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AUTOMATIC QUALITY CONTROL IN LUNG X-RAY IMAGING WITH DEEP LEARNING 

A. A. Dovganich,1  A. V. Khvostikov,1,2  A. S. Krylov,1,2  and  L. E. Parolina3 UDC 519.6+004.891.3 

The development of deep learning and its growing application in medical diagnosis have focused the at-
tention on automatic control of image quality for neural-network medical image analysis algorithms.  
This article presents a method for automatic determination of the hardness (penetration) of lung X-ray 
images using standard criteria from chest X-ray diagnosis.  The proposed method can be applied to au-
tomatically filter images by hardness (penetration) level and to detect low-quality images, thus facilitat-
ing the creation of high-quality data sets and increasing the efficiency of neural-network approaches to 
the analysis of lung X-ray images. 
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Introduction 

Analysis of medical data using deep neural networks is becoming increasingly developed and popular.  Par-
ticularly relevant are methods based on convolutional neural networks in image analysis, including classifica-
tion, segmentation, detection, anomaly identification, etc.  Neural-network methods are convenient and effective 
in image analysis because they do not require specialized algorithms for detection and description of imaged 
structures that are difficult for medical diagnosis; they furthermore have excellent generalizing capacity. 

However, the principle of direct feature construction from images, which is the basis of current convolu-
tional neural networks, makes neural-network approaches highly demanding with regard to image quality and 
homogeneity of the model-training sample.    

The quality of the images fed into the neural-network model for both training  and validation is therefore of 
the utmost importance.  Due to the specifics and the wide range of medical equipment settings, quality control  
of input images is relevant for various image modalities, e.g., magnetic-resonance tomography [1], computer 
tomography [2], and radiography [3].   

In this article, we consider “hardness” (penetration) control for chest X-ray imaging.  Radiography is used 
to diagnose various lung diseases, in particular tuberculosis [4, 5] and COVID-19 related lung damage [6, 7, 8].  
The “hardness” of an X-ray image indicates the optimality of the X-ray dose chosen for the particular patient.  
An adequate X-ray dose reveals various structural features of the chest organs in the image.  When analyzing 
and describing an X-ray image, the radiologist always considers its hardness, because underestimation of this 
factor may lead to incorrect interpretation.  During the learning stage, the neural network is tuned to the hardness 
of the images from a training set.  A neural network trained on “hard” images will produce a poor result when 
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shown “soft” images and vice versa.  To resolve this difficulty, we propose an automated method for assessing 
the hardness of chest X-ray images.  In the first stage, this allows to filter the input data and omit X-ray images 
that a priori fall outside the competency range of the classifier.  Subsequently, it opens possibilities for training 
several classifier models designed to work with X-ray images of different hardness levels and allows input data 
to be distributed between them 

To develop an automated hardness determination procedure for X-ray images, we have decided to formalize 
the empirical method applied by radiologists.  A criterion of optimal X-ray hardness (penetration) for a particu-
lar patient is clear visibility of the three-four top thoracic (not any other!) vertebrae.  In an enhanced penetration 
(“hard”) image, thoracic vertebrae below the fourth are clearly imaged.  If a chest X-ray shows clearly fewer 
than three top thoracic vertebrae, this is an indication of reduced penetration (a “soft” X-ray image) [9, 10].   

To determine what vertebrae are clearly visible, we adapted an automated method of spine detection and 
vertebrae visualization on X-ray images used for diagnosing scoliosis [11].  Spine and chest X-ray images have 
different formats, different overall brightness levels, and different contrast.  Therefore, some steps in the spine 
image analysis algorithm had to be modified or replaced.  The method of ridges was used to detect and count the 
vertebrae on an already detected spine.    

The Dataset 

We used three public datasets for the development and testing of the method: Montgomery [12], Shen-
zhen [12], and Open-I [13].  The images were acquired on different machines with different settings and visually 
differed by “hardness”.   

The Montgomery data set consists of 138 grayscale images with 8-bit color depth and ∼ 4,000 × 4,900 pixel 
resolution.  The Shenzhen data set consists of 662 grayscale images with 8-bit color depth and 3,000 × 2,900 
resolution.  All images are accompanied by a clinical description of the diagnosed disease.  The Open-I data set 
is somewhat different: it has 7,470 grayscale images with 8-bit color depth and 512 × 512 resolution.  The radi-
ologist’s interpretation is included for 3,955 images. 

Preprocessing of X-Ray Images 

The distortion of the brightness range in X-ray imaging is not uniform over the image, changing from region 
to region.  This is primarily due to the fact that X-rays passing through the observed object are attenuated differ-
ently in different parts of the organ.  The degree of attenuation depends on the chemical composition of the or-
gan, its density and thickness.  Furthermore, the X-ray penetration (hardness) increases as the X-ray tube voltage 
increases.  Harder radiation leads to higher scattering, and scattered radiation is one of the causes of the contrast-
reducing diffuse veil in X-ray images.   

There are three main approaches to equalizing brightness on X-ray images: normalization, classical histo-
gram equalization, and adaptive histogram equalization.  Normalization works on images where a part of the 
range is totally missing (there are no very bright or conversely very dark pixels), which does not apply to the da-
tasets used in this study.  The standard histogram equalization method works well for images with a very low 
overall contrast.  However, histograms of lung X-ray images span the entire range of intensities and low contrast 
is observed only in localized regions (Fig. 1).  To resolve the difficulty with brightness equalization in localized 
regions, we applied adaptive histogram equalization.  The results produced by the three algorithms applied to the 
lung X-ray from Fig. 1 are compared in Fig. 2. 
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Fig. 1.  A lung X-ray image.  The rectangle encloses a low-contrast region. 

 

Fig. 2.  Application of different brightness equalization algorithms with the resulting histograms shown. 
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Table 1 
Results Produced by the Spine Detection Algorithm 

Epoch L1-loss training sample L1-loss test sample IoU training sample IoU test sample 

2 0.534 0.257 0.001 0.012 

3 0.136 0.064 0.470 0.627 

5 0.053 0.053 0.741 0.676 

10 0.049 0.050 0.755 0.698 

Spine Detection 

The first stage of our method is spine detection by the neural-network approach.  To ensure greater pro-
cessing effectiveness, we first reduced the size of all images to one-quarter of the initial size.  Then we applied 
a neural-network method that cut out the regions of interest in the form of rectangles.  The Amazon SageMaker 
Ground Truth service tagged the images from the original datasets.  The tagging results were acquired as a json 
file, with the relative coordinates of the rectangular region shown for each image.  Then the combined dataset 
was mixed and split into a training sample and a test sample in a ratio of 80% to 20%.  Then, the deep-learning 
framework pytorch was applied to complete the training of the model resnet-34 [14] locally on the graphics card 
during 10 epochs.  L1-loss was used as the loss function during training.  To assess the quality of the results 
produced by the neural-network model, we additionally calculated after each epoch the Intersection over Union 
(IOU) quality measure on the training and the test samples.  The results have shown that the spine region is lo-
calized quite successfully on the lung X-ray image.  The spine detection results are presented in Table 1. 

Detection of the Spine Central Line and Spine Boundaries 

The next step after spine detection is the detection of separate vertebrae on the X-ray image.  The detection 
of vertebrae consists of three steps: 

 1. Detection of the spine central line (Figs. 3a, 3c);  

 2. Detection of spine boundaries (Figs. 3b, 3c); 

 3. Detection of individual vertebrae 

Below we describe the algorithm for the detection of the spine central line.  We use  H ×W   rectangular 
windows moving horizontally by one pixel.  Inside each window, we evaluate the sum of pixel intensities and 
find the window with the maximum total intensity.  The upper midpoint of this window provides the first refer-
ence point for spine central line detection: 

 s x, y( ) =
i=0

H

∑
j=−W /2

W /2

∑ I x + j, y + i( ), 
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 (a) (b) (c) 

Fig. 3. Detection of the spine central line and boundaries: (a) spine central line, (b) spine boundaries, (c) spine central line and bounda-
ries after interpolation. 

 (xmax, ymax ) = argmax x,y( ) s( ), 

where  I   is the  HI ×WI   region containing the spine image,  H = HI
8

,  W = WI
4

,  (x, y)   are the window co-

ordinates  (x   is the coordinate of the window midline,  y   is the coordinate of the lower window boundary),  
s(x, y)   is the sum of pixel intensities in the window,  (xmax, ymax )   are the coordinates of the acquired point. 

Then the current rectangular window is moved p  pixels down and the next control point is sought in a q -
pixel interval on both side with a one-pixel step.  The window upper midpoint is taken as the second control 
point for the spine central line.  The calculations are repeated until we have found  n   control points  (xci , yci ),  
i = 1,…, n .  Central line detection is concluded with polynomial interpolation over the  n   control points.   

Then we look for spine boundaries along the  x -axis.  The left and the right boundaries of the spine are de-
fined by points at the vertebrae edges with the coordinates  (xli , yli )  and  (xri , yri )   with  i = 1,…, n ,  where  yli ,  
yri = yci   and  xli < xri .  During the detection of the left and right spine boundaries, two adjacent windows of 
equal size are used; these windows are moved by at most  r   pixels along the normal to the spine central line in 
each direction from the center.  The upper midpoint of the adjacent windows with maximum intensity difference 
is identified as a point on the spine boundary.  Boundary detection continues until all the control points of the 
spine central line have been examined. 

The left and right spine boundary detection concludes with polynomial interpolation over the  n   detected 
points on each side of the spine.  Third-degree polynomials are used here and in spine central line detection.  
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The parameters of the method were related to the image dimensions  HI   and  W1, 

 H = HI
8

,      W = WI
4

,      p = H
4

,      q = W
2

,      r = WI
2

, 

where  HI   is the image height in pixels, and  WI   is the width.  An example of the results produced by the spine 
detection algorithm is shown in Fig. 3. 

Vertebrae Detection and Counting 

The vertebrae counting procedure proposed in [11] has proved itself satisfactorily on spine X-ray images 
but has not produced acceptable results on chest X-ray images.  This is so because lung X-ray imaging uses 
smaller radiation doses than spine imaging.  We have accordingly decided to replace the method of [11] with the 
construction of a modified chart of ridge structures.  The chart was constructed by the following algorithm: 

 1) finding second derivatives of the images; 

 2) forming the pixel-wise matrix  Q =
Lxx Lxy
Lxy Lyy

⎛

⎝
⎜

⎞

⎠
⎟ ,  where  L   is the intensity of the original image; 

 3) finding the eigenvalues  λ1  and  λ2   of the matrix  Q ,   where  λ1 > λ2 ; 

 4) constructing second ridge-structure charts  I1  и  I2   from the eigenvalues  λ1   and  λ2 ,  where  

Ii x, y( ) = λi x, y( )
max λi( ) * 255 ,  i = 1, 2   (Figs. 4d, 4e); 

 5) binarizing each chart by the thresholds  θ1  and  θ2   (Figs. 4f, 4g); 

 6) finding the intersection  IR   of  I1θ   and  I2θ   (Fig. 4h).   

The algorithm produces an intensity matrix, which is a modified ridge structure chart. 
Then we count the independent connected regions with at least one point in the spine central line.  The end 

result is the number of detected vertebrae. 
A general scheme of the algorithm is shown in Fig. 5. 
In this study, we validated the vertebrae detection and count algorithm using vertebrae tagging by medical 

experts.  We compared the number of vertebrae counted by the algorithm on the X-ray image with the number of 
vertebrae detected by an expert.  For 800 images we then calculated the difference  r = ke − ka ,  where  ke   is 
the expert vertebrae count and  ka   is the count produced by the algorithm,  r   is the vertebrae-count algorithm 
error.  The value of r did not exceed 2  (ri ≤ 2 ,  ∀i ∈ 1, 800[ ],  where  i   is the image serial number).   

Hardness-Determination Results for X-Ray Images from Montgomery and Shenzhen Datasets 

To analyze the hardness matching of the X-ray images from the Montgomery and Shenzhen datasets, which 
are often used simultaneously for training and testing of deep-learning systems for COVID-19 diagnosis, we 
constructed the histograms of the number of vertebrae in the images in the two datasets. 
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 (a) (b) (c) (d) 

 

 (e) (f) (g) (h) 

Fig. 4. (a) the original image, (b) standard histogram equalization, (c) adaptive histogram equalization, (d) I1,  (e) I2 ,  (f) I1θ ,  (g) I2θ ,  
(h) IR . 
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Fig. 5.  General scheme of the X-ray image hardness determination algorithm. 

 
 (f) (g) 

Fig. 6. (a) Histogram of the distribution of the number of vertebrae in the Shenzhen dataset,  (b) Histogram of the distribution of the 
number of vertebrae in the Montgomery dataset. 

The algorithm has detected a difference by the hardness of images in the two datasets (Fig. 6).  The Shen-
zhen images displayed higher hardness than the Montgomery images, which is also corroborated by a visual 
analysis of the images.  We also identified low-quality images (images on which vertebrae could not be detect-
ed).  In most cases, these were images that suffered from digitization errors (Fig. 7). 

Implementation Details 

The program for the proposed method was implemented in Python 3.  The machine learning models were 
implemented in the deep-learning framework pytorch 1.8.1.  The Pillow 8.2.0 library was used for image ma-
nipulation.  Graphs were constructed with matplotlib.  We also used the library scipy 1.6.3.  Model training was 
performed on Intel Core i7-9750H CPU 2.60GHz and 16 GB RAM, with NVIDIA GeForce RTX 2060 6 GB 
graphic accelerator. 
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Fig. 7. Example of a low-quality image from the Montgomery dataset.  The lung X-ray image shows a large region without useful in-
formation. 

CONCLUSION 

In this article, we have developed, implemented, and tested a method for automatic determination of the 
hardness of X-ray images by counting the thoracic vertebrae.  This method successfully separates “soft” from 
“hard” X-ray images.  The application of this method coupled with neural-network classifiers should increase 
the effectiveness of neural-network classifiers by producing a more uniform hardness distribution of the images 
in the training sample. 
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