i 3

The linear heuristic (13) of agent i depends on the specific parameters chosen at
period ¢: the price weight «;; € [0, 1], the trend coefficient g;; € [—1.3,1.3] and
finally the trust index y; ;. The trust index y;; € [—1, 1] can be interpreted as the
importance agent i attaches to her friends decisions. If y; > 0, agent i believes it
is worth to follow her friends’ past trades, and that the past optimism of her friends

5 RE are a special case of (13). To be specific, with o;; ; = B;; = ¥;; = 0 and pl?2 = pf, every next
forecast of p;1 will also be equal to pftJrl = pf.
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is a signal that the price p, will increase even more than just due to current trend.
Conversely, y; < 0 implies that the agent i behaves in contrast to her friends.® In other
words, y; ; > 0 means herding behavior, while y; ; < 0implies contrarian behavior.”
The specific value of the trust index y; ; is multiplied by a sensitivity parameter I,
which remains constant and homogeneous across agents. The multiplicative form of
the herding/contrarian term, with these two factors separated, allows for an easier pre-
sentation and interpretation of the results. Future experimental studies can investigate
the empirical degree of T".

The agents do not use the same heuristic over time. Depending on the market
conditions, the heuristic (13) should be based on different parameters. For instance,
in the periods of strong price oscillations, agents should switch from low or negative
trend extrapolation to strong trend extrapolation. Furthermore, the goal of the paper
is to identify circumstances in which the agents learn herding or contrarian strategies.

We follow AHM15 and model the time evolution of the heuristic (13) by binary
Genetic Algorithms. This results in individual learning and heterogeneity of fore-
casting behavior, similar to the experimental findings. See AHM15 for a technical
discussion and parametrization. The intuition of the model is the following.

The agents are endowed with a small set of H = 20 different parameter triplets
(it Bits Vir,), which correspond to a small list of specific forecasting heuristics (13).
At every period 7, every agent chooses one particular heuristic p;,, | to predict the
next price p;+1, according to their relative forecasting performance in the previous
period. Next, the price p; is realized and the agents observe how well their heuristics
would forecast p; in the previous period (conditional on the corresponding information
set from period ¢ — 1). Based on this information, every agent independently updates
her heuristics using four evolutionary operators: procreation (better heuristics replace
worse), mutation and crossover (experimentation with heuristic specification) and
election (screening ineffectual experimentation). Afterward, the next period ¢ + 1
starts and the procedure is repeated. See AHM15 for technical presentation.

2.6 Coordination Versus Herding

I emphasize the difference between coordination and herding. Herding (contrarian)
means that the agents directly follow (contrast) the decisions of their friends, which
in this model is embodied by relatively high positive (negative) values of the trust
index y. On the other hand, coordination is the similarity of agents’ behavior: in
this context similarity of the realized individual price forecasts and forecasting rules
(similar (¢, B, y) triplets regardless of the particular value of the trust index y). I

6 The bias in the forecasting heuristic is equivalent to alternative model, in which the agents would use
forecasting heuristic as in AHM15 (without the peer effect), and then learn to directly change their demand
as a response to optimism or pessimism of their friends. See Appendix 3 for discussion.

7 In the literature on heterogeneous price expectations, one can often find the label ‘contrarian’ in an
alternative use, namely as a heuristic according to which a positive (negative) price trend means expected
price decrease (increase). For (13), this means g; ; < 0. In line with Anufriev et al. (2015), the agents in my
model will converge to strong trend following rules with 8; ; >> 0 and B; ; < O will not play a significant
role. I will thus never use the term ‘contrarian’ in this sense.
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follow Heemeijer et al. (2009) and express this value as the standard deviation of the
individual price forecasts, a measure of dis-coordination of the form

2

6 6
1
D; = Z Pit+1 5 pr,m € [0, ool. (14)
i=1 j=1

N =

If D; = 0, then all agents at period r have the same forecast of the next price, while
higher values of (14) imply larger dispersion of the contemporary individual price
forecasts.

Regardless of the particular network, agents interact indirectly through the market
price. Experiments and previous work on the GA model by AHM15 show that such
an indirect interaction can be sufficient to impose a large degree of coordination in
asset markets, even though the agents cannot observe each other. PGP13 further study
dynamics of coordination under local interaction (social learning through networks),
but in their model their agents cannot learn actual herding/contrarian strategies (expec-
tations as a function of friends’ behavior). The main goal of this paper is to investigate
whether agents will learn herding/contrarian behavior and how does this influence
their coordination.

3 Monte Carlo Studies
3.1 Parametrization of the Model

Following the design of the experiment of Hommes et al. (2005), the parameters are
set in the following way. Regardless of the network, the gross interest rate is set to
R =1+ r = 1.05 and the dividend to y = 3, which gives the fundamental price
pf = 60. The standard deviation of the price shocks in (9) is set to o;; = 0.1, which
implies that under RE the price should be independently and normally distributed and
approximately in the [59.75, 60.25] interval for 99 % number of periods. It will appear
that these small idiosyncratic price shocks play no significant role in the system.®
The only difference with Hommes et al. (2005) comes with the parametrization
of the robotic trader. Recall the definition of the relative weight of robotic trader (7),
which depends on the sensitivity parameter ¢. For instance, the robotic trader will take
over exactly a quarter of the market (n; = 0.25) if the absolute price deviation is

15)

f’ _ —ln0.75.

Pt—1— P
é

Hommes et al. (2005) set ¢ = 1/200, which means that the robotic traders takes over
25 % if the price is close to the minimum allowed price p; = 0 or the maximum

8 All the simulations were written in Ox matrix algebra language (Doornik 2007) and can be provided at
request.
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allowed price p; = 100.” In this paper I want to study the impact of the networks on
market stability and hence I want to scale down possible price oscillations. Hence, I set
¢ = 1/104.281784903, which implies that the robotic trader will take over a quarter
of the market if the price will reach p;_; = 90 or p,_; = 30, that is if it deviates from
the fundamental by a factor of 50 % (100 % in the setup of Hommes et al. 2005).

The GA model requires parametrization in two respects. First, I take the number of
heuristics (chromosomes) and the specification of the evolutionary operators directly
from AHM15. In comparison with AHM15, the GA agents in this paper optimize three
parameters instead of two. The new parameter, the trust index y is associated with a
gene of 20 bits, i.e it has the same length as the genes that represent the two other
coefficients of the agent heuristic (13).10

Second, the GA agents can optimize the heuristic parameters only from a predefined
interval (see AHMI5, for discussion). The price weight « € [0, 1] has to span a
simplex; the trend weight is taken from AHM15 to be constrained by 8 € [—1.3, 1.3].
Tassume that all agents have their total herding/contrarian effect equal to 6 (in absolute
terms), which corresponds to 10 % of the fundamental price. This implies that the trust
sensitivity issetas I' = 6, given that the trust index has to be chosen from a unit interval
y € [—1, 1]. Finally, the heuristic (13) is based on the mood index (11), for which I
take memory 7 = 5.1

3.2 Initialization

AHMI1S5 note that the GA model is sensitive to initial conditions. First, the agents
require some initial heuristics. Here I follow the authors and sample them at random.
Second, the heuristics require past data from at least two periods, including the previous
price forecasts itself. In my numerical simulations, the agents in the very first period
always predict the fundamental price and only start using their heuristics in the second
period, assuming no trend. To be specific,

piy=p! =60, (16)
piz=ai3p1i+ (1 —a;i3)p;,
=604 o;3n; foreveryi €1, (17)

which implies that the market is initialized at the fundamental value (lest the price
shock), p1 ~ pr ~ p/.

This may seem as a surprising design choice, since ABM’s are often used to study
model’s off-equilibrium dynamics and convergence properties. It will turn out that the
model in this paper is inherently unstable. Indeed, if initialized in the fundamental,
most likely it will diverge at some point!

9 Specifically, n; = 25 % happens if the price deviation is | p; 1 — pf | & 57.5. There were two treatments
with pf = 60 and pf = 40, for which thus n; &~ 25 % if the price hits p; = 0 and p; = 100 respectively.

10 o keep the simulations with and without network comparable, the crossover is always set to exchange
bits associated with the o argument of the forecasting heuristics.

1T See the next two sections for additional information on the sensitivity of the model simulations to the
choice of the parameters I' and t.
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3.3 Small Networks of Six Agents

In the first part of my study, I will look at networks of six agents, which is is the
typical number of subjects in the LtF experiments. Furthermore, it is easy to trace
the behavior of only six agents, while this number of nodes is sufficient to have
networks with interesting properties, such as regular lattice or asymmetric positioning.
I will therefore use these networks to obtain some basic insight into how the network
structure and placement affects individual behavior, herding and coordination. The
second part of the Monte Carlo study (MC) will shift our attention to large networks.

Six symmetric agents can be arranged on 108 different networks. For the sake of
presentation, I focus on six specific: no network, circle, fully connected, two connected
clusters, core-periphery and star. See Fig. 1 for a visualization of these networks, and
Table 1 for summary statistics.

The model with no network serves as a natural benchmark, a setting which was
studied with the LtF experiments and by AHM15. The circle and fully connected
networks are important to evaluate the effect of network’s density on price stability,
coordination, learning and herding. The three other networks represent asymmetric
positioning of the agents, which I will show to have an interesting effect on herding.!?

In the later analysis the model turns out to be unstable in terms of the realized prices,
but also in terms of individual coordination and strategies. In repeated simulations of
the small networks of six agents, a clear median pattern will emerge, but individual

12° Another interesting topic is whether clustering has any effect on individual coordination. I investigated
three additional networks (with three and two symmetric clusters, and with four fully connected agents
and two unconnected outsiders). However, these networks indicate that the clustering does not have any
meaningful effect on the market, so for the sake of presentation I leave them out of the paper.
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Table 1 Properties of the small networks used in Sect. 3, see Appendix 4 for definition

Network Clusters Diameter Closeness Density Transitivity
No network 6 N/A 0 0 0

Circle 1 3 0.6667 0.4 0

Fully connected 1 1 1 1 1

Two connected clusters 1 3 0.6889 0.4667 0.7778
Core-periphery 1 3 0.7556 0.5333 0.5

Star 1 2 0.6667 0.3333 0

simulations will exhibit oscillatory behavior. In order to understand these dynamics, I
will focus on three types of evidence.

Every network will be simulated 1000 times, based on the same price shocks n,,13
but with differently realized learning via different random numbers given to the GA
operators. Every market is simulated for 2500 periods, including the initial 100 periods
Which4can be interpreted as a learning phase. This offers two ways to the represent the
data.!

First, for each of the 1000 simulated markets one can look at the realized statistics
of that market (for periods 101 till 2500, so excluding the learning phase), which I will
refer to as long-run statistics. This gives a distribution of 1000 long-run statistics, and
one of particular importance is the distribution of the long-run market price standard
deviation. It serves as a direct indicator of market stability.

Second, one can look at realized market variables across the 1000 markets in a
particular period. I will focus on the median and 95 % confidence intervals (CI) and
how they evolve over time. The variables of interest are price, dis-coordination measure
(14) and the coefficients chosen by the agents to specify the forecasting heuristic (13).

Finally, it will appear that the model does not converge, hence it may be difficult
to understand the emergent properties of individual learning based solely on this MC
exercise. In order to interpret these results, I will also present some sample time paths
of the realized market and learning variables.

3.4 Large Networks

Large networks are empirically more relevant than the ones with six agents only. How-
ever, one can identify a myriad of possible and interesting large network topologies.
The selection reported in this paper is based on the discussion by PGP13. To be spe-
cific, I will focus on networks of size I € {50, 100, 250, 500, 1000}, with 10 different

13 Because the price shocks are normally distributed with small variance, the simulation dynamics are
largely independent from them.

14 7t impossible to have the same random numbers for learning, since in the model with no network the
agents do not optimize the trust index. However, in all other five networks the learning is indeed based on
the same set of random numbers.
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architectures that range from regular lattice to small-world network. Due to the limits
of the study, I will leave large-scale networks for future studies (cf. PGP13).

The non-regular networks are defined through a non-deterministic generating
process (see below for details for random and small world networks). In principal
one could obtain a distribution of results based on a repeated sampling of these non-
regular networks. This in turn would be obtained by a proper MC exercise per every
realized network (in line with the MC study for the networks of 6 agents). However, a
single sample network of many agents (with 1000 as the maximum market size in this
paper) is already numerically involved, and difficult in terms of presentation. Further-
more, we will see that the behavior of the sample large networks is consistent with the
behavior observed in the MC study for the small networks. As a result, a full-fledged
MC exercise could offer only little additional insight. Instead, for every network size
and architecture, I will focus on one sample realized simulation, with a longer time
horizon of 25,000 periods.

I will study four regular networks, with architectures that are based on their 6-agent
counterparts:

No network—every agent has an empty set of friends.

Fully connected—every agent is befriended with every other agent.
Regular—every agent has exactly 4 friends. This market can be represented by
a circle such that every agent is linked with two agents to the left and two to the
right.

Star—one central (or star) agent, who is connected to all other agents, whereas
other edge agents are connected only with the star agent.

Random network with probability 7 is typically defined as a random graph, in
which every two agents are linked with probability 7;. Such an architecture can offer
a wide distribution of links between the agents. I will focus on two random networks:

Random(4)—sparse random with 77; set in such a way that on average agents have
exactly 4 links, which gives the same density as for the regular network defined
above.

Random(16)—dense random with 7; such that on average there are exactly 16
links per agent, i.e. with density four times larger than for the regular network
defined above.

Empirical social networks often have characteristics of the so-called small world
networks (SM): small density (few links between the agents), together with large
transitivity (‘cliquishness®, high probability that a friend of my friend is also a friend
of mine), but also small characteristic path (average distance between the agents). In
practice such networks look like semi-independent clusters that are connected with
each other by infrequent ‘bridge agents’ (see the network in Fig. 1d for a simplest
example, in which agents 3 and 4 serve as such a bridge between two clusters). It is
impossible to obtain networks with such properties through random graphs. Watts and
Strogatz (1998) propose the following algorithm: start with a regular lattice network
of K links per node and rewire every link with probability 7. Rewired networks based
on well chosen parameters K and w, have SM properties, and I will use the following
four rewired networks:
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Rewired(4, 0.01)—on average four links per agent and rewiring probability of
7 = 1%. This gives a SM network for the largest market / = 1000.
Rewired(4, 0.1)—on average four links per agent and rewiring probability of
7 = 10 %. This gives a SM network for the intermediate market / = 100.
Rewired(16, 0.01)—on average 16 links per agent and rewiring probability of
7, = 1%.

Rewired(16, 0.1)—on average 16 links per agent and rewiring probability of 7, =
10 %.

The representation of the realized non-regular networks for all five possible network
sizes, together with a table of basic characteristics, is available in Appendix 5 (Figs.
18, 19, 20, 21, 22, 23).

4 Networks of Six Agents

This section consists of three parts. First, I will look on the model without a network
(or an empty network). This is essentially the same setup as investigated by AHM15,
who focused on the model’s fitness to four LtF experiments. I will supplement their
investigation by an in-depth analysis of the emergent properties of the GA model for
the two-period ahead asset pricing model, specifically what drives the coordination
on the oscillatory prices paths and how does this link with the individual learning.
Second, I will introduce two regular lattice networks (circle and fully connected; see
Fig. 1 for a visualization) in order to study whether the agents learn to herd or rather
to contrast the behavior of their friends. Finally, I will study the role of asymmetry by
considering three asymmetric networks (two connected clusters, core-periphery and
star).

4.1 Benchmark Model Without Network

Observation 1 Without a network, there are two types of attractors in the model:
coordination on the fundamental price and oscillations around the fundamental.

In line with the findings of AHM 15, I find that there are two possible outcomes in the
model if there is no network. First, the GA agents can coordinate on the fundamental
price and stay there (see Fig. 2b for a sample market). This is a self confirming
steady state, since if the price stays at the fundamental level, the forecasting rule (13)
effectively reduces to forecasting the fundamental as well. The trend term f is irrelevant
and retains wide distribution centered around zero (weak or no trend following). The
price shocks 7; are too small to push the agents away from this equilibrium.

Since in this scenario the trend coefficient is irrelevant, by chance it may happen that
the agents, independently from each other, consider sufficiently strong trend extrapo-
lation (sufficiently large ). In such a case, they can pick up a sufficiently large shock
n; as a sign for future price trend, outweigh the robotic trader and impose a regime
of price oscillations (see Fig. 2c for a sample market). This is again a self-confirming
regime: if there is significant trend, agents effectively learn to follow it, which ampli-
fies the trend despite the stabilizing effect of the robotic trader. We observe that across
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Fig.2 Monte Carlo study (1000 markets) of the GA model without network: distribution of long-run price
standard deviation; and sample stable and unstable time series of prices, a Price SD over markets. b Stable
market. ¢ Unstable market

1000 simulations,'® slightly more than 50 % of the markets slipped into significant
price oscillations. This is visible in the bimodal distribution of the long-run standard
deviation of the price, as visible on Fig. 2a. It also corresponds to the results of Hommes
et al. (2005), who report that among the seven experimental groups with p/ = 60,
four exhibited oscillations, two monotonic convergence and one an intermediary case.

Observation 2 GA agents, without any direct link, can coordinate well by learning
to follow the price trend, which can differ across time and between markets.

Disregarding the initial 100 periods, the predictions of GA agents are sharply cor-
related with an average correlation coefficient of 99 % (average from 1000 simulated
markets).!® Across the simulations, the median dis-coordination measure (14) remains
low, below 0.1 (see Fig. 3b for the median and 95 % CI over time). Nevertheless, large
outliers are possible and the upper bound of the 95 % CI exceeds 2. This implies that
the agents are typically well coordinated, but occasionally momentary breaks of this
coordination occur.

The reason that the agents remain well coordinated despite no direct links between
them is that they learn similar behavior, and so their predictions react to specific
market condition (current price and price trend) in the same manner. This in turn is
reinforced by the positive feedback nature of the market. For example, if the GA agents
have similar optimistic price forecasts, the realized price will indeed be high and the
agents have no incentive to change their behavior. If the prices remain stable, a specific
parametrization of the forecasting (13) is in practice irrelevant. On the other hand, the
median GA agent converges to the following strong trend rule

Piis1 2 09p1 +0.1p] +0.5Ap; 1, (18)
as presented at the bottom panel of Fig. 3. Notice that this rule is similar to the median

rule reported by AHM 15 for the same market. In the unstable markets GA agents learn
to coordinate on the price trend. The trend coefficient 8 retains a wide distribution

15 Recall that the simulations for a specific network are based on the same series of price shocks but
different realized learning.

16 To be specific, correlation of predictions for any pair of agents across 1000 markets is equal to 98.7 %.
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coordination. ¢ Forecast SE. d Price weight «. e Forecast weight 1 — «. f Trend coefficient 8. (Color figure
online)

even towards period 2500, including its upper 95 % CI bound being far away from
the median, which suggests that the specific trend is realized differently on different
markets. Indeed, the long-run price standard deviation of the unstable markets has
a wide distribution, which means that different markets are unstable to a different
degree, or the market instability (i.e. the specific price trend) changes over time.

Observation 3 In unstable markets, the robotic trader is responsible for the reversal
of price trends (crashes of bubbles and reversals of bursts).

Regardless of whether the market was stable or not, its long-run average price has a
degenerate distribution at approximately the fundamental level. Furthermore, the price
oscillations are centered around the fundamental and 95 % of times are approximately
contained within the interval [45, 75], that is 75-125 % of the fundamental price (see
Fig. 3a). This corresponds to a relative weight of the robotic trader (7) n; ~ 13.4 %
at the peak of oscillations.

Consider again the unstable market presented in Fig. 2c. Figure 4 displays a number
of variables from that market in periods 1001 till 1025. Within these 25 periods, the
market experienced one bubble, a subsequent crash, a period of crisis and then recovery
towards a new bubble. The turning points of the bubble and crisis happened in periods
1005 and 1016 respectively (which means that one full cycle took around 20 periods,
see Fig. 4a). What caused these market turn-overs?

Throughout periods 1000—-1025 the price shocks were not larger than 0.2 (i.e. their
two standard deviation) in absolute terms. The cycle of bubbles and crashes arises
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and individual forecasts (including the corresponding heuristic specifications) of price from these periods,
a Prices and forecasts. b Dis-coordination. ¢ Robotic trader. d Price trend (p;—1 — p;—»2). e SE of forecasts.
f Chosen trend coeff. 8

endogenously, without a need for large exogenous shocks.!” Before the bubble turning
point in period 1006, the GA agents used the strongest possible trend extrapolation
(Fig. 4f) and remained well coordinated. Notice that in the period of bubble build-
up, the agents undershoot the price, but slowly converge towards it. Indeed, their error
approaches zero at the turning point (Fig. 4e). It means that the GA agents are ‘catching
up’ with the bubble. This is possible, because they use a linear rule with constant trend
coefficient, whereas the actual price trend (p;—; — p;—2) looses on its momentum (see
Fig. 4d for the price trend observed by the agents). The latter is due to the robotic
trader: the more the bubble builds up, the more he becomes active, diminishing the
effect of the agents’ trend chasing (Fig. 4c). The maximum price trend happens three
periods before the turning point, after which the robotic trader becomes twice as active
(with his relative weight increasing from around 5-10 %).

At some moment, the robotic trader becomes influential enough to outweigh the
GA agents and to halt the price trend completely.'® Specifically this happens in period
1006, the last period for the observed price trend to remain positive (albeit already
close to zero, see Fig. 4d). However, the GA agents do not realize that the market is
about to turn, but rather observe that in the past it paid off to follow the trend (indeed
they just ‘caught up’ with the growing price) and so they continue to extrapolate it,
despite its relatively meager value.

17 Compare with standard RE models.

18 This does not require a substantial negative price shock. Instead, it relies on the decreasing price trend,
growing weight of the robotic trader and the feedback coefficient in the price equation (9) being less than
unity due to the positive interest rate.
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On the other hand, in period 1007 the robotic trader does not care that the prices
have lost momentum. Instead he considers only the absolute deviation of the price
from the fundamental and increases his activity on the market even more. The total
effect is that the realized price pjpo7 is slightly smaller than the previous price. GA
agents momentarily realize that the strong trend following just lost its potency and start
to experiment with lower coefficients 8 of the forecasting heuristic (13) for predicting
price in the next period p1oog (see Fig. 4f). This results in a moment of dis-coordination
(Fig. 4b), and also means that the stabilizing effect of the robotic trader becomes even
more important and the price starts to drop in a more pronounced way.

The price will not converge to the fundamental, what the robotic trader is trying to
achieve. Instead, the GA agents notice the downward trend and immediately follow
it (chosen trend coefficients § were diverging from their allowed upper bound of
1.3 for only two periods), which reinforces the crash. The market undershoots the
fundamental value and a symmetric sequence of events happens around the peak of
the burst in period 1015.

Finding 1 Without a network, the market can be both stable and unstable. Instability
occurs if GA agents learn to follow the current price trend, which generates a high
level of coordination during the build-up of bubbles and bursts. However, a constant
price trend cannot be sustained forever because of the robotic trader. When the trend
looses enough momentum, the GA agents experiment with their forecasting heuristics.
As a result, a tipping point of bubbles and crashes emerges, in which agents are dis-
coordinated around a price trend reversal, which renews coordination on extrapolating
the reversed price trend.

These findings are not driven by the nature of the robotic trader per se, but by
the fact that a stable price trend is unattainable because of the robotic trader. In real
markets, a number of factors can have a corresponding effect of breaking up the price
trends: liquidity constraints, regulations on prices (such as daily limits on allowed
asset price change); and finally ‘common knowledge’ that bubbles cannot grow up
forever. Usually this coincides with uncertainty about how exactly the price trend
will be broken, because of strategic uncertainty, or because the legal constraints are
imprecise. In these cases, market participants find it easy to follow price bubbles and
crashes, but are not that skilled at playing out the markets’ tipping points, as was
evident during the recent 2007 financial meltdown. The same mechanism emerges in
my model as summarized in Finding 1. Just as in real life, the GA agents follow the
market, which reinforces its growth, until it reaches its natural limit and, in spite of
agents’ optimism, it starts to stagnate. Once the agents realize this, they panic—and the
bubble bursts without the optimism it was built upon. A period of crisis thus emerges,
when agents’ pessimism reinforces the price drop.

4.2 Contrarian Strategies Induced by Networks

Observation 4 Networks have a destabilizing effect on the market.

Introducing any type of network into the model brings forth additional price insta-
bility. MC results for two regular networks, circle and fully connected, are presented
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Fig. 5 Monte Carlo study (1000 markets) of the GA model without network, circle and fully connected
networks: time evolution of prices (median represented by a red line and 95 % CI represented by blue
lines); distribution of long-run price standard deviations; sample realized prices for initial 500 periods.
(Color figure online)

in Fig. 5. In comparison with the model without a network, coordination on the fun-
damental price does not constitute a likely attractor anymore. For the circle network,
long-run price’s standard deviation close to zero appears only in about 5 % of the
markets, and virtually never in the case of the denser fully connected network (mid-
dle panel of Fig. 5). On the other hand, in almost all markets price oscillations arise.
Furthermore, these oscillations are stronger, implying larger market volatility. The
prices still fluctuate around the fundamental value, but the 95 % CI of the realized
price across time are approximately twice as wide as without network, specifically
they consititute an interval close to [30, 90], i.e. [50, 150 %] of the fundamental price.
In addition, price oscillations occur almost immediately (left panel of Fig. 5). In the
unstable simulations, typical price long-run standard deviation is also twice as large
for both the circle and the fully connected networks than without network. Sample
simulations (right panel of Fig. 5) confirm that the price oscillations have a more
pronounced amplitude.

Observation 5 Agents learn to use heuristics with strong price trend extrapolation,
and also a contrarian attitude towards other agents. Despite the contrarian strategies,
they remain well coordinated.

In the remaining of this subsection, I will focus on the fully connected network.
Results for the circle network are essentially the same. The first observation is that
just as was the case for the model without a network, the GA agents exhibit strong
trend following behavior. Figure 6 presents the time distribution of the price weight
a and trend coefficient 8 chosen by the agents across 1000 simulated fully connected
markets. The median agent quickly converges to a strong trend following rule
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Fig. 6 Monte Carlo study (1000 markets) of fully connected network: time evolution of heuristic (13)
parameters chosen by the agents to forecast prices. Median is represented by a red line and 95 % CI are
represented by blue lines, a Price weight . b Forecast weight 1 — «. ¢ Trend coefficient 8. (Color figure
online)
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Fig. 7 Monte Carlo study (1000 markets) of fully connected network: time evolution of y; trust index of
agent 1; é (Z?:z yi) normalized trust index received by agent 1 from her friends (all other five agents);

and standard deviation of the trust indices of all six agents. Median is represented by a red line and 95 %
CI are represented by blue lines, a y| trust index of agent 1. b Trust received by agent 1. ¢ SD of agents’
trust. (Color figure online)

Piiv1 ™~ pr—1+ L(pi—1 — pr—2) — 0.9TPeer; 1, (19)

which is slightly stronger in terms of trend following coefficient B than for the case
of no network (even though the 95 % CI have approximately the same width). Notice
furthermore that the weight on the previous forecast 1 — « is close to zero, which
is consistent with the findings of AHM15: large price instability induces learning of
stronger trend, but also less ‘conservative’ behavior.

Interestingly, the agents learn contrarian rules with median y &~ —0.9. If the friends
of an agent were buying in the past (remained optimistic), she would decrease her price
forecast. Figure 7 shows the 95 % CI of the trust agent 1 puts into her friends and trust
she receives herself over time.!® The median agent quickly learns a strong contrarian
heuristic and is furthermore distrusted by her friends. However, the 95 % CI for both
variables remain wide and approach zero from below, which means that the agents are
still experimenting with the specific strength of the contrarian strategies. This is further
visible in the standard deviation of the realized trust index between the agents (low
median, but wide 95 % CI, see Fig. 7c). Finally, despite the contrarian behavior, GA

19 Because the network is symmetric, the results for the other five agents are indistinguishable. This shows
that the MC sample of 1000 gives a sufficient picture of the model’s behavior.
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agents remain well coordinated, as measured by the correlation of their price forecasts
equal to 96.8 %. What is the reason for these two facts, and how are they connected
with the increased price volatility?

Observation 6 Agents can only look at the past behavior of their friends, but the
market is unstable. Therefore, trades that were optimal in the past are inconsistent
with contemporary market conditions. As a result, observed mood of friends is ‘sticky’,
which induces the agents to learn contrarian strategies.

To study the reason of the contrarian behavior, I will focus on a sample cycle of
boom and crisis presented in Fig. 8, for one market with the fully connected network.
We observe that this cycle is similar to the one from a sample market without a network,
specifically the oscillations have similar period (but a higher amplitude, as discussed in
Observation 4) and the timing of the bubble-crisis cycle is symmetric. During a build-
up period of the bubble, the agents are ‘chasing’ the bubble with strong trend following
rules, until the robotic trader curbs the price trend. Afterwards, there is a small phase
when the agents experiment with their rules, what together with the influence of the
robotic trader causes a trend reversal, which is quickly picked up by the agents. The
evolution of the trust index y is the opposite to that of the trend coefficient: it typically
stays close to its lower boundary (y ~ —1), but agents experiment with higher trust
during the market reversals.

To interpret these results, the following lemma is useful (see Appendix 2 for the

proof):

Lemma 1 Disregarding the price shocks, agent i buys (sells) if her price forecast
is higher (lower) than the average market expectation (8), that is if pi"’Z 1 > Piy
( pit 11 < Py 1) Similarly, robotic trader buys (sells) if the average market expectation
(8) is below (above) the fundamental price, i.e. robotic trader’s forecast. This implies
that the GA agents and the robotic trader can buy (sell) even though they expect
negative (positive) price trend.

This lemma follows from the two-period ahead structure of the market and has a
simple interpretation. Consider a market at period ¢ with only two agents, no price
shocks (n; = 0) or robotic trader (n; = 0). Let both agents expect the price to increase
in the next period ¢t 4+ 1 in comparison with the last observed p,_;. Their demand
functions (3) however depend not only on their expectations of p;1, but also on the
contemporary price p;, which follows the market clearing condition (4). If one agents
is more optimistic about the next period (say p{,,; > p3,,), then she will take
relatively longer position. Because the market has to clear, she will buy the asset from
the other agent, z1; = —z2; > 0. In a general case of many agents, price shocks and
the robotic trader, the market clearing condition implies that a GA agent buys the asset
if she is relatively optimistic, not if she is optimistic in absolute terms.

The important consequence of the lemma is that, because of the robotic trader, GA
agents are likely to be buying (selling) the asset even after they realize a market reversal.
For an illustration consider the sample network of six fully connected agents (Fig. 8).
In this market there was a bubble with a peak in period 1010, with a negative price
trend afterwards. The agents realized that after observing pio1; and their subsequent
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Fig. 8 Sample market with fully connected network, periods 1001 till 1025. Realized market variables in
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prediction pf |5 for price in period 1013 decreased in comparison with their previous
forecast pi 1012 but was still highly above the fundamental price. Agents noticed that
the price gained a negative trend, but did not expect it to fall to or below the fundamental
price immediately. On the other hand, the robotic trader is always trading as if the next
price will be at the fundamental level. As a result, the GA agents after the reversal of
the bubble became pessimistic in absolute terms, but still optimistic relatively to the
robotic trader. Figure 8i shows the sign of the robotic trades.?? We observe him to take
the short position until period 1014.

The construction of the market is that the agents forecast two-period ahead, and their
information set spans until the previous period. This means that they form their forecast
of p1o10, i.e. the peak of the bubble, based on the friends’ behavior until period 1009,
which roughly corresponds to the moment when the price (following the previous
crisis) surpasses the fundamental level and the GA agents finally become relatively
more optimistic than the robotic trader and start to buy the asset. Furthermore, the

20 Notice that this is not the index based on five previous trade signs.
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peer effect is based on an index with a non-trivial memory (of 5 periods). We observe
that the agents’ mood indices becomes positive only around the moment of the bubble
burst (Fig. 8g), that is the agents acquire reputation of full optimism when the market
already crashes or is about to crash. This lag is apparent in Fig. 8h, which shows
for every GA agents the mood index averaged between her friends she observes at
period ¢, that is averaged over friends and over periods ¢ — 6 until # — 1 , which she
uses to predict the next price ¢ + 1. The GA agents can trade quite efficiently, but
their reputation is ‘sticky’ and hence reflects the past, not the contemporary market
conditions. A contrarian attitude is therefore natural.

To what extent is this driven by the robotic trader? Because the robotic trader has
such a firm belief about the next price, the GA agents are likely to take similar (long
or short) positions once the market is far from the fundamental: their individual price
forecasts remain heterogeneous, but well coordinated (below or above the fundamen-
tal). On the other hand, without the robotic trader the GA agents would be more likely
to trade in a more diversified fashion (some would buy, some would sell), and on
average their reputation could be less ‘sticky’. Nevertheless, agents who have many
friends would still likely observe ‘sticky’ mood [notice the difference between indi-
vidual mood indices (Fig. 8g) and the observed ones (Fig. 8h)]. Furthermore, even
without the robotic trader the lag of the index mood is apparent (especially after the
market reversals).?! It means that unless the price oscillations can take a relatively
long period, the agents will simply never have time to acquire a positive (negative)
mood index during the bubble (crisis) build-ups.?? I leave it for future inquiries to
study the robustness of this phenomenon in alternative market structures.

Observation 7 Contrarian strategies add momentum to the trend reversal around the
tipping points of bubbles and crises. Through interaction with agents’ strong trend
following behavior, this causes price oscillations with larger amplitude.

As discussed for the markets without a network, the reason for price trend reversals
is that once the price diverges sufficiently away from the fundamental, the robotic
trader halts its current trend. This causes dis-coordination and a tipping point: agents
start to experiment with their heuristics, while the robotic trader insists on pushing the
price back to the fundamental. Therefore, the prices turn around and agents quickly
pick the new trend up, causing a new phase of the bubble-crisis cycle.

The contrarian strategies work in the same direction. For example, during a bubble
build-up the agents slowly become optimistic. As discussed, this happens not fast
enough to make the agents learn herding strategies, since the agents become fully
optimistic close to the tipping point of the bubble (in terms of the Mood; ; variable).
Thus their heuristics remain strictly contrarian, but the optimism build-up around the
tipping point plays a crucial role in the bubble crash.

Once the robotic trader stops the price growth, we see in the price expectation
heuristic (13) that the price trend becomes unimportant, while the negative y trust
index, together with the newly established optimism among friends, means that the

21 Simulations, in which a cap on price change replaced the robotic trader as a stabilizing factor, also
indicate strong contrarian behavior; this seems to be caused by the discussed lag of the mood index.

22 Sample simulations indicate that in this setup the specific value of the memory length t plays little role.
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agents are likely to forecast lower price (observed optimism times the contrarian atti-
tude yields an additional negative element in the pricing forecast heuristic). Given the
positive feedback between the predictions and price, the initial price drop is therefore
more severe relatively to the case without a network, in which no such contrarian
attitude can emerge.

One can observe this by comparing the first price increase after the end of the burst:
Pp1o19—p1o1g =~ 7.07 for the sample fully connected market (Fig. 8a) is much larger
than pio16—pi1o15 = 1.42 for the sample no network market (Fig. 4a), which also
results with a sharper increase of the corresponding price forecasts. The increased
(in absolute terms) initial trend after bubbles burst (or crises finish) makes the agents
predict larger price change, which reinforces the size of the trend. This can be mit-
igated by the robotic trader only once the price deviation is sufficiently larger in
comparison with the market without a network, which makes the realized oscillations
wider.

Notice that this further confirms the discussed intuition of the contrarian strategies.
Agents around the peak of the bubble (crisis) are considered optimistic (pessimistic).
They also use contrarian strategies, which reinforces the market reversal (in contrast
to the observed mood of the friends), and makes the contrarian attitude self-fulfilling.

The general conclusion about the network effect on the market is therefore only
partially in line with the popular belief. The GA agents, if endowed with addi-
tional information about friends’ behavior, learn contrarian beliefs. This actually
implies larger bubbles and crashes, while not disturbing the high level of forecast-
ing coordination—the two phenomena that some economists would in fact associate
with herding (Shiller and Pound 1989).

Finding 2 In markets with a relatively fast bubble-crisis cycle, the history of agents’
trading decisions lags behind the contemporary market conditions. As a result, agents
have an incentive to learn contrarian strategies. This has a negative impact on price
stability. Because the agents’ reputation catches up with the market conditions just
before the tipping point, the contrarian strategies imply that the turning points of the
price cycle generates stronger price reversal. This larger initial price trend is in turn
reinforced by the agents’ trend extrapolation behavior, which makes it more difficult
for the robotic trader to stabilize the market.

4.3 Learning in Asymmetric Networks

Observation 8 An asymmetric position in the network has no direct effect on herd-
ing. Instead, agents with fewer friends experiment with relatively weaker contrarian
strategies.

Intuition suggests that agents with a unique position in a network—like a center of
a star network—should receive more attention and thus play an important role in
coordination. However, my model confirms this reasoning only partially. Consider
three networks: two connected clusters, core-periphery and star. In all of them, one can
distinguish central and non-central agents with interesting asymmetric positions. In the
two connected clusters, agents 1 and 3 belong to the same cluster, but agent 3 also links
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Fig. 9 Monte Carlo study (1000 markets) of two connected clusters, core-periphery and star networks:
time evolution of trust index y of specified agents. Median is represented by a red line and 95 % CI are
represented by blue lines. (Color figure online)

to the second cluster (see Fig. 1d). In the core-periphery network, a reverse case holds:
agent 1 lies in the core and links to a periphery agent, while agent 3 is such a periphery
agent (see Fig. 1e). The most extreme is the situation of the star network, where agent
1 is the hub of the star, while agent 3 is a typical edge of the star (see Fig. 1f).

Figure 9 shows MC results for the trust given by these agents across time. Again
the 95 % CI are wide (demonstrating erratic behavior of these networks), but there
is a clear pattern in terms of the median agent across the simulations. Regardless
of the network, the central agent is always likely to use strict contrarian strategies,
just as was the case of the agents from regular networks. Non-central agents are also
contrarian. However, their median trust index can be significantly larger: instead of a
low y &~ —0.9 for the case of the fully connected network, the median non-central
agent 3 in star (core-periphery) uses a weaker contrarian y ~ —0.6 (y &~ —0.75). This
is not the case for the non-central agent 1 in the two connected clusters network, who
uses a strong contrarian strategy with y ~ —0.9. This indicates that a more central
position on its own does not guarantee higher levels of received trust.

What we observe instead is agents experimenting with relatively higher trust levels
if they have fewer friends. Specifically, the edge agents in the star network, and the
periphery agents in the core-periphery network, have only one friend; and their median
trust level is visibly higher (even if still negative) in contrast to other agents.”® This
result will be more apparent in the large networks, and has a natural intuition.

23 This result is confirmed by simulations of the GA model with with small clusters networks, which are
not presented in this paper.
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In the setup of my model, the agents cannot distinguish between their friends and
look only at the average sign of their friends’ mood. On the other hand, the agents
remain heterogeneous (see the previous discussion): even if the agents typically have
similar price forecasts, they can have quite different realized moods over time (in
particular when the price is close to the fundamental, see Lemma 1). It means that
a ‘popular’ agent (with many friends) will have to wait longer to observe ‘sharp’
consensus among her friends, whereas ‘unpopular’ agents are more likely to observe
outliers, which can be useful around the tipping points. For instance, consider the
sample fully connected network (Fig. 8) and compare the sharply changing individual
mood index (Fig. 8g) with much smoother observed friends’ mood index (that is, the
average mood index of five friends, Fig. 8h). Therefore the agents with fewer friends
are typically contrarian, but are also willing to experiment more when bubbles and
crises regimes brake down.

A clear suggestion for future studies follows. First, the above reasoning does not
have to hold when the agents can distinguish between their friends.>* Second, this
is an important insight when studying models with endogenous network formation.
Both issues demand further theoretical and experimental work.

Observation 9 Overall coordination is the same regardless the shape of the network,
including whether it is symmetric or not.

Figure 10 presents the MC results for the coordination and stability of the three
asymmetric networks: the two connected clusters, the core-periphery and the star,
namely the 95 % CI and median dis-coordination over time (top panel) and SD of
the long-run prices over 1000 markets for each network. There is a clear pattern
visible. No difference emerges in terms of coordination (which also looks like the
coordination in any market with a symmetric network).”> However, across the three
networks the star market is likely to experience higher long-run SD of prices, while
the two other networks are much more similar to each other. Furthermore, the star
network never stays in the stable attractor, which can rarely occur in the case of other
asymmetric networks. This indicates that the star network generates unique dynamics
in comparison with all the other non-empty networks, which yield more comparable
results. We will observe a similar pattern in the large networks.

Finding 3 In asymmetric networks, relatively less contrarian behavior can emerge.
This is driven by the fact that agents with fewer links find it easier or more useful to
experiment with relatively higher trust. With the exception of the unique dynamics of
the star network, this does not influence the overall market stability or coordination.

24 As a robustness check, I run some simulations where agent i can attach different trust levels y; ; to
her different friends j. This does not seem to change the qualitative outcome of contrarian strategies being
learned by the agents, but further studies should investigate this manner in a systematic fashion.

25 The typical correlation of the individual forecasts is also comparable between all considered networks
and around 95 %.
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Fig. 10 Monte Carlo study (1000 markets) of two connected clusters, core-periphery and star networks:
time evolution of dis-coordination measure (14) (median represented by a red line and 95 % CI represented
by blue lines); distribution of the long-run standard deviation. (Color figure online)

4.4 Profits and Uutility

Under RE, the expected profits are equal to zero.?® The intuition of this result follows
from the arbitrage argument: the fundamental price p/ balances the asset revenue (the
dividend y and the resale gain p;1) and the opportunity cost (Rp;). Formally, under
RE if pﬁ 11 =E{p} = p/ for every period ¢ and disregarding the price shock 7;,
the asset return (1) becomes

E{prr1} = p/ +y—Rp/ =y —rp/ =0, (20)

where the last equality holds because p/ = y/r. This further implies that the individual
demands (3) are also equal to zero, since z; ; = pi a1/ (aoa2).

The GA model predicts price oscillations and forecasting heterogeneity. This, in
contrast to RE, implies non-trivial trades and asset returns. Notice that furthermore
the GA agents are maximizing a trade-off between the asset return and the risk. It is
therefore important to understand the distribution of profits and utilities in the model.

26 Notice that the law of motion of the economy and hence the realized prices, as well as the GA agents
learning problem (forecasting efficiency) do not depend on the relative risk aversion factor aaf. Thus I have
not specified its value in the previous discussion. On the other hand, as evident from equations (2) and (3),
the total demand and the utility of GA agents are both a linear function of the inverse of the risk aversion
factor. The specific choice of aaa2 therefore can only scale the numerical value of the realized profits and
utility, without changing their qualitative behavior. In the presented simulation outcomes, I used aaaz =1
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Profit of GA agents
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Fig. 11 Monte Carlo study (1000 markets) with circle, fully connected and star networks: time evolution
of average profit of the GA agents and the robotic trader. Median is represented by a red line and 95 % CI
are represented by blue lines. (Color figure online)

Figure 11 shows the MC distribution of average profits for three networks, circle,
fully connected and star, for the GA agents (top panel) and the robotic trader (bottom
panel). Average profit of agent i is defined as

I B
Tiy = Z;pmzi,t. 1)
S§=

Because the robotic trader has a constant price expectation and the market cycle is
symmetric, his average profit quickly converges to zero, with narrow 95 % CI. On the
other hand, GA agents seem to be trading quite poorly: regardless of the network, their
average profit quickly becomes negative (including the upper bound of 95 % CI).?’

This does not mean that the GA agents are irrational, however. Their trading is
dictated by aversion towards risk, and the pricing equation (9) was defined under the
assumption that the agents have myopic mean-variance preferences. Therefore, one
can use the same utility, but based on the robotic trader’s decisions, as a reference point
for the performance and learning efficiency of the GA agents. Specifically, I focus on
the average realized utility

27 Notice that the profits in a given period do not sum up to the dividend, because the asset return includes
the opportunity cost of the forfeit secure interest rate. In fact, the total economic profit cannot be positive
unless the price diverges to an infinity, which resembles the transversality condition in the RE infinite
time-horizon solution.
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Fig. 12 Monte Carlo study (1000 markets) with circle, fully connected and star networks: time evolution
of average utility of the GA agents and the robotic trader. Median is represented by a red line and 95 % CI
are represented by blue lines. (Color figure online)

- 1<
Uir = n Zp;+1zi,; —0.5z7,. (22)

s=1

Figure 12 shows that the GA agents, regardless of the network, obtain much higher
utility than the robotic trader. In fact, after around 1000 period the lower bound of the
95 % CI of their average utility is higher than the median average utility of the robotic
trader.

This observation has a simple interpretation. Because of his constant price expec-
tations, the robotic trader has on average zero profit, but also takes extremely risky
positions around the market reversals, i.e. when he also becomes the most active. GA
agents forfeit part of the profit and hence increase their utility by avoiding excess risk.
This is particularly clear for the case without networks. Figure 13 shows the evolution
of average profits and utilities in the sample unstable market with no network, which
was presented before in Figs. 2c and 4. We observe that initially the prices are stable,
which corresponds to inactive robotic trader and individual trades and profits close to
zero. However, once the market switches to the unstable attractor, the robotic trader
tries to push the price back to the fundamental, while the GA agents follow price
trends. As a result, the relative average profit of the robotic trader increases at the
expense of his relative utility.

Finding 4 GA agents, in comparison with the robotic trader, obtain lower economic
profits, but also higher utility. The reason is that instead of predicting the fundamental
price, they follow the market cycle and thus avoid substantial risk.
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Fig. 14 Standard deviation of price in periods 101-25,000 for different network architecture and size,
a Regular networks. b Non-regular networks

5 Large Networks

In this section I present the results for the sample simulations of the large network as a
function of their size (with 50—1000 agents). I first show the aggregate dynamics and
then discuss individual learning. One of the most important findings of this analysis
is that the large networks (even with hundreds of agents) generate similar market
dynamics as the small ones, which suggests that the specific network architecture or
size is less significant than its existence in the first place.

5.1 Impact of the Network on Price Stability

Observation 10 Network size has a stabilizing effect on the prices only for relatively
small networks and past a certain threshold plays no significant role.

Figure 14 shows the long-run price SD of regular and non-regular networks (see
Sect. 3 for definition). In comparison with the networks of six agents, large regular
networks are marginally more stable (with the markets without a network being the
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sole exception). For example, the star network of 50 agents has price SD equal to
SD, = 15.657 (Fig. 14a), which is below the price SD for the bulk of star networks
with 6 agents (see bottom right panel on Fig. 10). Above 100 agents, however, the
network size hardly has an effect on price volatility.

Observation 11 Specific network architecture (including its density) plays little role
in price volatility, and is important only for extreme cases, namely no network markets
and star networks.

Another interesting observation from Fig. 14 is that, with the exception of markets
without a network, the long run price SD is similar between the network structures
(both regular and non-regular), as it is between networks of the same structure and
different size (in fact it is difficult to distinguish individual networks in this Figure,
since the relevant lines almost overlap). In all these cases, the long-run price SD
falls into a narrow interval SD,, € [14.5, 15.5], despite the networks having different
density and other relevant measures. We will see below that the reason for this is that
the agents from different networks learn comparable behavior, especially in terms of
price trend extrapolation.

As mentioned above, the exception is the no network case. It has long-run price SD
SD, ~ 8, half in magnitude of other networks, which is consistent with the findings
for the small networks. This shows that the contrarian behavior, absent in the case
without a network, increases an initial momentum of the price trends, implying larger
oscillations. The GA model without a network is nevertheless unstable in comparison
with the RE benchmark, according to which SD, = 0.1 < 6.

Finding 5 Specific network size and architecture has a negligible effect on price
stability for large enough networks. The exception is the case without a network,
which is more stable than markets with any type of a network.

5.2 Impact of the Network on Individual Behavior

Observation 12 Regardless of the network size, agents focus on strong trend extrap-
olation rules. They continue to experiment with the specific trend coefficient and this
learning does not settle down.

In almost all considered networks (both in terms of architecture and size), agents on
average use high trend extrapolation coefficients with 8 ~ 0.85 (where the specific
value does not seem to differ substantially between networks). Figure 15 gives the
average B for all networks and network sizes. Furthermore, there is no convergence.
The SD of g is close to 0.55 in all networks, consistent with the small networks out-
comes: agents typically use very high §, but during market reversals they experiment
with lower values of the trend extrapolation coefficient. A noticeable exception are
agents from the no network markets of small size (up to 100 agents), who do focus on
higher 8 ~ 1. It means that in the positive feedback type markets, specific network
structure has little effect on the emerging trend following behavior.
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Fig. 16 Star and non-regular networks with 1000 agents sample simulations: average chosen trust index
y of agents with different number of friends, a Star networks. b Non-regular networks (1000 agents)

Observation 13 Agents in general use strong contrarian strategies, regardless of the
specific network architecture or size. However, the less friends an agent has, the more
she is willing to experiment with relatively higher trust levels.

Across all networks, the average trust given by agents is low, with (roughly)
y € [—0.9, —0.7]. Nevertheless, there is some variability across time and between
agents, as seen in relatively high standard deviations of the relevant trust measures.
Furthermore, the number of connected friends has a clear and negative effect on the
trust level. The most striking illustration of this effect can be seen in the case of star
networks, were the central agent (regardless of the actual network size) on average
uses y ~ —0.8, but the other agents prefer y ~ —0.3, which is close to a neutral
strategy (see Fig. 16a).

In all other networks with a diversified number of friends per agent, more popular
agents have lower average trust, though this effect becomes negligible once agents
have more than a dozen of friends. Figure 17 shows the average trust index y for the
sample non-regular networks, as a function of network size and agent’s number of
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Fig. 17 Sample simulations of non-regular networks: average chosen trust index y of agents for different
network size and number of friends, a Random (4). b Random (16). ¢ Rewired (4, 0.01). d Rewired (4, 0.1).
e Rewired (16, 0.01). f Rewired (16, 0.1)

friends. We observe that the effect of network size is small, but the number of friends
is important. Furthermore, Fig. 16b shows the average y as a function of the number
of friends for the non-regular networks with 1000 agents. The clear pattern is that
the more popular agents have lower average trust index, with a decreasing marginal
effect of the number of friends. Another interesting observation is that there is little
difference between the networks. Indeed, the lines describing this effect for different
network architectures almost coincide on one hyperbola, and further MC would be
likely to show that the relevant distributions of the trust index are indistinguishable.

I argue that the reason for this outcome is in line with Finding 3. Namely, as
discussed in the previous section, the more friends an agent has, the smoother over
time becomes the average friends mood she observes. As a result, it more closely
follows the market cycle with a substantial lag. At any point, the mood index of many
agents is more likely to represent the overall market mood in the past, before the
latest market reversal. Therefore, the agent with more friends has a higher incentive
to remain conservative, unwilling to experiment with strong contrarian attitude.

Finding 6 Agents tend to use strong price trend extrapolation and contrarian heuris-
tics. They experiment with the specific heuristic parametrization after the market
reversals. Furthermore, agents with fewer friends are more likely to experiment with
trust level, since they are more likely to observe outlier behavior.

To sum up, embedding the agents in a network has a strong effect on the aggregate
outcomes: non-empty networks generate stronger price oscillations. However, spe-
cific network architecture is less important, because the emerging learning is similar
between the networks.
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6 Conclusions

In this paper I investigate a financial market, in which agents need to predict the price
of an asset two-periods ahead. They are placed in a fixed information network, and
use a simple general forecasting heuristic, which contains adaptive and trend extrapo-
lation expectations, and an additional term of (dis-)trust towards friends’ past trading
decisions. The agents independently optimize the specification of their heuristics by
Genetic Algorithms. This gives a model of endogenous learning of price forecasting
and herding/contrarian behavior. My main findings are: (i) networks destabilize the
markets; (ii) the Genetic Algorithm agents learn to extrapolate price trends; and (iii)
they learn to use contrarian strategies, because the observed pessimism/optimism of
their friends lags behind the cyclical market dynamics.

Information networks play a crucial role for real financial investors, but itis not clear
how they affect market stability and efficiency. From the perspective of the Rational
Expectations framework, information flows can help the agents to converge to the fun-
damental equilibrium, but if the agents have no private information, networks should
play no role in the equilibrium itself. On the other hand, many behavioral economists,
in line with the popular opinion, identify networks as one of the reasons for herd-
ing and ‘animal spirits’, which enables the agents to coordinate on non-fundamental,
self-reinforcing price oscillations. Here herding is understood as following the opin-
ion of friends (or maybe the general market opinion) instead of ones private beliefs
or information. Empirical investigations add a twist to the theoretical puzzle: market
data gives no clear indication whether herding is a popular strategy, while experiments
identify contrarian strategies as a more common behavioral pattern.

In order to shed some light on this puzzle, I design an agent based network model
for a simple market of financial asset. Every agent can independently learn whether
to follow the observed price trend and in addition, whether to trust the past decisions
of her friends (increase or decrease price forecast, if her friends were optimistic). I
investigate small networks of six agents to obtain basic understanding of such learning
dynamics, and hence I study networks of fifty to one thousand agents with architectures
ranging from regular through random to small world properties.

The main outcomes of the model are the following. First, information networks
destabilize the market. Without information flows, the model exhibits two types of
attractors, the fundamental solution and erratic price oscillations around the funda-
mental. Once the agents are positioned in an information network of any architecture
or size, the stable fundamental steady state attractor disappears and market repeatedly
over- and under-prices the asset in a smooth cycle of bubbles and crashes. Second,
agents learn to extrapolate the price trend regardless of the network, which makes
their price forecasts well coordinated. Third, despite the large degree of coordination
in terms of realized price forecasts, agents learn contrarian heuristics. This is because
the mood of friends, which the agents observe, is ‘sticky’: it represents past decisions
that were made during a different part of the market cycle, and so are different from
what is rational in the present. For example, after a bubble crashes, agents should
expect the price to decrease, but they remember their friends being optimistic just
before the market collapsed. Fourth, the Genetic Algorithms agents (in comparison
with the robotic trader) take less risky trading position, which implies lower profit,
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but higher realized utility. Fifth, the specific network architecture plays little role in
market volatility (past network size of mere hundred agents) or emerging learning.
The heuristics do not settle, since during market reversals the agents experiment with
their specification. These dynamics resemble real markets: during bubbles and crashes
financial agents just follow the current trend, but ‘panic’ around bubble/crash tipping
points. Finally, agents with fewer links experiment with relatively higher trust during
market reversals.

The results of my model offer a good interpretation to many empirical and exper-
imental findings. First, the agents learn contrarian behavior, in line with the findings
from experiments. Second, the agents remain well coordinated despite the contrarian
attitude, which explains why indirect measures for market data may (mistakenly) point
towards herding. It also shows that the popular belief about herding (that it is a driving
factor of price oscillations) may be wrong: coordination occurs despite agents’ lack
of trust towards each other, since they converge to similar forecasting rules of thumb.

My investigation is based on the selection of two crucial elements: asset market
and networks. These choices are independent from the Genetic-Algorithms-based
learning itself. In principle, my model can be used for other financial regimes or
information networks. Indeed, many of my results should be tested in other economic
environments. For example, contrarian behavior emerges because the agents are not
able to acquire reputation of optimism (pessimism) before the market bubble crashes
(crisis ends). This relies on the fact that the financial market, which I have used, allows
for relatively fast price oscillations. Furthermore, the outcomes of my simulations seem
to be robust against specification of some key parameters of the model (including the
allowed trust), nevertheless further experimental work could fine-tune the model or
show its limitations. The model should therefore be thought of as a benchmark for
future theoretical and laboratory inquiries.
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Appendix 1: Rational Solution

Proposition 1 The network 1 has no effect on the fundamental RE solution.

Proof Under RE, at every period ¢ the agents have homogenous price expectations,
and by extension homogenous demand schedules (3) and realized demands. The agents
know that and so can infer the realized demands (and the mood indices) of all agents in
the economy. Since there is no private information, the information set of every agent
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is the same and publicly known, hence the network cannot provide any additional
information.

Proposition 2 Under Rational Expectations, the fundamental price (6) defined as
pl = y/r is the unique stationary steady state such that the predictions are constant
over time (in expected terms) and model consistent, namely pi‘”t 11 = Edprn} =
E;_1{p:} for every period t.

Proof This result is well known for the baseline version of the model without robotic
trader, see e.g. Blanchard and Watson (1982). For the version of the model with robotic

trader, the proposition follows trivially from the fact that the robotic trader in practice
always predicts the fundamental price (6). O

Appendix 2: Proof of Lemma 1

Proof Recall that the optimal demand of an agent i is

_ Pty R

- — Pt 23
Zit aaa2 a%z Pr (23)
In the same manner, demand of the robotic trader is simply
f
p +y R
ZROBO,1 = 5~ D (24)
ao; ac;
Finally, the realized price setting the price shock to zero is
~e + (1 —n ) =€ + n f +
P = pr+1 y _ t p1+1 tP y (25)
R R
Substituting (25) into (23) we obtain
I PiaitY R Pty
T a2 ac? R
Piiy1 — Pr
_ i,t+1 - t+1 . (26)
ac

a

It follows that the demand of agent i at period ¢ z; ; is positive only if the price forecast
for period ¢ + 1 of that agent is larger than the average (including the robotic trader)
forecast of p;, 1, namely if pi +1 > Diy1-Byextension, the robotic trader will also buy
the asset if his prediction (which is the fundamental value) is larger than the average
market prediction, that is if the average market prediction is below the fundamental.

O
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Appendix 3: Equivalence of Forecasting and Trading Peer Bias

In the model, I specified the peer effect and the corresponding herding/contrarian
strategies as the bias to the price forecast. In this appendix I will show that this can
be reinterpreted as a demand bias. To be specific, following AHM15 the agents in
my model forecast the prices with adaptive/trend extrapolation rule (optimized with
GA procedure) and hence trade optimally; however, they can also change their price
forecast if they observe their friends to be optimistic/pessimistic, which is measured
by the trust index y € [—1, 1] in (13). I defined herding (contrarian) behavior as
y >0(y <0).

However, one may think that herding or contrarian behavior has nothing to do with
price forecasting itself, but rather reflects an additional (possibly irrational) bias to the
demand. In other words, the agent has a price forecast, which in our case is generated
by the GA optimized heuristic, but in principle could follow any other model, ranging
from fundamental to simple adaptive or naive expectations. The agent hence uses this
forecast to compute the optimal demand and only then adds or subtracts an additional
quantity to the demand if she follows herding or contrarian strategy.

To see that these two interpretations are equivalent, recall the forecasting heuristic
(13). Substituting it into the optimal demand schedule (3) yields

e,Peer
Pit+1 +y—Rp:
Zi,[ = 2
ClO'a

api—1+ A —a)p;, |+ B(pi—1 — pr—2) + yT'Peeri—1 +y — Rp;

2
ao?

e,NoPeer
p.‘ + y - Rp ~
= D+l 5 i yT'Peer;;_1, 27)
aoc;

where ' = T /aaa2 is a constant measuring agents’ sensitivity to the peer effect,
y € [—1, 1] is the trust index as in the main body of the paper and

e,NoPeer

peNePer — api_y + (1= a)pf,_y + B(pi—i — pi—2) (28)

is the original adaptive/trend extrapolation forecasting heuristic from AHM15.

We can see that the demand written as (27) exemplifies the above mentioned inter-
pretation: agents forecast the next price with the typical heuristic, which is agnostic to
the friends’ behavior; but then the agents have an additional demand bias depending
on the trust index y . Consider now a GA model in which the agents use (28) to obtain
price forecasts pl‘ ++1 and hence use the herding/contrarian biased demand (27). Next,
they update o and B the parameters of the forecasting heuristic (28) and the bias y
with the GA procedure, where the performance of a heuristic specification is measured
in terms of logit transformation of the hypothetical utility (2). To be specific,

NoP a NoPeer)?
Vit =Uihi1 + 2 (Pi’h,flf") (Prst + = Rpo) = 50021 (Pi’h,ﬁﬂm)
(29)
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Now define the realized return on the asset as

Pt+1 = pr+1 +y — Rp;. (30)

The demand function (27) with quantity bias is equivalent to the demand used in
the paper (forecasting bias and no quantity bias), and so using (30) we can rewrite

e,Peer

Piniy1 TY— Rpi
ao?
P 2
aaaz P,eh,e_irl +y—Rp;
2 2

(ZO'a
e,Peer e,Peer 2
(Pihre1 — Pt + 0i+0P+1 (P — Pl + Pig1)

2 2
ac; ac;

Vint —Uinri1 = (pr+1+y — Rpy)

e,Peer

~ Pii = Pr)Pr1 + PE

2
aog

e,Peer

P
(P hrin = PraD)> 200 1 — Pev) it + Py
2a0?

2 e,Peer 2
_ P (Pin 1 — Pr+1)

- 2 2
2a0; 2a0;

€19

It follows that the performance of the quantity-biased demand (27) is equal to a
constant term minus MSE of the forecast-biased heuristics (13). Therefore, in practice
the two models: in which the peer effect bias appears in the price forecast or directly
in the demand, are equivalent, if one properly chooses the sensitivity parametrization
of the logit transformation.

Appendix 4: Definition of Network Properties

Consider I agents, who are placed within an unweighted, symmetric and a-transitive
network of friends I. First recall that degree between two agents is defined as the
shortest path (sequence of linked agents) between them. The following measures are
commonly used to describe the architecture of the network I:

Number of clusters I define cluster as a subset of the network such that (1) all the
agents in the cluster are pairwise connected (there exists a path of a finite degree
between them) and (2) none of the agent is connected with any agent that does
not belong to the cluster. In some of the analyzed networks, the agents form ‘non-
trivial’ subsets such that there is no link between them. On the other hand, these
agents will still interact indirectly, through the market clearing price. Diameter
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Also denoted as the characteristic degree or the longest path, simply measures
what is the longest path between nodes in the network.”8

Closeness This measure is typically set as the average degree: how far away agents
are on average. The drawback of the average path length is that it cannot properly
cope with networks of disconnected clusters, and hence I will follow suggestion
of Newman (2003) and use the closeness measure instead. First recall that the
network is anti-reflexive, or that we disregard whether an agent is linked with
herself or not. Instead, we are interested in what is the typical distance between
the agent and the remaining / — 1 agents. Thus define

-1 I

_ | ~1
=050 =1 2 2 % (32)

i=1 j=i+1

where di_.l is the inverse of the shortest path length (degree) between agents i and
Jj,or0if these two agents are not connected. The closeness measure C/ is an index
with a straightforward interpretation: if all the agents are connected (disconnected),
Cl=1(Cl=0).

Density Denote the number of links between the agents as E. Density is defined

as
E

E= 0511 = 1)’ (33)
which is simply the ratio of realized to potential links: how dense the network is.
Transitivity Often described as ‘cliquishness’ or clustering, shows whether the
nodes in the network form triangles (‘cliques’): friends of my friends are also
friends of mine. Among many formal definitions of this measure, I follow Watts
and Strogatz (1998) and specify transitivity as computationally efficient index of
the form

Tr = —
1

1 i number of triangles connected to vertex i (34)

= number of triples centered on vertex i
If the agents are always (never) connected with the friends of their friends, Tr =
1(Tr =0).%

Notice that (34) is a local, not a global measure. It shows how close are friends of
friends, but not whether the network can be divided into significantly differentiated
clusters of ‘sub-networks’. In order to avoid confusion I decided to adopt the name
‘transitivity’ instead of the widely used ‘clustering’.

28 Sometimes unconnected nodes are said to have path equal to infinity. I will define diameter disregarding
such unconnected nodes.

29 Notice that if a vertex i is not a center of any triple, it cannot be a part of a triangle either. In such a case,
the element in the sum would be a ratio of zero to zero. Instead, it is simply defined as zero.
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Appendix 5: Large Networks Characteristics

Network size Clusters Diameter Closeness Density Transitivity

50 agents 2 6 0.3847 0.08 0.08219

100 agents 3 8 0.3205 0.04 0.04183

250 agents 5 9 0.2637 0.016 0.01632

500 agents 10 10 0.2282 0.008 0.009678

1000 agents 18 12 0.2027 0.004 0.003791
®

Fig. 18 Realized random (4) networks, a 50 agents. b 100 agents. ¢ 250 agents. d 500 agents. e 1000
agents. f Network properties
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Network size Clusters Diameter Closeness Density Transitivity

50 agents 1 3 0.6589 0.32 0.3256

100 agents 1 3 0.5687 0.16 0.1612

250 agents 1 4 0.4755 0.064 0.06305

500 agents 1 4 0.4188 0.032 0.03157

1000 agents 1 4 0.3786 0.016 0.01502
®

Fig. 19 Realized random (16) networks, a 50 agents. b 100 agents. ¢ 250 agents. d 500 agents. e 1000
agents. f Network properties
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(e)

Network size Clusters Diameter Closeness Density Transitivity
50 agents 1 12 0.2873 0.08163 0.4567
100 agents 1 25 0.169 0.0404 0.4963
250 agents 1 33 0.1129 0.01606 0.4811
500 agents 1 40 0.07848  0.008016 0.4819
1000 agents 1 67 0.05142  0.004004 0.4894

®

Fig. 20 Realized rewired (4, 0.01) networks, a 50 agents. b 100 agents. ¢ 250 agents. d 500 agents. e 1000
agents. f Network properties
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Network size Clusters Diameter Closeness Density Transitivity
50 agents 1 8 0.3403 0.08163 0.396
100 agents 1 11 0.2462 0.0404 0.3627
250 agents 1 14 0.1827 0.01606 0.3783
500 agents 1 15 0.1536 0.008016 0.3711
1000 agents 1 19 0.1327 0.004004 0.363

(®

Fig. 21 Realized rewired (4, 0.1) networks, a 50 agents. b 100 agents. ¢ 250 agents. d 500 agents. e 1000
agents. f Network properties
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Network size Clusters Diameter Closeness Density Transitivity
50 agents 1 4 0.6142 0.3265 0.6864
100 agents 1 5 0.4428 0.1616 0.6871
250 agents 1 8 0.3173 0.06426 0.6782
500 agents 1 9 0.2485 0.03206 0.677
1000 agents 1 11 0.1977 0.01602 0.6808

®

Fig. 22 Realized rewired (16, 0.01) networks, a 50 agents. b 100 agents. ¢ 250 agents. d 500 agents. e
1000 agents. f Network properties
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Network size Clusters Diameter Closeness Density Transitivity
50 agents 1 3 0.6461 0.3265 0.5587
100 agents 1 4 0.5194 0.1616 0.5242
250 agents 1 4 0.4091 0.06426 0.5133
500 agents 1 5 0.3493 0.03206 0.5125
1000 agents 1 5 0.3053 0.01602 0.5123

()

Fig. 23 Realized rewired (16, 0.1) networks, a 50 agents. b 100 agents. ¢ 250 agents. d 500 agents. e 1000
agents. f Network properties
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