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Abstract
We develop an efficient and robust iterative framework suitable for solving the linear system of equations resulting
from the spectral element discretisation of the curl-curl equation of the total electric field encountered in geophysical
controlled-source electromagnetic applications. We use the real-valued equivalent form of the original complex-valued
system and solve this arising real-valued two-by-two block system (outer system) using the generalised conjugate residual
method preconditioned with a highly efficient block-based PREconditioner for Square Blocks (PRESB). Applying this
preconditioner equates to solving two smaller inner symmetric systems which are either solved using a direct solver
or iterative methods, namely the generalised conjugate residual or the flexible generalised minimal residual methods
preconditioned with the multigrid-based auxiliary-space preconditioner AMS. Our numerical experiments demonstrate the
robustness of the outer solver with respect to spatially variable material parameters, for a wide frequency range of five
orders of magnitude (0.1-10’000 Hz), with respect to the number of degrees of freedom, and for stretched structured and
unstructured as well as locally refined meshes. For all the models considered, the outer solver reaches convergence in a small
(typically < 20) number of iterations. Further, our numerical tests clearly show that solving the two inner systems iteratively
using the indicated preconditioned iterative methods is computationally beneficial in terms of memory requirement and
time spent as compared to a direct solver. On top of that, our iterative framework works for large-scale problems where
direct solvers applied to the original complex-valued systems succumb due to their excessive memory consumption, thus
making the iterative framework better suited for large-scale 3D problems. Comparison to a similar iterative framework based
on a block-diagonal and the auxiliary-space preconditioners reveals that the PRESB preconditioner requires slightly fewer
iterations to converge yielding a certain gain in time spent to obtain the solution of the two-by-two block system.

Keywords Applied geophysics · Geo-Electromagnetics · Spectral element method · Iterative solution methods ·
Preconditioning

1 Introduction

Geophysical electromagnetic (EM) methods are crucial
tools in mapping the Earth’s subsurface in terms of
its electric conductivity distribution. These methods are
particularly employed for geophysical surveys targeting
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hydrocarbon and mineral resources (cf. e.g. [51, 86]), or for
investigations concerned with geothermal, hydrogeological
or environmental applications (cf. e.g. [65, 82, 87]). Such
surveys have recorded large amounts of three-dimensional
(3D) EM data in vastly different geological settings. The
interpretation of such acquired data sets involves solving
an inverse problem to obtain a subsurface model that best
fits the recorded data. Although the inverse problem entails
considerable computational burden itself, the repeated
solution of the 3D EM forward problem within the inversion
framework constitutes one of the core factors for the
high computational cost of the inversion. This is further
aggravated considering that realistic surveys compromise
large 3D volumes with many receivers and possibly multiple
sources demanding large 3D meshes to accurately represent

/ Published online: 6 December 2022

Computational Geosciences (2023) 27:81–102

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-022-10182-2&domain=pdf
http://orcid.org/0000-0002-9430-654X
mailto: michael.weiss@geo.uu.se 


realistic subsurface structures and topographic variations
yielding forward problems of large proportions, often
including tens to hundreds of millions degrees of freedom.
In light of this, solving the forward problem efficiently
and effectively is crucial to limit the computational effort,
in particular the time and memory requirements, for the
forward problem itself as well as for inversions of realistic
industrial 3D data sets.

The 3D EM forward simulation consists of solving
the governing partial differential equation (PDE) derived
from of Maxwell’s equations using discretisation. In
EM geophysics, a number of different approaches have
conventionally been employed in the past few decades
to discretise the relevant continuous PDEs. Such methods
include the finite difference (FD), finite element (FE)
and finite volume (FV) methods. Regardless of the
used approach, the corresponding discrete equations are
expressed in terms of a linear algebraic system of equations
of the form Ax = b, where A is a large-scale sparse
nonsingular matrix. There exists numerous numerical
methods for solving the resulting linear system, which are
of two general types - direct and iterative, both with their
inherent advantages and drawbacks.

It is well known that obtaining accurate and effi-
cient solutions of the algebraic system of equations
arising from Maxwell’s equations is a computationally
difficult task. This is due to several factors which
impact the condition number of the system matrix A
negatively and can make it very ill-conditioned : (1)
the influence of the large kernel of the curl operator ∇×
present in Maxwell’s equations [80, 81]; (2) large electric
conductivity contrasts, in particular across the air-Earth
interface where the contrast amounts to four orders of mag-
nitude or more; (3) the requirement of non-uniform and
locally refined meshes; (4) using high-order polynomials p

for the space approximation not only yields a more densely
populated system matrix but also a more ill conditioned
one. In fact, the condition number of the system matrix in
3D increases with O(p8) for the finite element method as
shown by [1].

Direct methods are based on an exact lower-upper
triangular (LU) factorisation of the matrix A or its Cholesky
decomposition LLT when A is symmetric and positive
definite. Examples of efficient sparse direct solvers that are
widely employed in the geophysical EM community include
a distributed-memory multifrontal massively parallel sparse
direct solver called MUMPS [3, 4] and a shared-memory
parallel direct solver known as PARDISO [77]. Direct
methods are robust and accurate, even for systems with ill-
conditioned matrices. In addition, for the solution of linear
systems with multiple right-hand sides as in multi-source
surveys in controlled source electromagnetics (CSEM),
direct solvers only require a single factorisation of the

system matrix (see e.g. [32, 66, 85]). On the other hand,
the memory demands and time requirements grow as O(N2)
and O(N4/3) in 3D, respectively, where N is the number
of unknowns and can limit the size of feasible problems
depending on the available computer platform. In regard
to (parallel) scalability, direct solvers are considered non-
optimal on distributed-memory platforms due to a low
computation-to-synchronisation ratio [43, 61]. In practice,
this means that, due to the additional overhead caused
by communication and synchronisation between the nodes,
beyond a certain number of parallel processes direct
computations cannot be sped up by adding more computing
nodes/cores (see e.g., [32, 68]). Nevertheless, owing to
successive advances in direct solution algorithms [5, 78],
as well as the increasing availability and power of high-
performance computing facilities [60], direct solvers are
often used when solving the EM forward problem see (e.g.
[29, 32, 35, 68, 71, 72, 81, 85], for details).

Iterative methods, e.g. Krylov subspace iteration meth-
ods, include a broad range of solution methods that use suc-
cessive approximations to acquire progressively more accu-
rate solutions of the considered linear system of equations at
each step until reaching convergence. The main advantage
of iterative methods is that they require less computational
resources than direct methods in terms of time and memory,
and are thus better suited to handle large-scale problems.
The major computational building blocks of iterative solvers
include cheap matrix-vector products and vector operations
which can be easily parallelised making them more scalable.
However, for ill-conditioned systems, iterative methods, if
straightforwardly applied, can exhibit slow convergence or
even diverge. Therefore iterative solvers require the usage
of an efficient preconditioner. Preconditioners transform
the original system of equations into an equivalent one
that has a (preconditioned) matrix with a more favourable
eigenvalue spectrum. This ought to improve the conver-
gence rate of iterative methods whilst sufficiently offsetting
the additional computational burden of building and apply-
ing the preconditioner. In this way, preconditioned iterative
solvers become viable and cost-effective solution methods,
in particular from the perspective of large-scale 3D prob-
lems. The task to construct a numerically effective and
computationally efficient preconditioner is far from trivial
and in many cases the preconditioner might be problem-
specific.

Examples of iterative methods and corresponding pre-
conditioners include the Biconjugate gradient (BICG) or
the Quasi-minimal residual (QMR) method with different
preconditioners such as diagonal or Jacobi scaling [2, 28],
the incomplete Cholesky decomposition [83], or the incom-
plete LU factorisation [89]. Other commonly used iterative
solvers are the Generalised minmial residual (GMRES) and
the Biconjugate gradient stabilised (BICGStab) methods
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which, for instance, have been used by [39] and [49] precon-
ditioned by incomplete LU decomposition. [67] investigate
the convergence behaviour of the aforementioned iterative
methods preconditioned with a sparse approximation of the
inverse of the system matrix based on the minimisation
of a suitable Frobenius norm. In addition and in order to
solve problems with multiple right-hand sides (RHS), [66]
present block GMRES and QMR methods [76] using either
an incomplete LU, an approximate inverse or a simplified
geometric multigrid preconditioner.

The class of geometric Multigrid (MG) and algebraic
Multigrid (AMG) methods has gained popularity, because
in many cases they are optimal regarding numerical
efficiency, they converge in a number of iterations, that
is independent of the number of degrees of freedom, and
they also have optimal (or nearly optimal) computational
complexity, namely, linear with respect to the number of
degrees of freedom. MG methods make use of changing
discretisation on a sequence of successively coarser
grids. These techniques are based on the observation
that although most relaxation methods, e.g. Jacobi and
Gauss-Seidel algorithms, may in general converge slowly,
they attenuate effectively and very rapidly the oscillatory
(high-frequency) modes of the errors of any given
mesh. However, standard relaxation methods hardly damp
the smooth (low-frequency) components of the error
within the few first iterations. Thus, after removing the
oscillatory error components, the convergence of these
basic iterative methods slows down as the smooth modes
are eliminated slowly. However, the smooth modes on
a given discretisation mesh naturally become oscillatory
modes on a coarse grid, which is the origin of the idea
of moving to a coarser mesh discretisation in order to
remove the corresponding error mode once the relaxation
methods start stalling. The process of moving to coarser
grids can be repeated recursively, in this way attenuating
effectively and rapidly the oscillatory modes on the
different levels, thus reducing the global error quickly. In
contrast to MG methods, AMG methods achieve the same
effect however, without using any discretisation meshes
but creating an analogous algebraic structure based on
an aggregation technique. Therefore, AMG methods are
more generally applicable than MG methods and are their
preferred alternative. Multigrid methods can be used as
stand-alone solution methods but more often are used as
preconditioners. These methods are considered scalable [31,
94] and can have linear complexity O(N) in computational
and memory load for various boundary value problems [36,
88] making them a viable option for large-scale simulations.
Despite this and in comparison to direct and iterative
methods, multigrid methods have not been widely used in
geoelectromagnetic applications, which might be due to
their involved numerical implementation and the fact that

generic multigrid schemes fail for Maxwell’s equations due
to the large kernel of the curl operator [26, 80, 81]. Since the
early 2000s, renewed development in multigrid methods,
in particular for the curl-curl operator [46–48, 70], as well
as the availability of several software libraries such as
hypre [38] and ML [40], have improved the applicability
of MG methods to geophysical EM problems. For example,
[6] apply a geometric multigrid preconditioner based on
Dendy’s black box multigrid solver [33]. Mulder [58] has
developed a geometric multigrid method which is either
used directly or as a preconditioner and has reported good
convergence rates for uniform grid spacing, but inadequate
rates for substantially stretched grids. More recently, [52]
have implemented an AMG scheme as a preconditioner for
Krylov subspace iteration solvers that is shown to provide
mesh-independent rate of convergence.

Often MG and AMG methods are used in various
preconditioning techniques as a block-solver. An example
of this for application with conductors can be found in
[30] in the following context. A complex-valued system is
rewritten as a real two-by-two block system, preconditioned
by a block-diagonal preconditioner. The two linear systems
of the diagonal blocks are solved by an iterative method
with the auxiliary-space technique [48, 54]. The main idea
consists of approximately inverting the curl-curl operator
by casting the problem into subspaces in which it can be
solved efficiently by AMG methods. This preconditioning
framework introduced in [30] has also been adopted to EM
modelling problems (cf e.g. [25, 44, 45, 69]).

Two-by-two block systems are encountered in numeri-
cal applications in various fields, e.g. discrete Navier-Stokes
problems, eddy current problems, linear elasticity, optimisa-
tion problems constrained by PDEs etc. As mentioned, these
also arise when transforming a given complex-valued sys-
tem to its real-valued equivalent. As the occurrence of block
systems is quite common much research has been carried
out and hence efficient preconditioners for block-structured
systems can be found in the literature. Here, we restrict
our selection to a few robust and efficient techniques for
block-structured systems. These include block-diagonal and
block-triangular preconditioners [12, 56, 84] and the pre-
conditioned modified Hermitian - skew Hermitian splitting
(PMHSS) iteration method [17–19]. Another precondition-
ing technique presented in various publications (cf. e.g.,
[9, 10, 15, 27]) is referred to as the PREconditioning for
Square Blocks (PRESB).

The objective in this work is to present a robust and
efficient iterative solution framework for the algebraic
system of equations arising from discretising problems in
3D frequency-domain controlled-source electromagnetic
modelling. For the solution of the system, we consider
the PRESB preconditioning technique [10] to be used
in a Krylov subspace iteration method. An action of the
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PRESB preconditioner amounts to solving two additional
linear systems, which we solve by an inner iterative method
preconditioned by the auxiliary-space preconditioner
[48, 54]. We emphasise that PRESB, although resembling
the block-diagonal preconditioner presented in some other
related work (e.g. [25, 44, 45, 69]), is different. In par-
ticular, applying these preconditioner results in slightly
different computational procedures although the core of
both schemes consists in solving two linear systems. Fur-
ther and at a later point in this work, we show that the
PRESB and block-diagonal preconditioners yield different
eigenvalue bounds for the preconditioned block systems.
To the best of our knowledge, so far this preconditioner
has not been employed in geo-EM related applications.
We also stress that we use a spectral element discretisation
method, whereas previous works use finite element meth-
ods. In contrast to [44, 45] and [69], we do not disregard
displacement currents which complicates the system due
to the potential negative shift in matrix elements resulting
from the displacement current term in some parts of the
modelling domain [25].

The remainder of this paper is structured as follows.
Section 2 describes the mathematical model, its discretisation
and the properties of the arising algebraic system of equa-
tions. In Section 2.1, we present the formulation of the
continuous problem. We then derive the dimensionless
form of the problem at hand in Section 2.1.1 and briefly
describe its discretisation using the spectral element method
in Section 2.2. Section 3 describes the solution proce-
dure we choose and some possible block preconditioning
techniques for two-by-two block system, such as the block-
diagonal, the Schur complement-based and the PRESB
preconditioners in Sections 3.2, 3.3 and 3.4, respectively.
When introducing the PRESB preconditioner, we also
present the general block iterative framework. Section 3.4.1
briefly describes the auxiliary-space Maxwell precondi-
tioner. Numerical results for two test problems illustrating
the robustness of the solver are presented in Section 4. We
compare the performance of the PRESB preconditioner to
the diagonal preconditioner employed in [44, 45] and [69].
Some concluding remarks are given in Section 5.

2 The continuous problem and its discrete
formulation

2.1 Formulation of the continuous problem

Starting from Maxwell’s equations in frequency domain

∇ × E = −iωμH

∇ × H = Js + σE + iωεE, (1)

the governing partial differential equation for the total elec-
tric field in CSEM applications is derived by eliminating the
magnetic field and reads as follows,

∇ ×
(

1

μ
∇ × E

)
+ iωσE − ω2εE = −iωJs in �, (2a)

where � is the bounded model domain, E denotes the
total electric field, ω is angular frequency, μ is magnetic
permeability, σ is electric conductivity, ε is dielectric
permittivity and Js is the known imposed source current
density. In electromagnetic geophysics, all three material
properties μ, σ and ε are assumed to be spatially varying as
well as piecewise smooth. However, we note that both the
magnetic permeability and dielectric permittivity occupy
a relative narrow range. The parameter μ can be safely
assumed to lie within 1μ0 to 3μ0, where μ0 is the magnetic
permeability of vacuum μ0 = 4π ·10−7 H/m. The parameter
ε ranges from 1ε0 to 81ε0 (relative dielectric permittivity of
water) with ε0 being the dielectric permittivity of free space
ε0 = 8.854 · 10−12 F/m. The remaining physical property
σ , on the other hand, is strongly material-dependent and can
range from 102 S/m for highly conductive massive sulfide
ore deposits to 10−6 S/m for very resistive metamorphic
and igneous rocks. In addition, most applications in EM
geophysics set the air conductivity on the order of 10−7 to
10−10 S/m to ensure that it is sufficiently small but larger
than zero.

The range of frequencies employed in CSEM depends
on the objective of the survey as well as the system
available and its specifications. However, the frequency
range influences the size of the computational domain.
In particular, to limit computational boundary effects, the
domain has to be chosen adequately. Typically, the plane-
wave skin depth criterion which is a function of the
background conductivity σb, permeability μb, permittivity
εb and the employed source frequency f can be used as
a guideline to set appropriate domain boundaries. In order
to adequately attenuate the electric field at the domain
boundaries, the computational domain is extended up to a
distance of approximately five plane-wave skin depths from
the area of interest. It is further noted that the frequency-
and material-dependent wavelength influences the choice of
the element size as the grid spacing needs to be sufficiently
fine compared to the wavelength in order to ensure accurate
numerical computations [57]. Grid spacing is typically
chosen as a fraction of the skin depth and based on element
order. For first-order approximation, guidelines on grid
spacing relevant for finite difference schemes and for finite
element modelling in geophysical electromagnetics have
been presented in [92] and [91] respectively.

84 Computational Geosciences (2023) 27:81–102



In order to guarantee the uniqueness of the electric field
E, Eq. 2a is subjected to homogeneous Dirichlet boundary
conditions on the domain boundary ∂�, namely,

n × E = 0. (2b)

2.1.1 Dimensionless formulation of the curl-curl equation

Given the vastly varying orders of magnitudes of some
of the model parameters and the large scale of the
space domain, it is preferable to introduce dimensionless
quantities for the governing Eq. 2a. The dimensionless
forms of the equations serve to properly scale the problem
and avoid ill-conditioning due to scaling - the problem
becomes independent of measurement units and facilitates
better understanding of the nature of the equations without
involving physical parameters (see e.g. [22, 24], for more
details).

To obtain a dimensionless form we introduce the follo-
wing new dimensionless variables, denoted by .̃ and the
corresponding suitable scaling factors, denoted by subscript
f , namely,

E = Ef Ẽ, Js = Js,f J̃s, x = Lf x̃, μ = μf μ̃,

ω = ωf ω̃, ε = εf ε̃, σ = σf σ̃ ,

where x is a three-dimensional space vector. The curl
operator ∇×, being a spatial derivative, transforms in a
similar way,

∇× = 1

Lf

∇̃ × .

We now replace the dimensional quantities in Eq. 2a
with their respective dimensionless equivalents yielding the
dimensionless curl-curl equation

1

Lf

∇̃ ×
(

1

μf μ̃

1

Lf

∇̃ × Ef Ẽ
)

+ iωf ω̃σf σ̃Ef Ẽ

− ω2
f ω̃2εf ε̃Ef Ẽ = −iωf ω̃Js,f J̃s. (3)

Multiplying Eq. 3 by
L2

f μf

Ef
and collecting the scaling

factors for each term in dimensionless coefficients results in

∇̃ ×
(

1

μ̃
∇̃ × Ẽ

)
+ iαω̃σ̃Ẽ − βω̃2̃εẼ = −iγ ω̃J̃s, (4)

where it can readily be seen that the coefficients α, β and γ
are indeed dimensionless and defined as follows

α = ωf μf σf L2
f

[
s−1 V s

Am
m2 A

V m

]
,

β = ω2
f μf εf L2

f

[
s−2 V s

Am
m2 As

V m

]
,

γ = ωf μf L2
f Js,f

Ef

[
s−1 V s

Am
m2 A

m2

m

V

]
.

The individual scaling factors have to be chosen in a
suitable manner. Spatial dimensions are rescaled by Lf

which is taken to be the longest spatial dimension of
the model. The latter ensures that the characteristic size
of the space discretisation parameter, usually denoted by
h, is less than 1. Further, the model conductivities are
regularised by choosing σ f to be equal to the largest
conductivity of the conductivity distribution. Similarly, the
dielectric permittivities ε and the magnetic permeabilities μ

are rescaled with their respective largest value. This means
that the largest dimensionless conductivity σ̃, permittivity ε̃
and permeability μ̃ values are equal to one. The remaining
scaling coefficients ωf , Ef and Js,f are set to one. At
this point we also note that, after solving the dimensionless
system, to obtain the unscaled electric field we have to
rescale the solution vector by 1

L2
f

.

To simplify the notations, in the sequel we drop ˜ and,
unless stated otherwise, we work with the dimensionless
parameters and the scaled variables.

2.2 Discretisation approach

In this work, we use a particular discretisation approach,
referred to as the Spectral Element Discretisation, described
in detail in [93]. The main reason for using the spectral
element method instead of the more traditional finite
element method is to combine and harness advantages of
the spectral method in form of high accuracy and favourable
convergence properties [42, 62, 73] while retaining the
geometrical flexibility of the finite element method (see
e.g. [62, 73, 93, 95]). For completeness, we include a short
description below.

Following Galerkin’s method, by taking the L2-inner
product

(〈f, g〉L2 := ∫
�

f · g
)

of the dimensionless curl-
curl equation for the electric field Eq. 4 with a vector test
function �, integrating over � and using integration by
parts, one obtains the weak form of Eq. 4 (cf. [57]):
Find E ∈ H0(curl, �) such that∫

�

(
1

μ
∇ × E

)
· (∇ × �) + iω (ασ + iβωε)E · � d�

= −iγ ω
∫

�

Js · � d� (5)

for all � ∈ H0(curl, �), and where H0(curl, �) is defined
as

H0(curl, �) = {E ∈ H(curl, �) : n × E = 0 on ∂�}. (6)

The space H(curl, �) denotes the space of functions defined
on the bounded domain �, which are in the square
integrable space (L2(�))3 and such that the curl is well
defined in (L2(�))3

H(curl, �) = {u ∈ (L2(�))3|∇ × u ∈ (L2(�))3}. (7)

The spectral element discretsiation of the weak form
Eq. 5 of the boundary value problem Eq. 2a starts by
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subdividing the domain � into a set of non-overlapping
hexahedra. In addition, one needs to replace the function
space H0(curl, �) by a finite dimensional approximation
space consisting of curl-conforming vector functions which
are element-wise polynomial functions of arbitrary degree
within each element and non-zero for all but a few
hexahedra [81]. We note, that due to the specific functional
space, the tangential components of the vector basis
functions are continuous across the interface of two
neighbouring elements, whereas their normal components
may be discontinuous across the same element boundary
[59]. Letting H0,h be such an approximate subspace to
H0(curl, �) defined on the mesh, one can construct a finite
set of basis functions that spans this subspace. This then
yields the discrete formulation to find the approximate
solution Eh ∈ H0,h such that

〈 1

μ
∇ × Eh, ∇ × �〉 + iαω〈σEh, �〉

− βω2〈εEh, �〉 = −iγω〈Js, �〉 (8)

for all � ∈ H0,h, and where the more compact notation
of the inner product is used. Expanding the solution as
Eh := ∑ndof

k=1 Ek�k and inserting it into Eq. 8 yields

ndof∑
k=1

Ek〈 1

μ
∇ × �k, ∇ × �l〉 +

ndof∑
k=1

Ekiαω〈σ�k, �l〉

−
ndof∑
k=1

Ekβω2〈ε�k, �l〉 = −iγω〈Js, �l〉, (9)

to be fulfilled by any l, or in matrix-vector notation

(K + iMσ − Mε)︸ ︷︷ ︸
CA

Eh = b, (10)

where CA is the sparse symmetric complex-valued system
matrix, Eh is the solution vector collecting the basis function
expansion coefficients Ek which are also referred to as
degrees of freedom (DOF) and ndof is the total number of
these degrees of freedom. The right-hand side b contains the
source term entries. Further, K denotes the sparse symmetric
positive semi-definite stiffness matrix and Mσ and Mε
are the sparse symmetric positive definite mass matrices
defined by

Kk,l = 〈μ−1∇ × �k, ∇ × �l〉,
Mσk,l

= αω〈σ�k, �l〉,
Mεk,l

= βω2〈ε�k, �l〉. (11)

We note that the basis functions are real-valued and, hence,
so are the matrices. As to the choice of the basis functions
for the spectral element discretisation, we refer to [93] for
details.

3 Iterative solution and preconditioning
approaches

As already noted, the matrix CA = K + iMσ − Mε in (10)
is complex symmetric and of very large dimension. Due
to the problem parameters, it is also very ill conditioned.
Therefore, we need to solve the system with some iterative
method and use an efficient preconditioner. We aim at
achieving a preconditioned iterative solver, which is robust
with respect to the problem parameters ε, σ, μ, ω and also
with respect to the discretisation parameter h.

The system (10) can be solved in two ways. As a first
alternative, it can be solved using complex arithmetics,
utilising an appropriate Krylov subspace iterative method,
such as GMRES [76], BICG [90] and some others.
However, the question how to choose a good preconditioner
remains open. Standard choices, such as incomplete LU
techniques, are known not to be robust. Therefore, we
choose the second alternative, i.e. to rewrite the system in
real form of twice larger size.

As is well known, any n × n complex system of the
form (A + iB)(x + iy) = (u + iw) can be transformed
into a 2n × 2n real system in several equivalent ways. A
straightforward computation shows some of the equivalent
forms of the arising two-by-two block real systems,

[
A −B

B A

] [
x
y

]
=

[
u
w

]
,

[
B A

A −B

] [
x
y

]
=

[
w
u

]
,

[
A B

−B A

] [
y
x

]
=

[
w
u

]
. (12)

Which form to use may depend on the properties of the
matrices A and B. In our case the block Mσ is symmetric
and positive definite and we recast Eq. 10 into a real-
equivalent form by splitting the electric field into real and
imaginary parts Eh = ERh + iEIh, thus obtaining a two-
by-two block system as in the middle form of Eq. 12. We
then slightly alter the system by introducing the substitution
ÊIh = −EIh and obtain the following discrete system of
linear equations

A
[
ERh

−EIh

]
=

[
Mσ −(K − Mε)

K − Mε Mσ

]
︸ ︷︷ ︸

A

[
ERh

−EIh

]
=

[
bI
bR

]
,

(13)

with the same definitions for the matrices as given in Eq. 11.
In the sequel, we work with the system described

in Eq. 13 unless otherwise stated, and equations and
expressions involving matrices written in upper case bold
letters denote problem-specific cases, whereas expressions
with matrices written in calligraphic letters are valid in
general.
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3.1 Preconditioners for indefinite matrices
of two-by-two block form

The matrix in equation (13) belongs to the class of indefinite
matrices of two-by-two block form,

A =
[
A BT

C −D

]
, (14)

where, in general A ∈ R
n×n, B ∈ R

m×n, C ∈ R
m×n and

D ∈ R
m×m, n ≥ m. As pointed out in [23], under suitable

partitioning, any linear system can be written in the two-
by-two block-structured form (14) or in some equivalent

form, such as

[
A BT

−C D

]
or

[
A −BT

C D

]
. For comprehensive

studies of the properties of these matrices we refer to [23]
and [7] and the references therein.

The experience how to precondition matrices of the
form (14) is very rich. For the case when C = B we
mention briefly some classical approaches, based on the
exact block-LU factorisation of the matrix, namely,[

A BT

B D

]
=

[
A 0
B S

] [
In A−1BT

0 I

]

=
[

In 0
BA−1 Im

] [
A 0
0 S

] [
In A−1BT

0 Im

] .

Here In and Im denote identity matrices of size n and m,
respectively. In, for instance, [23] and [13], the matrices

PT =
[
Ã 0
B S̃

]
and PD =

[
Ã 0
0 S̃

]
are shown to be

very good preconditioners to the matrix A in equation
(14), provided that we can construct Ã and S̃ to be very
good approximations of A and S and also accurately solve
systems with those when applying the preconditioner.

Matrices of the type (14) with square blocks occur not
only when solving complex linear systems in real arith-
metic, but also in various important applications, one exam-
ple being the discrete first order necessary conditions in
optimal control problems, constrained by partial differential
equations. Below, we discuss preconditioners that utilise the
same dimension of the diagonal and off-diagonal blocks.

3.2 Block-diagonal preconditioning

In a series of works (cf. [30, 44, 45, 55, 69, 96,
97]), based on some special norm techniques, another
efficient preconditioner of block-diagonal form for matrices
with square blocks has been derived and used. This
preconditioner reads as follow for the general block systems

of form

[
A −B

B A

]
and

[
A B

B −A

]
,

Pbd1 =
[
A + B 0

0 A + B

]
. (15)

If A and the symmetric part of B are symmetric and positive
semi-definite matrices, the intersection of their nullspaces
is empty and A + B is invertible. Furthermore, it has
been shown that the spectrum of P−1

bd1
A is contained in the

intervals [−1 − 1
2 ] ∪ [ 1

2 , 1] (see [79]). As a consequence,
the condition number of the preconditioned system satisfies
κ((P−1

bd1
A)2) ≤ 2 (cf. [10, 30, 96]). The above theoretical

estimates show that this preconditioner is robust with
respect to the discretisation and material parameters.

Applied to system Eq. 13, the preconditioning matrix is
as follows

Pbd1 =
[
Mσ + (K − Mε) 0

0 Mσ + (K − Mε)

]
. (16)

For comparison purposes, in Section 4 we present numerical
illustrations of the performance of Pbd1 for the target
problem.

3.3 Schur complement-based preconditioning

In [63, 64] for systems as in equation (13), efficient
preconditioners have been derived, based on a particular
high quality approximation (̂S) of the arising exact
(negative) Schur complement S = Mσ + (Mσ + (K −
Mε))M−1

σ (Mσ + (K − Mε)), namely, Ŝ = (Mσ + (K −
Mε))M−1

σ (Mσ + (K − Mε)). The corresponding spectral
bound for the Schur complement is shown to be

λ(̂S−1S) ∈
[

1

2
, 1

]
.

Thus, the block-diagonal preconditioner reads as follows
(cf. [64]),

Pbd2 =
[
Mσ 0
0 Ŝ

]
.

We see that the computation cost to solve a system with
Pbd2 includes two solutions with Mσ + (K − Mε) and one
solution with Mσ , which is diagonal in the spectral element
approximation for orthogonal hexahedral elements.

Alternatively, one can use a block lower-triangular pre-
conditioner with the same Schur complement approxima-
tion,

Pbt2 =
[

Mσ 0
K − Mε Ŝ

]
.

The cost to use Pbt2 , compared to that when using Pbd1 is
higher and requires one more matrix-vector multiplication
with K − Mε.

As noted in [10], this preconditioner has been shown to
require slightly larger computational time compared to the
PRESB preconditioner, outlined in Section 3.4 and therefore
has not been tested in this study.
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3.4 The PRESB preconditioner

Next, we consider the following preconditioner, referred to
as ’PRESB’, which stands for ’PREconditioning for Square
Blocks’ (cf. e.g., [10, 14, 15]). PRESB is derived for two-
by-two block matrices (with square blocks) of the general
form

A =
[

A −b B2

a B1 A

]
,

with the assumption that A is symmetric positive definite
and that a and b are non-zero scalars having the same sign.
The theory covers also more general cases, for instance,
when A is semi-definite, however these fall out of the scope
of this paper. The preconditioner is of the form

P =
[

A −b B2

a B1 A + √
ab(B1 + B2)

]
(17)

and it is shown (e.g., [10, 14, 15]) that all the eigenvalues of
the preconditioned matrix P−1A are real and are contained
in the interval [ 1

2 , 1], independently of the discretisation
parameter h, the parameters a and b and any other problem
parameters that may be included in the matrix blocks. For
completeness, we include the derivation of this result in
Theorem 3.1 for a = b = 1 and more general types of
matrices.

Theorem 3.1 (See [8]) Let the real n × n matrices A

and B be symmetric and positive semi-definite, such that
N (A) ∩ N (B) = ∅ and A + B is nonsingular, and where
N (A)andN (B) denote the nullspaces of A and B. Then the
eigenvalues of the generalised eigenvalue problem[
A −B

B A

] [
v

w

]
= λ

[
A −B

B A + 2B

] [
v

w

]
(18)

are all real and contained in the interval [ 1
2 , 1].

Proof Rewrite the problem (18) equivalently as[
0 0
0 2B

] [
v

w

]
= (1 − λ)

[
A −B

B A + 2B

] [
v

w

]
(19)

We see that λ = 1 for any v and w ∈ N (B). Let now
w /∈ N (B), thus, λ �= 1. Denoting α = 1

1−λ
, we rewrite

problem (19) once again as[
0 0
0 2αB

] [
v

w

]
=

[
A −B

B A + 2B

] [
v

w

]
. (20)

Relation (20) is equivalent to

Av = Bw, Bv + (A + 2B)w = 2αBw. (21)

From equation (21)(left) we obtain that A(v + w) = (A +
B)w and from equation (21)(right) (A + B)(v + w) =
2αBw. Thus,

v + w = 2α(A + B)−1Bw = 2α(I − (A + B)−1A)w.

Further, A(v +w) = (A+B)w = 2αA(I − (A+B)−1A)w

and finally

w = 2α(A + B)−1A(I − (A + B)−1A)w.

Denote G = (A + B)−1A and let its eigenvalues be μ.
Since A and B are symmetric positive semi-definite and
A + B is nonsingular, then all μ are real, nonnegative and
less than 1. To estimate λ we use the following observation
(with I being the identity matrix of appropriate dimension),

2G(I − G) = 2

(
1

2
I −

(
1

2
I − G

))(
1

2
I +

(
1

2
I − G

))

=
(

1

2
I − 2

(
1

2
I − G

)2
)

.

From the latter expression we conclude that λ = 1
2 (1 +

(1−2μ)2). Using the bounds for μ, we obtain the following
parameter-independent bounds for λ,

1

2
≤ 1

2
(1 + (1 − 2μ)2) = λ ≤ 1. (22)

It can easily be verified that inserting 0 and 1 for μ yields
the upper bound for λ, whereas setting μ = 1

2 gives the
lower bound for λ.

One additional advantage of the PRESB preconditioner
is that it possesses the following block factorisation,
[
A −BT

B A + B + BT

]
=

[
I −I

0 I

] [
A + B 0

0 I

] [
I 0
B I

] [
I 0
0 A + BT

] [
I I

0 I

]

(23)

For the problem, considered in this paper, we have that
B2 = BT

1 and a = b = 1. The preconditioner to A reads
then

P =
[

Mσ −(K − Mε)

K − Mε Mσ + 2(K − Mε)

]
. (24)

From equation (23), we directly see the computational cost
of applying the PRESB preconditioner, namely, solutions of
linear systems with A + B and A + BT , one multiplication
with the matrix B and three vector additions. For the matrix
P the off-diagonal blocks are symmetric, and to solve a
system of the form

P
[
w1
w2

]
=

[
f1
f2

]
, (25)

we solve twice with H = Mσ +(K−Mε), multiply with Mσ

and form three vector updates [10–12]. The computational
procedure is shown in Algorithm 1.

The matrix H is of the size of the original complex
matrix CA and can be also large. Therefore, in Steps 1
and 3 in Algorithm 1 we should also use an (inner) pre-
conditioned iterative method. Thus, the overall solution
procedure becomes of the so-called ’inner-outer’ solution
type. Due to the usage of an inner iterative solver the
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Algorithm 1 Solving linear system with preconditioner P.

PRESB preconditioner is of variable type and this imposes
the additional requirement that the outer iterative Krylov
subspace solver should be capable of handling variable pre-
conditioning. Iterative methods that can be used as outer
methods with variable inner preconditioning are the Flex-
ible GMRES (FGMRES, [75]), the Generalized Conjugate
Residual (GCR) method [34] and the Generalized Conju-
gate Gradient method [16]. In this study we use CGR as an
outer solver and either the preconditioned GCR or FGM-
RES methods for the inner solver with a suitable Algebraic
Multigrid (AMG) preconditioning.

For clarity, the implementation of the iterative framework
is summarised in Algorithm 2. In particular, the outer
iterative solution procedure is given and solving the
two inner systems in Algorithm 1 using an (inner)
preconditioned iterative method refers to the inner solution
method. Note that the outer loop is restarted every m + 1
iterations and that the current iterate xm+1 is taken as the
new starting guess x0. It follows that at most m direction
vectors p and m matrix-vector products with p need to be
stored.

As can be seen, each outer iteration step involves solving
a linear system with preconditioner P as described in
Algorithm 1. Note that the right-hand side vector f used to
solve system Eq. 25 corresponds to the normalised residual
vector r of the current iteration of the outer loop.

Algorithm 2 PRESB-preconditioned CGR method.

3.4.1 Auxiliary-space Maxwell preconditioner

From Algorithm 1 and the form of the matrix blocks, it
is seen that we have to solve systems with H = Mσ +
(K − Mε). The matrix H is of type of a discrete form of
the following variational problem arising from Maxwell’s
equations

Find u ∈ H0,h (c∇ × u, ∇ × v) + (du, v) = (f, v)

for all v ∈ H0,h (26)

where c and d are scalars describing the magnetic and
electric properties of the media, and where H0,h is a
subspace to H0 (see Section 2.2 for the definition).

We choose to solve linear systems of equations involving
H by another (inner) preconditioned iterative solver.
As a preconditioner we use a suitable AMG method.
Efficient multigrid-based solvers for this problem are
already available, described in detail in [48] and [53, 54],
and implemented in the library hypre [37, 38] as the
auxiliary-space Maxwell solver AMS [45, 54]. The basic
premise of this approach is based on the Hitpmair-Xu
(HX) decomposition [48]. Without going into details, the
underlying idea of their method lies in the understanding
that the space H0(curl, �) possesses a stable decomposition
(see Section 3 in [48] for a detailed discussion on
decomposition of spaces) of form

H0(curl, �) =
(
H 1

0 (�)
)3 + gradH 1

0 (�) (27)

which implies that solving H 1
0 (�)-elliptic variational prob-

lems can be the basis for a preconditioner for H0(curl, �)-
elliptic problems [48]. In essence, the auxiliary-space
preconditioning technique comes down to approximately
inverting the discrete curl-curl operator by transferring
the problem into subspaces. Solving the problem in these
(nodal) auxiliary spaces is much simpler than in the initial
space as one can exploit the power of the AMG methods. As
the auxiliary-space preconditioner can be viewed as a black
box, we refrain from going into details and refer to [44, 48,
53, 54] and [45] for details on the underlying theory and its
implementation.

For completeness, we briefly specify the required user
inputs for the auxiliary-space preconditioner. Besides the
system matrix and right-hand side vector described by
Eq. 26, AMS requires the commonly called discrete gradient
matrix which describes the edges of the mesh in terms of
its vertices [53, 54]. If follows that the number of rows of
this matrix corresponds to the number of degrees of freedom
(edges) and the number of columns to that of the number of
vertices in the mesh. In case of first order curl conforming
basis functions, each row possesses two nonzero entries in
the corresponding columns of the vertices composing the
edge. In particular, the entries will be +1 and −1, where the
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sign is based on the orientation of the edge. In addition, the
auxiliary-space preconditioner needs the coordinates of the
vertices in the mesh to construct the solver. Alternatively,
the user may also choose to input the representations of the
constant vector fields in the edge element basis [53, 54].

Note that the implementation of the auxiliary-space pre-
conditioner AMS supports arbitrary order Nedelec elements
as well as non-conforming quadrilateral/hexahedral meshes
(i.e. meshes with hanging nodes).

We mention that the AMS implementation in hypre
[37, 38] holds for the positive semi-definite case [54]
while convergence in the indefinite case might be slow
or not reached at all. This could potentially pose some
difficulties as, depending on the frequency as well as the air
space conductivity considered, the system we solve might
change type and become indefinite. For example, if the
conductivity of air is set to 10−8 S/m and the corresponding
dielectric permittivity of air is 8.854 · 10−12 F/m, then the
system becomes indefinite in the air space of the domain at
frequencies > 180 Hz due to the negative shift by Mε and
the larger kernel of K [25]. Thus, for large frequencies the
system matrix becomes highly indefinite.

In the numerical experiments, we use AMS as imple-
mented in hypre [53, 54] as the preconditioner for the
iterative method applied to solve the inner systems (Steps 1
and 3 in Algorithm 1).

4 Numerical experiments

We illustrate the performance and the robustness of the
solution procedure and the PRESB preconditioner for the
EM equations on the following two test problems.

Problem 1 The first problem we consider is a simple
1D model of a layered Earth as depicted in Fig. 1(a)
and consists of a conductive layer of 0.01 S/m extending
from a depth of 500 to 1000 m embedded in a 10−4 S/m
half-space. The air conductivity is set to 10−8 S/m. The
source is a 200 m long grounded cable directed along
the x-axis stretching from (−100, 0, 0) to (100,0,0) m and
is thus centred around the origin which has coordinates
(0, 0, 0) m. The source moment is 100 Am. The source wire
itself is divided into four segments of 50 m length each.
The computational domain is discretised using nonuniform
stretched rectangular elements. The smallest cell sizes are
located around the source and steadily grow in size towards
the domain boundaries. The relevant information of this
model setup is summarised in Table 1.

Problem 2 This problem is a 3D model that includes a
conductive feature representative of, for example, an ore
body buried within a resistive background and is covered

by a thin conductive layer as shown in Fig. 1(b). The
conductive body which is inclined and of dimensions 1000×
662 × 3000 m3 has an electric conductivity of 1 S/m. The
surrounding host rock and the top layer have conductivities
of 10−4 and 0.01 S/m, respectively. The body is located at
2000 m depth and extends downwards to 5000 m depth.
The top and the bottom of the structure stretch from
−3000 to −4000 m and −2000 to −3000 m in x-direction
respectively. In y-direction, the body extends from −331 to
331 m. The source is a grounded cable with its endpoints
at coordinates (−75, 0, 0) and (59, 0, 0) m. The source
moment is 100 Am. The computational domain is meshed
with unstructured hexahedral elements (see Fig. 2) using
the open-source meshing software gmsh [41]. Other relevant
information pertaining to this setup is given in Table 1.

The numerical procedures described in Sections 2 and 3
are implemented in a parallel fashion using the Message
Passing Interface (MPI) and employ the open-source
libraries PETSc [20, 21] and hypre [37, 38].

All experiments are performed on AMD Ryzen Thread-
ripper 2950X 16-core processor with a clock frequency of
3.5 GHz and with 128 GB RAM. The operating system is
Ubuntu 20.04. All numerical simulations are run with two
MPI processes in order to show that the developed iterative
framework and all libraries used within it can run in parallel
fashion.

As described in Section 3, when the system is solved
iteratively, the outer iteration method for the two-by-two
block system is the GCR method. The inner two systems
arising from applying the preconditioner are solved using
either GCR or FGMRES provided by PETSc. In both
cases, AMS is used as a preconditioner. For comparison we
provide experiments, where the inner systems are solved
by the sparse direct solver MUMPS, also available through
PETSc.

We remark that we also tested hypre’s ILU called pilut
as a potential preconditioner for the inner systems. However,
we do not include any results of these simulations as all
of them failed to reach convergence for Problems 1 and 2.
We thus note that ILU decomposition does not constitute a
suitable inner preconditioner for the system to be solved in
the proposed iterative framework.

For all presented tests, the electric conductivity of the
air is set to 10−8 S/m. The magnetic permeability and
dielectric permittivity are assumed to be the corresponding
constants of free space for all but a few indicated exceptions.
Unless stated otherwise, by default the simulations are
run using the smallest problem size (see Table 1) and
are stopped once the relative residual of the outer solver
GCR falls below the threshold of 10−12. Regarding the
stopping tolerance for the inner GCR solver preconditioned
with AMS, experiments show that it can be chosen to be
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Fig. 1 Schematic profile of
Problems 1 and 2. None of the
drafts is true to scale. The
illustrating sketches include the
conductivities of the different
geophysical units

much larger without affecting the iteration count of the
outer solver significantly. Table 2 indicates that the stopping
tolerance for the inner solver can be set to 10−3 while still
allowing for a good compromise between the number of
outer and inner iterations to keep the solver robust and the
computational time down. Further, we note that the given
numbers of degrees of freedom (DOF) correspond to the
real-valued system, which is twice that of the complex-
valued system.

The focus of this work is on the convergence behaviour
of the described iterative framework. Nonetheless in order
to demonstrate that the iterative algorithm has the required
modelling accuracy compared to other established methods,
a numerical comparison of the electromagnetic responses
to finite element solutions for the 3D model (Problem 2)
is shown in Fig. 5 in Appendix A. Details are disclosed in
Appendix A.

The conductivity distributions of Problems 1 and 2 shown
in Fig. 1 involve several difficulties that might negatively
affect the convergence of the used iterative methods, such
as large conductivity contrasts, in particular at the air-Earth
interface and to a lesser extent within the Earth at interfaces
between different entities, non-uniformly stretched cells,
unstructured elements and locally refined meshes. Hence,
on the basis of these problems, we ascertain the robustness
of the solvers.

As predicted by the convergence properties of the PRESB
preconditioner, we observe that across the tested frequency
range of 0.1 to 10’000 Hz the iteration counts of the outer
solver remain virtually stable (see Tables 3 and 4 as well

as Fig. 3). It is worth noting that solving the two inner
systems (Steps 1 and 3 in Algorithm 1) iteratively leads to
only a slight increase of the outer iteration count compared
to the corresponding count where the inner systems are
solved by a direct method and thus exactly (compare outer
iteration counts in Tables 3 and 4). Another observation
is that solving the two inner systems iteratively requires
considerably less memory than when employing a direct
solver for the same two inner systems. It is also evident
that using preconditioned iterative solution techniques for
solving the two inner systems instead of a direct solver
reduces the computational time spent to reach convergence
with the outer iterative algorithm. This gain in time only
manifests if the preconditioned iterative algorithm applied
to the two inner systems is efficient which in fact means
the applied solution technique needs to converge to the
desired tolerance in few iterations. In Tables 3 and 4,
we observe that the inner preconditioned iterative method
performs effectively for all but the highest (10’000 Hz)
tested frequencies. In this case, the solution time increases
drastically (approximately by a factor of five compared
to the next lower frequency of 8000 Hz) while the outer
iteration count remains unaffected which points to a break
down of the efficiency of the inner preconditioned iterative
solver. This is indeed the case as visualised in Fig. 4, which
shows the convergence of the inner preconditioned iterative
solver for the two inner systems at two stages where the
residual of the outer algorithm dips below 10−4 and 10−8,
respectively. It can be seen that for a frequency of 10’000 Hz
the inner solver needs significantly more iterations to reach

Table 1 Model information for Problems 1 and 2

Model Problem 1 - Layered Earth Problem 2 - 3D model

Domain size [km3] 30 × 30 × 30 30 × 36 × 30

Conductivities [S/m] σair = 10−8, σEarth = 10−4, σlayer = 10−2 σair = 10−8, σEarth = 10−4, σcover = 0.01, σore = 1

Approximation order 1st 1st

# elements 54 × 54 × 54 332’580

# degrees of freedom 980’100 2’033’986
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Fig. 2 Problem 2: a selected
extract of the xz-cross section of
the discretisation mesh along
plane y = 0 m

convergence than for the other frequencies, which explains
the observed increase in overall solution time. Thus, to
achieve good overall performance we need a good solver for
the inner systems. As a side note, clearly, the deterioration of
the performance of the inner iterative solver can be detected
and, if memory consumption allows to do so, one might
switch to solving the inner systems directly.

As alluded to in Section 3.4.1, the inner system H
becomes indefinite for frequencies larger than 180 Hz and,
as already noted, this is due to the negative shift from Mε

and the large nullspace of the stiffness matrix K. This affects
negatively the performance of the preconditioner for the
inner solver as AMS is not devised for indefinite systems
(cf. [54]). This effect can clearly be observed for the highest
frequency of 10’000 Hz in Fig. 4.

In this study, we use AMS-preconditioned GCR as an
inner solver and we illustrate that the AMS preconditioner
is not efficient enough as soon as the inner systems become

strongly indefinite. However, we see that, as theory predicts,
the outer convergence rate does not get affected because of
that. Thus, a viable option for higher frequencies is to use
another inner solver, that is more suitable for such inner
systems.

The experiments convincingly show that the convergence
of the outer solver is independent of the problem size-
the number of iterations of the outer solver remains nearly
constant and the solution time increases linearly with
increasing number of degrees of freedom, see Table 5.
For additional insight in the performance of the PRESB
preconditioner, in Table 6 we compare the solution times
and peak memory requirements, when the inner systems are
solved both iteratively and by a direct method and those
when solving the original complex-valued system in Eq. 10.
As expected, the iterative solver has significantly lower
memory demands and is faster than when direct methods are
used. For simulations in which either the complex system or

Table 2 Problem 1: Influence on the outer iteration count Nouter
it , average inner iterations N

inner
it and solution time when relaxing the stopping

tolerance for the inner solver

inner stopping tolerance

10−6 10−5 10−4 10−3 10−2

Nouter
it 10 10 10 10 12

f=1 Hz N
inner
it 22 18 15 11 8

time [s] 106.0 88.7 73.4 56.6 47.0

Nouter
it 19 19 20 22 25

f=100 Hz N
inner
it 20 16 12 9 6

time [s] 186.0 152.5 119.0 93.5 71.5

Nouter
it 18 17 18 18 19

f=10’000 Hz N
inner
it 124 101 74 55 34

time [s] 1064.5 821.7 636.6 470.1 309.7
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Table 3 Problem 1: Comparison of outer iteration count (Nouter
it ), solution time (time [s]) and memory requirements (peak memory usage for

simulation; mem[GB]) when using iterative (GCR and FGMRES) and direct (DMUMPS) methods as inner solvers

Inner solver GCR FGMRES DMUMPS

freq [Hz] Nouter
it time [s] mem [GB] Nouter

it time [s] mem [GB] Nouter
it time [s] mem [GB]

0.1 7 40.0 4.3 7 39.3 4.3 6 121.8 14.1

1 10 56.7 4.4 10 55.8 4.3 9 147.3 14.1

10 16 79.3 4.4 16 78.3 4.4 15 145.3 14.0

100 22 93.5 4.5 22 92.7 4.3 18 157.2 14.1

1000 19 70.2 4.4 19 69.3 4.3 17 166.7 14.0

5000 18 62.8 4.4 18 62.1 4.3 17 153.0 14.0

8000 18 96.8 4.4 18 95.6 4.4 18 157.8 14.2

10’000 18 460.7 4.4 18 443.4 4.4 18 168.7 14.1

the inner systems are solved directly one can easily spot the
increase in memory consumption as well as in solution time.
The execution time given in the tables include the overall
time for the iterative solver to converge, including the time
needed to construct the AMS preconditioner. Whenever
direct methods are used, the analysis and factorisation
times are included. For complex systems we report the
time for analysis, factorisation and solution time. Memory
requirements in particular may become the limiting factor
for large problems. This is observed for the largest problem
size where the direct solvers demand approximately 151
and 198 GB of memory respectively, which exceeds the
available memory of the computer platform used to perform
these tests. In contrast, using an iterative method for the
inner systems uses only around 30 GB of memory.

In order to test the robustness of the solver with respect to
magnetic permeability μ, we assign different values of rela-
tive magnetic permeability μr to the ore body in Problem 2.
In particular, μr is set to 2, 5 and 10. Per definition, the rela-
tive magnetic permeability is defined as μr = μ

μ0
. We point

out that the magnetic permeability for different rock types

falls within a very narrow range between 1μ0 and 3μ0. Fur-
ther, a relative magnetic permeability value of 10 can safely
be considered to cover the vast majority of possibilities
encountered in geo-EM applications. The test results are pre-
sented in Table 7 and show that the influence of spatially
variable magnetic permeability distributions is minimal thus
confirming that the solver is robust also with respect to
material parameter μ.

We next consider the robustness of the solver with regard
to variable dielectric permittivity ε. To do so, we assume
that the surrounding host rock around the buried body
and the cover layer on top of the host rock have relative
dielectric permittivities values of 5 and 20, respectively.
In a geophysical sense, this could be representative of a
weakly fracture granite covered by some kind of glacial
deposits. Further, the relative magnetic permeability of the
ore body is taken to be either 1 or 10. The results for this
set of parameter value combinations are given in Table 8,
and, in comparison to Table 7, these imply that the solver
remains robust with regard to variable dielectric permittivity
distributions.

Table 4 Problem 2: Comparison of outer iteration count (Nouter
it ), solution time (time [s]) and memory requirements (peak memory usage for

simulation; mem[GB]) when using iterative (GCR and FGMRES) and direct (DMUMPS) methods as inner solvers

Inner solver GCR FGMRES DMUMPS

freq [Hz] Nouter
it time [s] mem [GB] Nouter

it time [s] mem [GB] Nouter
it time [s] mem [GB]

0.1 9 594.5 10.6 9 586.3 10.6 7 1118.7 70.6

1 12 385.3 10.6 12 380.0 10.6 12 1158.9 70.8

10 16 284.8 10.6 16 286.4 10.6 15 1182.4 70.8

100 23 278.6 10.6 23 278.3 10.6 20 1225.0 70.9

1000 20 214.1 10.6 20 210.5 10.6 18 1211.1 70.8

5000 18 174.3 10.6 18 172.5 10.6 17 1196.5 70.8

8000 18 324.3 10.6 18 322.0 10.6 17 1197.5 70.8

10’000 19 1775.1 10.6 18 1725.7 10.6 18 1207.0 70.8
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Fig. 3 Problem 1: Convergence curves for the outer solver for a range of frequencies. The two inner systems are solved iteratively by
AMS-preconditioned GCR or by the direct solver MUMPS

Taken all together, our examples demonstrate that the
solver is robust with respect to all material properties σ ,
μ, and ε relevant in geophysical settings and frequency
ω as well as with respect to the discretisation parameter.
Moreover, the outer solver convergences within relatively
few iterations. The whole iterative framework is computa-
tionally inexpensive in terms of memory requirement when
compared to direct solvers. On top of that, the procedure
also saves a considerable amount of computational time
given that the inner systems can be solved efficiently (i.e. in
a few iterations).

4.1 Convergence behaviour for loop sources

In this section, we test the convergence behaviour of
our algorithm for Problem 1 when using a horizontal or
vertical loop source corresponding to vertical or horizontal
magnetic dipole, respectively, instead of line sources. The
loop sources are square loops with a side length of 10
m, and the centres of the horizontal and vertical loops are
located at coordinates (0, 0, 0) and (0, 0, 5), respectively.
Each side is subdivided into four wire segments. We remark
that the simulations for the loop sources are performed using
the intermediate problem size with 3’641’400 degrees of
freedom.

Tables 9 and 10 show the relevant convergence param-
eters, namely the outer iteration count and the time taken
to reach convergence when solving all the systems in the

algorithm iteratively. For comparison, we also run the sim-
ulations where the inner systems are solved using a direct
solver. As already pointed out earlier, solving the inner sys-
tems by iterative methods is more cost-effective, both in
terms of time as well as memory required to carry out the
simulation. However, we observe that the more complicated
nature of the loop source that enters the problem through
the right-hand side increases the overall simulation times
when compared to those of a line source (see Table 5). This
is due to an increase in iterations required to reach conver-
gence for the inner systems as demonstrated by the average
number of inner iterations per system given in Tables 9 and
10. We recall that the increase in time can be compensated
for by relaxing the inner stopping criteria which results in
fewer inner iterations at the expense of more outer itera-
tions (see Table 2). In the case of loop sources, this might
become a viable option to keep the simulation times low.
Even though the time gain of solving the inner systems by
a preconditioned iterative method is not as large as for the
same simulations with line sources, the overall memory con-
sumption still presents a major advantage over using direct
solvers as the method of choice to solve the inner systems.

4.2 Comparisons of the performance of Pbd1 and P

We next present a comparison of the PRESB preconditioner
P with the block diagonal preconditioner Pbd1 , used in
related works (e.g. [30, 44, 45, 69]). For the sake of clarity,
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Fig. 4 Problem 1: Convergence curves of AMS-preconditioned GCR for inner systems in Algorithm 1 across a broad range of frequencies for
outer iteration where stopping criteria of 10−4 and 10−8 in outer normalised relative residual are reached

we briefly outline the general setup of the solver. Recall the
two-by-two system to be solved
[

Mσ −(K − Mε)

K − Mε Mσ

] [
ER

−EI

]
=

[
fI
fR

]
, (28)

preconditioned with a block diagonal matrix of the form

Pbd1 =
[
Mσ + (K − Mε) 0

0 Mσ + (K − Mε)

]
. (29)

We note that none of the aforementioned works (namely
[30, 44, 45, 69]) include displacement currents, that is Mε

is present neither in their block systems nor in the used
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Table 5 Problem 1: Comparison of outer iteration counts (Nouter
it ) and solving times (time [s]) for various frequencies and problem sizes

frequency [Hz]

0.1 10 1000 8000

#DOF Nouter
it time[s] Nouter

it time[s] Nouter
it time[s] Nouter

it time[s]

980’100 7 42.2 16 79.3 19 70.2 18 96.8

3’641’400 8 152.9 15 286.4 18 272.6 19 310.2

6’879’600 8 343.4 16 646.5 18 521.8 18 790.5

Table 6 Problem 1: Comparison of solving times (time [s]) and peak
memory consumption (mem[GB]) for a frequency of 100 Hz and var-
ious problem sizes between iterative outer solves employing either an

iterative (preconditioned GCR) or a direct (DMUMPS) inner solver
and direct solves of the original complex-valued system in Eq. 10

Iterative Method: GCR Direct Solver: ZMUMPS

Inner solver Preconditioned GCR DMUMPS -

#DOF time[s] mem[GB] time[s] mem[GB] time[s] mem[GB]

980’100 93.5 4.4 157.2 14.1 166.8 9.0

3’641’400 368.4 16.4 1625.0 74.8 1874.1 55.5

6’879’600 661.0 30.1 - out of memory - out of memory

Table 7 Problem 2: Comparison of outer iteration counts (Nouter
it ) and solution times (time [s]) for various frequencies and different magnetic

permeability of the ore body

relative magnetic permeability μr of ore body

1 2 5 10

frequency [Hz] Nouter
it time[s] Nouter

it time[s] Nouter
it time[s] Nouter

it time[s]

0.1 9 594.5 9 586.0 10 656.7 11 691.8

10 16 284.8 16 282.3 16 180.1 16 279.2

100 23 278.6 23 275.4 23 273.7 24 284.1

8000 18 324.3 18 345.0 18 344.7 18 331.4

Table 8 Problem 2: Comparison of iteration counts (Nouter
it ) and solution times (time [s]) for various frequencies; simulations run with a variable

dielectric permittivity distribution and two different magnetic permeabilities for the ore body

relative dielectric permit-
tivity of air, cover, host
rock and ore body

εair
r = 1, εcover

r = 20, εEarth
r = 5, ε

ore body
r = 1

relative magnetic perme-
ability of ore body

μr = 1 μr = 10

frequency [Hz] Nouter
it time[s] Nouter

it time[s]

0.1 9 590.4 11 691.6

10 16 282.3 16 279.8

100 23 278.5 24 285.1

8000 18 341.0 18 322.4
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Table 9 Problem 1: Comparison of iteration counts (Nouter
it ), average

inner iteration count per system (N
inner
it ), solution times (time [s]) and

peak memory usage (mem [GB]) for various frequencies; simulations

are run using the intermediate problem size with 3’641’400 degrees of
freedom and using a horizontal loop source corresponding to a vertical
magnetic dipole source

Inner solver GCR DMUMPS

freq [Hz] Nouter
it N

inner
it time [s] mem [GB] Nouter

it time [s] mem [GB]

0.1 9 24 351.9 18.3 4 1435.8 75.5

10 13 26 532.4 18.3 10 1510.0 75.7

1000 15 21 499.1 18.3 12 1533.8 75.8

8000 16 22 539.5 18.3 13 1547.9 75.8

block preconditioners. In addition, the outer solver used in
these publications is either a GMRES or FGMRES, and the
two inner systems are solved using a AMS-preconditioned
CG. Hence, the choices of the outer and inner solvers
differ, however GCR and GMRES are shown to be
mathematically equivalent, (cf. e.g. [50]). Thus, we can
make a fair comparison by testing the performance of the
block diagonal preconditioner for our problems. Table 11
shows the performance of both block preconditioners in
terms of outer iteration count (Nouter

it ), time spent inside
the algorithm (time [s]) and peak memory consumption
(mem[GB]) for each simulation across a frequency range
spanning five orders of magnitude. It is easily discernible
that both preconditioners exhibit similar behaviour: (1)
an increase of outer iterations for higher frequencies; (2)
highest iteration count for the frequency of 100 Hz; (3) a
steep rise in time spent to reach the solution for frequency
10’000.

The comparison clearly shows that the PRESB precon-
ditioner is more efficient than the block-diagonal precon-
ditioner, even though, compared to the application cost
of the block-diagonal preconditioner, applying it requires
one additional matrix-vector multiplication and four vec-
tor update operations. Note, in particular, that the outer

iteration counts when using the PRESB preconditioner are
equal to or lower than when applying the block-diagonal
one. The same behaviour also holds true (except for fre-
quency 100 Hz) when reducing the outer stopping tolerance
to 10−8 for simulations in which the block-diagonal precon-
ditioner is used. As the outer iteration count is smaller for
runs using PRESB, the time spent to achieve convergence is
lower.

All in all, given the presented evidence, the PRESB
preconditioner is to be preferred. As the implementa-
tion of both preconditioners is fairly similar, changing
to the improved preconditioner is beneficial and thus
encouraged.

5 Conclusions and outlook

In this work, we present an efficient and robust iterative
framework for solving the linear algebraic system arising
from the spectral element discretisation of the curl-curl
equation of the total electric field describing the behaviour
of the electromagnetic field for 3D CSEM problems in
frequency domain. We transform the original complex-
valued system into an equivalent real-valued form. Then,

Table 10 Problem 1: Comparison of iteration counts (Nouter
it ), average

inner iteration count per system (N
inner
it ), solution times (time [s]) and

peak memory usage (mem [GB]) for various frequencies; simulations

are run using the intermediate problem size with 3’641’400 degrees of
freedom and using a vertical loop source corresponding to a horizontal
magnetic dipole source

Inner solver GCR DMUMPS

freq [Hz] Nouter
it N

inner
it time [s] mem [GB] Nouter

it time [s] mem [GB]

0.1 9 27 380.8 18.3 5 1445.8 75.5

10 13 27 553.0 18.3 10 1512.0 75.7

1000 16 22 551.3 18.3 12 1536.0 75.7

8000 17 23 617.4 18.3 13 1547.1 75.8
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Table 11 Problem 1: Comparison of outer iteration count (Nouter
it ), time taken to obtain the solution (time [s]) and memory requirements (maximum

memory usage for simulation; mem[GB]) when applying different block preconditioners

PRESB (tol=10−12) Block Diagonal (tol=10−12) Block Diagonal (tol=10−8)

freq [Hz] Nouter
it time [s] mem [GB] Nouter

it time [s] mem [GB] Nouter
it time [s] mem [GB]

0.1 7 40.0 4.3 11 65.7 4.4 7 38.6 4.3

1 10 56.7 4.4 16 90.5 4.4 11 58.6 4.4

10 16 79.3 4.4 27 143.3 4.5 17 86.5 4.4

100 22 93.5 4.5 38 167.2 4.6 20 81.9 4.4

1000 19 70.2 4.4 34 130.7 4.6 20 72.6 4.4

5000 18 62.8 4.4 32 122.9 4.5 21 67.4 4.4

8000 18 96.8 4.4 33 191.8 4.5 21 111.0 4.4

10000 18 460.7 4.4 33 993.6 4.5 21 609.6 4.5

we solve the resulting real-valued two-by-two block
system by the GCR method preconditioned with a highly
efficient block-based preconditioner PRESB. Our numerical
experiments confirm the theoretical estimates that the
PRESB-preconditioned GCR solver is robust with respect to
spatially variable material parameters σ , μ and ε and with
respect to the number of degrees of freedom by showing
experiments across five orders of magnitude with regard to
problem size and for stretched structured, unstructured as
well as locally refined meshes. For the models considered
in this work, the iterative algorithm reaches convergence
within a small (typically < 20) number of outer iterations.

The efficiency of the iterative framework depends on
the efficiency of the solution of the two inner systems
of equations, being a part of PRESB. In this study, these
two inner systems are either solved using a direct method
or an iterative GCR/FGMRES method with the auxiliary-
space preconditioner AMS. Our numerical tests clearly
show that it is computationally beneficial to employ the
suggested preconditioned iterative solver to the two inner
systems instead of a direct solver in terms of overall memory
requirements and time spent to obtain the solution for
the two-by-two block system. Further and even though
the iterative framework works with a system twice the
size of the original complex-valued system, the iterative
method works on large-scale problems where direct solvers
succumb due to their excessive memory consumption,
even on smaller less performance oriented computers and
platforms.

From the above, it becomes clear that the efficiency of
the overall algorithm stands and falls with the performance
of the auxiliary-space preconditioner which is devised
for semi-definite H0(curl, �) problems. We note that the
system matrix of the two inner systems does not necessarily
adhere to semi-definiteness. In fact, the system matrix
becomes indefinite for frequencies larger than 180 Hz. Our
experiments show that the performance of AMS loses its

advantages in terms of time over the direct solver for a
frequency of 10’000 Hz. Thus, to achieve the full efficiency
of PRESB across all possible frequency ranges, we need to
use either frequency-dependent inner solvers or an advanced
variant of AMS that could ensure better efficiency in the
indefinite case.

Comparison to a similar iterative framework precondi-
tioned with a block-diagonal preconditioner reveals that our
approach converges in slightly fewer iterations resulting in
certain execution time gains. It is noted that previous works
show strong scalability for the iterative solver as well as for
AMS. Further, AMS provides support for high-order curl-
conforming element discretisations. Our future research is
thus focused on extending our framework for high-order
basis functions and to upscale our code in order to exploit
the performance offered by modern distributed-memory
platforms.

Appendix A: Accuracy for the 3Dmodel
compared to finite element solutions

In the following, we present results from numerical
simulations obtained by our iterative framework and by a
finite element code developed by [74], that uses a direct
solver. In particular, we deploy twelve receivers across the
target body of the 3D model (Problem 2) in cross-line
configuration, meaning the receiver line is perpendicular to
the transmission direction. The receiver line is offset by by
3.5 km in x-direction. The receivers range from −3 to −0.5
km and from 0.5 to 3 km in y-direction at intervals of 500
m. Figure 5 shows the electric and magnetic fields excited
by line source transmitting at 10 Hz for both the iterative
framework and the finite element code denoted by SEM
and FEM respectively. The responses for both numerical
schemes are in good agreement with each other. Further,
Table 12 displays the mean relative deviations of the electric
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Responses of cross-line receivers
at 3.5 km offset for f=10 Hz
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Fig. 5 Problem 2: Comparison the electric and magnetic field components split in real and imaginary part obtained with our iterative solver (SEM)
and a finite element code [74, FEM,]
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Table 12 Problem 2: Average relative deviations of all the field
components between the spectral element and finite element results for
the 3D model. Note that the finite element solutions are taken as the
reference

Average relative deviations in %

f=10 Hz f=100 Hz

Field component Real Imaginary Real Imaginary

Ex 1.10 0.26 2.40 1.60

Ey 1.90 2.60 1.90 2.10

Hx 4.10 6.00 3.10 4.80

Hy 1.30 2.40 5.60 2.50

Hz 1.60 1.80 3.00 1.50

and magnetic field components across all receivers thus
confirming the observed agreement. Note, that the relative
deviations are given for frequencies of 10 and 100 Hz.
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