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Abstract
The SOC change index, defined as the normalized difference between the actual Soil Organic Carbon and the value assumed
at an initial reference year, is here tailored to the RothC carbon model dynamics. It assumes as a baseline the value of the
SOC equilibrium under constant environmental conditions. A sensitivity analysis is performed to evaluate the response of
the model to changes in temperature, Net Primary Production (NPP), and land use soil class (forest, grassland, arable). A
non-standard monthly time-stepping procedure has been proposed to approximate the SOC change index in the Alta Murgia
National Park, a protected area in the Italian Apulia region, selected as a test site. The SOC change index exhibits negative
trends for all the land use considered without fertilizers. The negative trend in the arable class can be inverted by a suitable
organic fertilization program here proposed.
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1 Introduction

For reporting on Target 15.1, one of the seventeen Sus-
tainable Development Goals (SDGs) adopted by the United
Nations [15] in 2015, the Good practice guidance [24]
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indicates how to calculate the extent of land degradation.
It recommends the development and the use of analytical
methods for measuring the three indicators which address
the key aspects of land-based natural capital: trends in land
cover, trends in land productivity and trends in soil organic
carbon (SOC) stocks. These indicators can assess the quan-
tity and the quality of land-based natural capital and most of
the associated ecosystem services.

Roughly speaking, the SOC stock is the carbon captured
by plants through photosynthesis which remains in the soil
after the decomposition of soil organic matter. A decrease
in SOC stocks is among the significant universal indicators
for land and soil degradation and can compromise all the
efforts to achieve the SDGs especially those with reference
to food, health, water, climate, and land management [14].

Well-validated models which take into account the
interactions among climate, soil and land use management
can be used to predict SOC changes under the different
management and climatic conditions. The Rothamsted
carbon model (RothC, [3, 20]) is one of the most commonly
used tools to simulate soil organic carbon dynamics in
arable, grassland and forest systems. Although it does not
place the action of bacteria at the heart of the mechanisms
of decomposition as required by current theories [10, 13], it
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is widely used because it captures the general principles of
soil organic dynamics, it is relatively simple and general, it
requires relatively few parameters and can be easily applied
at scales from regional [7], to global [17].

In this paper, for making a scenario analysis of SOC
changes, we considered the evolution of the so-called SOC
change index tailored to the RothC dynamics. It is defined
as the difference between the SOC values at the last and
the first year (as in [16]), here normalized by the carbon
inputs generated by the total plant and the farmyard manure,
both evaluated at the initial baseline year. As a test example,
we evaluate the impact of changes in temperature on the
achievement of land degradation neutrality for the SOC
indicator in the Alta Murgia National Park, a protected area
in the Apulia region located in the south of Italy. It is
known that the increase or decrease of the SOC stocks under
climate change will depend upon which process dominates,
in the future and in a given location, between increased plant
inputs through increases in net primary production (NPP),
and increased decomposition rates [9]. With the aim of
detecting factors which determine the size and the direction
of change in the considered protected area, a sensitivity
analysis, based on the direct method described in [4], is
performed. The sensitivity analysis is applied to an ad hoc
autonomous version of the RothC model where the time-
dependent coefficients are replaced by constants equal to
the coefficients averaged over a year. Our analysis provides
local information on the impact of parameter changes on the
behavior of the system solution. In particular, we evaluate
the impact on the SOC change index of the variation of three
representative parameters: mean annual temperature, NPP
annual values with respect to reference values and degree of
decomposability of plant material (the so-called DPM/RPM
ratio), which in turn is related to the class of land use (forest,
grassland and arable).

Trends in SOC changes from 2005, taken as the baseline
year, to 2019, the final year, are simulated by means
of a monthly discrete non-standard approximation of the
continuous model for the forest, grassland and arable
systems. It is based on the discrete non-standard monthly
time-stepping procedure provided in [5] for solving the
carbon dynamics in all of the compartments. Given the
linearity of the RothC model, the SOC change can be
discretized with the same matrix function of the monthly
stepsize. Results obtained indicate negative trends for the
SOC change in the case of forest, grassland and arable
classes, considered without including the input of farm
fertilizers. As a final result, we evaluate the optimal organic
fertilization program to invert the negative trend of the
arable class and keep positive the SOC change. When
used with predicted climate and NPP data, the optimal
fertilization program may guarantee the achievement of land
degradation neutrality for the SOC indicator.

The paper is organized as follows. In Section 2 we
briefly describe the original RothC model and define
the SOC indicator for the continuous counterpart of the
original model. Moreover, we introduce a more realistic
representation of the density function of the plant carbon
input which can be proven to be periodic. Input data and
parameters are then identified and described. In Section 3
we explain how the issue of determining the initial carbon
input is solved in the proposed formulation and we define
a SOC change index which overcomes the problem. Then,
in Section 4 we describe the SOC change index dynamics
and, in Section 5 we determine the sensitivity of the
model to the variation of temperature, NPP and land
use class. The issue of a possible positive contribution
of organic fertilization is faced in Section 6 where we
propose to consider the farmyard manure input as a control
variable to reach neutrality. To perform the simulations, we
apply a numerical non-standard technique which preserves
the equilibrium state of the continuous dynamics and is
described in Section 7. In Section 8 we present a test case
illustrating the trends of SOC change in a protected area, in
the years 2005–2019, as a function of the measured changes
in temperature and NPP for the three land use classes
analyzed (forest, grassland, arable). Finally, in Section 9 we
draw our conclusions.

2 The RothC model

Within the RothC model, soil organic carbon is divided
into the five carbon pools noted: cdpm, crpm, chum, cbio and
ciom (see Fig. 1). The already decomposed plant material
is regarded as chum, whereas the total carbon mass of
microbial organisms is represented by the cbio pool. All
non decomposable or inert material is defined as ciom. In
general, all pools ci will decompose and form CO2, cbio and
chum. The four active compartments cdpm, crpm, chum and
cbio, undergo decomposition as a function of different rate
constants which correspond to the entries of the vector k =
[kdpm, krpm, kbio, khum]ᵀ, and of the rate modifier ρ(t)

which depends on the clay content of the soil, on climate
variables (rainfall, temperature, open pan evaporation) and
land cover. The fraction α + β of metabolised carbon
incorporated into the sum of compartments cbio(t) +
chum(t) is determined by the clay content of the soil, while
the remaining part δ := 1 − α − β is released as CO2 and
lost by the system.

For the aim of what follows we denote with T > 0 the
length of a reference time interval (generally one year) and
we formulate the RothC model as:
dc
dt

= ρ(t) A c + b(t), t ∈] t0 + nT , t0 + (n + 1)T ],
n = 0, . . . , (1)
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Fig. 1 Flow chart of the RothC
model

where c(t) = [cdpm(t), crpm(t), cbio(t), chum(t)]ᵀ and
c(t0) = c0 ≥ 0 denotes the vector of the initial concentra-
tions. The matrix A is given by

A =

⎛
⎜⎜⎝

−kdpm 0 0 0
0 −krpm 0 0

α kdpm α krpm (α − 1) kbio α khum

β kdpm β krpm β kbio (β − 1) khum

⎞
⎟⎟⎠ .

The vector b(t) represents the carbon amount entering the
system at time t . It takes into account both the input of plant
residues g(t) a(g) and the input of farmyard manure (FYM)
f (t) a(f ), so that

b(t) := g(t) a(g) + f (t) a(f ).

The entries of vectors a(g) := [γ, 1 − γ, 0, 0]ᵀ and a(f ) :=
[η, η, 0, 1 − 2 η]ᵀ are the fraction inputs 0 ≤ γ ≤ 1,
0 ≤ η ≤ 1/2, which sum up to 1.

Definition 1 We define as SOC indicator of the continuous
RothC model (1) the function SOC(t) = ciom(t) +
cdpm(t) + crpm(t) + cbio(t) + chum(t) for t ≥ t0, where
ciom denotes the constant carbon content in the inactive
compartment IOM.

Although different approaches can be adopted for calcu-
lating the size of IOM, [19, 21], here we use the classical
equation given by Falloon et al. in [6]:

ciom(t) = 0.049 SOC1.139(t)

so that the SOC indicator is obtained by solving the equation

0.049 SOC1.139(t) − SOC(t) + soc(t) = 0,

where

soc(t) := cdpm(t) + crpm(t) + cbio(t) + chum(t) (2)

satisfies the differential equation

dsoc

dt
(t) = 1ᵀ dc

dt
(t) = ρ(t)1ᵀ A c + g(t) + f (t)

= −ρ(t) δ kᵀc + g(t) + f (t). (3)

2.1 A realistic representation of g(t )

Towards a realistic analytic representation of the density
function g(t) of plant carbon input, we consider that g(t)

can be represented as follows

g(t)=P( t0 + n T ) ĝ(t) ∀t ∈ [ t0+nT , t0 + (n+1)T ],
n = 0, . . . , (4)
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where

ĝ(t) := g(t)ˆ t0 + (n+1)T

t0 + nT

g(s) ds

. (5)

The function ĝ represents the density distribution of plant
carbon inputs into the soil expressed as a proportion of the

total P( t0 + n T ) :=
ˆ t0+(n+1)T

t0+nT

g(s) ds, in each time

interval [t0 + nT , t0 + (n + 1)T ] of length T , for n =
0, 1, . . . . In real applications the function ĝ(t) is known
and, as it depends only on seasonality, it is well represented
by an annual periodic function. We have the following
result.

Theorem 1 Set T > 0 and suppose that g(t) is a positive
function which satisfies the following property

g(t + T ) = g(t)

ˆ t0+(n+2)T

t0+(n+1)T

g(s) ds

ˆ t0+(n+1)T

t0+nT

g(s) ds

,

for all t ∈ [t0+nT , t0+(n+1)T ], and n = 0, 1, . . . . Then,
the function ĝ(t), defined in Eq. 5, satisfies 0 < ĝ(t) <

1, results periodic with period T and
ˆ t0+T

t0

ĝ(s) ds =
ˆ t0+(n+1)T

t0+nT

ĝ(s) ds = 1, for all n = 0, 1 . . . .

Proof The result trivially follows by observing that if t ∈
[t0 +nT , t0 + (n+1)T [, then t + T ∈ [t0 + (n+1)T , t0 +
(n + 2)T [. Consequently,

ĝ(t + T ) = g(t + T )ˆ t0+(n+2)T

t0+(n+1)T

g(s) ds

= ĝ(t),

for all t ∈ [t0 + nT , t0 + (n + 1)T ] and n = 0, 1, . . . .

2.2 Input data and parameters

Let us identify all the input data necessary to the RothC
dynamics.

– Input per unit time (month) of plant residues g(t)

[t C ha−1 month−1] and farmyard manure f (t)[t
C ha−1 month−1], if any.

The function g(t) is supposed to be expressed as in
Eq. 4. By means of Net Primary Production (NPP), it is
possible to estimate

P(t0+n T ) = P(t0 + (n−1) T )
NPP (t0 + n T )

NPP (t0 + (n−1) T )

= P(t0)N
(n)
P ∀n = 1, 2 . . . (6)

the total plant carbon input in the year [t0+nT , t0+(n+
1)T ], where N

(n)
P := NPP(t0 + n T )

NPP (t0)
. The function

ĝ(t) = ĝr (t) is supposed annual periodic and assuming
different known shapes according to the land use.

– clay content of the soil cly (as a percentage);
– r the degree of decomposability of incoming plant

material, i.e. the DPM over RPM ratio;
– air temperature T emp(t) [◦C], rainfall rain(t) [mm],

potential evapotranspiration1 pet (t). In our tests
pet (t) is estimated from weather data by means of
Thornthwaite’s formula (see Appendix).

– c(t0) [ t C ha−1] the vector of the initial concentrations
sampled at a soil layer of depth d [cm].

Let us identify all the parameters involved in the RothC
dynamics.

– A = A(α, β, k) . From the clay content, we can
evaluate the Soil Texture Factor according to x =
1.67 (1.85 + 1.60 e−0.0786 cly), and consequently α =
0.46

x + 1
and β = 1

x + 1
− α; the entries of k are

given by kdpm = 10/T [t ime−1], krpm =
0.3/T [t ime−1], kbio = 0.66/T [t ime−1], khum =
0.02/T [t ime−1] .

• b(t) = b(t, γ, η). Here η = 0.49 while γ (r) =
r

r + 1
varies according to the land use. Values 0 <

r < 0.5 of DPM over RPM ratio are associated to the
forest class, 0.5 ≤ r < 1 to the grassland class, r ≥ 1
to the arable class.

– ρ(t) = ka(T emp(t)) kb (Acc(rain(t), M(cly, d)) kc(t, r).
The modifying factor related to the temperature is

generalized with respect to the original given in [3], in
order to assume a value equal to 1 in correspondence
of the mean annual temperature T emp(0) in the interval
[ t0, t0 + T [, i.e.

ka(T emp(t))

:= 47.91

1+e

106.06

Temp(t)+106.06/log(46.91)−Temp(0)

,

so that ka(T emp(0)) = 1.
The factor kc(t, r), associated to the soil cover,

kc(t, r) =
{

0.6 0 < r < 1
Sr(t) r ≥ 1,

with Sr(t) = Sr(t + T ) assuming values between 0.6
in the periods of the year when soil is vegetated and the
maximum value 1, when bare.

1The original model uses open pan evaporation; here the model is used
in a modified version which makes use of potential evapotranspiration
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The maximum soil moisture deficit M and the point
at which respiration (i.e. microorganism activity) begins
to slow Mb, are defined as M := M(cly, d) =
− (20 + 1.3 cly − 0.01 cly2)

d

23
and Mb = 0.444 M .

The accumulated soil moisture deficit Acc(t, M) is
calculated from the first time in [t0 + nT , t0 + (n +
1)T ] where evaporation pet (t) exceeds rainfall the
maximum soil moisture deficit M . When there is more
rainfall than evaporation, the soil will start to wet up.

The rate modifying factor for moisture varies
between 0.2 and 1 as follows

kb(Acc(t, M))

:=
⎧⎨
⎩

0.2+(1−0.2)
M−Acc(t, M)

M−Mb

Acc(t, M)<Mb

1 otherwise.

3 Determining the initial plant inputs

In all practical applications, RothC is run in ‘reverse mode’
to calculate the initial plant inputs to the soil for the
given environmental conditions. The underlying hypothesis
is that the observed carbon stocks correspond to a stable
constant or annual periodically varying long-term solution
for their dynamics. Once the initial plant inputs have been
established in this way, in order to simulate future scenarios,
changes in NPP [25], in climate conditions, or in land use
will determine changes in predicted carbon stocks.

Under the hypothesis that the observed carbon stocks
correspond to their values at a stable equilibrium, we are
going to illustrate how it is possible to avoid the first run
in ‘reverse mode’ to calculate the initial plant inputs. After
setting a monitoring temporal interval [t0 + T , Tf ], by
following the approach indicated in [15], the baseline of
SOC indicator against which Land Degradation Neutrality
is to be achieved, is supposed to correspond to the carbon
stocks equilibrium for averaged values of temperature,
accumulate soil moisture deficit, and soil cover in a period
[t0, t0 + T ] immediately prior the monitoring time interval.

As concerns the average value for the factor kc(t, r)

associated to the soil cover, it can be approximated as
follows:

kc(r) =
⎧⎨
⎩

0.6 0 ≤ r < 1 t0+T

t0

Sr(s)ds ≈ 0.6 + Nb

30
r ≥ 1,

where 0 ≤ Nb ≤ 12 (generally Nb = 4, see e.g. [25]) is
the number of months per year of bare soil for arable class.

In order to have a smooth dependence on r , we approximate
kc(r) with the C∞-function

kc(r) := 0.6 + Nb

30

ex(r)

1 + ex(r)
,

x(r) := 30(r − 1)

r
r > 0. (7)

The function kc(r) for a generic crop related to Nb = 4 bare
months per year, is illustrated in Fig. 2.

Denoting with T emp(0) and Acc(0) the averaged values
for temperature and accumulated soil deficit on the period
[t0, t0+T ] assumed as reference interval, then the modifying
factor ρ(t) is approximated by ρ(0)(r) := kb(Acc(0))kc(r),
as ka(T emp(0)) = 1.

Setting F(t0) =
ˆ t0+T

t0

f (s)ds, then the model (1), can

be written as

dc
dt

= ρ(0)(r)Ac+P(t0)

T
a(g)+F(t0)

T
a(f ), t ∈]t0, t0+T ].

(8)

Suppose that c(t0) i.e. the distribution of the measured
SOC(t0) among compartments is known and satisfies

0.049SOC1.139(t0) − SOC(t0) + 1ᵀc(t0) = 0.

We assume that c(t0) is equal to the equilibrium of the
dynamical system (8), i.e.

c(t0) = − 1

Tρ(0)(r)
A−1

(
P(t0)a(g) + F(t0)a(f )

)
. (9)

Consequently,

P(t0)a(g) = −Tρ(0)(r)Ac(t0) − F(t0)a(f )

P (t0) + F(t0) = −Tρ(0)(r)1ᵀAc(t0) = Tρ(0)(r)δkᵀc(t0).

(10)

Under the hypothesis that F(t0) is known (i.e. the amount of
the total farmyard manure used in the interval [t0, t0 + T ]),
it follows that the initial plant inputs to the soil is given by

P(t0) = Tρ(0)(r)δ
(
kdpmcdpm(t0) + krpmcrpm(t0)

+ kbiocbio(t0) + khumchum(t0)) − F(t0). (11)

Then, for all n = 1, 2 . . . the system

dc
dt

(t) = ρ(t)Ac + P(t0 + nT )ĝr (t)a(g) + f (t)a(f )

P (t0 + nT ) = P(t0)N
(n)
P (12)

is solved for t ∈]t0 + nT , t0 + (n + 1)T ] starting from
c(t0 + T ) = c(t0) given in Eq. 9 and P(t0) given in Eq. 11,
until t0 + (n + 1)T ≤ Tf .

1349



Computational Geosciences (2022) 26:1345–1366

Fig. 2 The rate constant
modifying factor kc as a smooth
function of DPM/RPM ratio

4 The dynamics of the SOC change index

Soil organic carbon dynamics are driven by changes in
climate and land cover or land use. In natural ecosystems,
the balance of SOC is determined by gains, through
plant and other organic inputs, and losses, due to the
organic matter turnover [25]. Globally, under a warming
climate, increases are seen both in carbon inputs to
the soil due to higher NPP, and in SOC losses due
to increased decomposition. The balance between these
processes defines the SOC change. In some regions the
processes balance, but in others, one process is affected by
climate more than the other.

For making a scenario analysis of SOC change, which
does not depend on the specific initial measured SOC
value but only on the hypothesis of an initial environmental
equilibrium, a useful tool is given by the SOC change
index defined as the variable of change of carbon stocks
normalized as follows.

Definition 2 We indicate with �soc(t) the SOC change

index defined as �soc(t) := soc(t) − soc(t0)

P (t0) + F(t0)
with soc(t)

:= 1ᵀc(t), where c(t) solves Eq. 12 and P(t0) + F(t0) is
given in Eq. 10.

Notice that the sign of the index �soc(t) detects if, at the
time t , the sum of soil carbon contained in compartments is

greater than its initial value. In what follows, for detecting
changes in SOC stock in a specific area, we deduce its
temporal dynamics.

Theorem 2 Under the hypothesis that P(t0) + F(t0) > 0,
the dynamics of the variable

�c(t) := c(t) − c(t0)
P (t0) + F(t0)

, t ∈ [t0 + nT , t0 + (n + 1)T ],
n = 1, 2, . . . ,

is governed by the equation

d�c
dt

= ρ(t)A�c +
(

N
(n)
P ĝr (t) − ρ(t)

Tρ(0)(r)

)
ξa(g)

− ρ(t)

Tρ(0)(r)
(1 − ξ)a(f ) + f (t)

P (t0) + F(t0)
a(f ),

�c(t0 + T ) = �c(t0) = 0, (13)

where 0 ≤ ξ := P(t0)

P (t0) + F(t0)
≤ 1.

Notice that when the value ξ = 0 then the initial plant
carbon input P(t0) = 0; while ξ = 1 corresponds to the case
F(t0) = 0. Hence, by increasing ξ from 0 to 1, we explore
all the cases from only-farmyard manure initial carbon input
to only-plant initial carbon input.

The dynamics for �soc(t) can be immediately deduced
from the dynamics of �c(t) as follows.
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Corollary 1 In case of farmyard manure input, the
dynamics of the SOC change index �soc(t) for t ∈ [t0 +
nT , t0 + (n + 1)T ], for n = 1, 2, . . . , is governed by the
equation

d�soc(t)

dt
= −δρ(t)kᵀ�c + ξN

(n)
P ĝr (t) − ρ(t)

Tρ(0)(r)

+ f (t)

P (t0) + F(t0)
, (14)

where �c(t) solves Eq. 13 and �soc(t0 + T ) = �soc(t0)

= 0.

Remark 1 Notice that, whenever farmyard manure amend-
ments are not considered at all, specific results can be
deduced from Theorem 2 and Corollary 1 by setting f (t) =
0 for all t ≥ t0 and noticing that F(t0) = 0 implies ξ = 1.

As a consequence of the above remark, for all scenarios
that do not consider fertilization actions, e.g. forest or (not-
improved) grassland land use classes, the dynamics of the
SOC change index in Eqs. 14–13 do not depend on the value
P(t0) + F(t0) = P(t0). It follows that, for those scenarios,
our model is able, differently from the classical RothC
model (12), to provide the crucial information about the sign
of SOC change, even in absence of P(t0) and c(t0) values.
Indeed, �soc(t) variable has the same sign of the SOC

change since �soc(t) := soc(t) − soc(t0)

P (t0)
with P(t0) > 0.

We underline that establishing the sign of the SOC change
with respect to an initial baseline value, whatever it is, has a
crucial importance in the context of a LDN analysis [18].

5 Sensitivity of the SOC change index
to parameters

In this section, we want to study the relative importance
of the different factors responsible for changes in SOC
stock. This will be done throughout a sensitivity analysis
of the SOC change index related to the dependence on
the temperature, NPP and the class of land use, under the
hypothesis of no fertilization amendments. We will make
use of the direct method in [4] where the analysis of
sensitivity is local and described by first-order derivatives.
Notice that, for a better reading, the results of this section
are given without proofs which can be found in Appendix.

In this setting, φ ∈ R is a parameter affecting the

dynamics
dy
dt

= f(y(t, φ), φ) of the n-dimensional variable

y(t). The direct method requires the integration of an
additional set of differential equations, together with the

original system, to obtain the vector of sensitivities sy,φ(t),

whose components are defined as
∂yi(t, φ)

∂φ
, i.e.

dy
dt

= f(y(t, φ), φ), y(t0, φ) = y0(φ)

dsy,φ

dt
(t, φ) = ∂f

∂φ
(y(t, φ), φ) + ∂f

∂y
(y(t, φ), φ) sy,φ(t),

sy,φ(t0) = ∂y0(φ)

∂φ
, (15)

where
∂f
∂y

denotes the Jacobian matrix of f.

In order to apply the above described direct method, we
need to replace non-autonomous dynamics with autonomous
ones. We focus on the case when f (t) = 0 for all t ≥ t0;
moreover, as our sensitivity analysis is local, the approxi-
mated autonomous system is derived only in the first year.

Let us come back to the equation for �c(t) in Theorem 2
in case when f (t) = 0

d�c
dt

= ρ(t)A�c +
(

N
(n)
P ĝr (t) − ρ(t)

Tρ(0)(r)

)
a(g). (16)

At first, we replace T emp(t) and Acc(t) with their averaged
values, T emp(1) and Acc(1) in the interval ]t0 + T , t0 +
2T ] so that ρ(t) can be approximated by ρ(1)(r) :=
ka(T emp(1))kb(Acc(1))kc(r), where kc(r) is given in Eq. 7.

As
 t0+2T

t0+T

ĝr (s)ds = 1

T
, we define the autonomous

counterpart of the model (16) in the first year as follows:

d�c
dt

= ρ(1)(r)A�c + ϑ(1)a(g), �c(t0 + T ) = 0, (17)

for t ∈]t0 + T , t0 + 2T ], where2

ϑ(1) := 1

T

(
N

(1)
P − ρ(1)(r)

ρ(0)(r)

)
, (18)

whose solution is given by

�c(t) = (t−t0−T )ϑ(1)ϕ
(
(t−t0−T )ρ(1)(r)A

)
a(g), (19)

where

ϕ(z) := z−1(ez − 1). (20)

A formal derivation of the above approximation is given by
the following theorem.

Theorem 3 The solution �c(t) of the autonomous system
(17) approximates the solution of the non-autonomous

2Let us observe that ϑ(1) does not depend on r , in fact ϑ(1) =
1
T

(
N

(1)
P − ka(T emp(1))kb(Acc(1))

kb(Acc(0))

)
.
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system �c(t) in Eq. 16 in a right neighborhood of t0 + T of
length ε < T . In fact

�c(t) − �c(t) = ε
(
ϑ(1)ϕ (B(ε)) − ϑ(t0 + T )I

)
a(g)

+O(ε2),

where ϑ(t) :=
(

N
(1)
P ĝr (t) − ρ(t)

Tρ(0)

)
and the matrix B(ε)

:= ερ(1)(r)A is negative definite. Moreover, there is a norm
on R

4 and a constant c > 0 such that ‖ϕ(B(ε))‖ < 1 and
‖a(g)‖ < c, therefore the leading error term can be bounded
as follows

∥∥∥
(
ϑ(1)ϕ (B(ε)) − ϑ(t0 + T )I

)
a(g)

∥∥∥
≤ 2c max(|ϑ(1)|, |ϑ(t0 + T )|).

With the previous notations, we define:

Definition 3 The sensitivity of the SOC change index to
the parameter φ is defined as the sum of the entries of the
vector s�c,φ , which is the sensitivity to the parameter φ of
the variable �c(t), whose dynamics is described in Eq. 17.

In the following, we are going to analyze the sensitivity
of the SOC change index to three different parameters:
T emp(1) representing the annual averaged temperature,
N

(1)
P := NPP(t0 + T )/NPP (t0) representing the NPP

input normalized by the value at the reference year, and r

related to change of land use, from forest (lowest values of
r) to arable (highest value of r).

5.1 Sensitivity of the SOC change index to the
parameter Temp (1)

Accordingly to Definition 3, we define the sensitivity of the
SOC change index to T emp(1) the quantity s�soc,T emp(1) :=
1ᵀs�c,T emp(1) . The following theorem holds.

Theorem 4 The sensitivity of the SOC change index to
T emp(1) satisfies the following differential equation

ds�soc,T emp(1)

dt
= −ρ(1)(r)δkᵀs�c,T emp(1)

− ∂ρ(1)(r)

∂T emp(1)

(
δkᵀ�c + 1

Tρ(0)(r)

)
(21)

for t ∈]t0 + T , t0 + 2T ], with the initial condition

s�soc,T emp(1) (t0 + T ) = 0.

Moreover, there exists an ε > 0 such that for all t ∈
[t0 + T , t0 + T + ε]
s�soc,T emp(1) (t) ≤ 0.

Remark 2 For sufficiently small values of t , the sensitivity
of the SOC change index to T emp(1) is a negative function
of time. Consequently, an initial increase in annual averaged
temperature T emp(1) decreases the null initial value of
�soc. Recalling that the sign of the index �soc(t) detects
if at the time t the sum of soil carbon contained in
compartments is greater than its initial value, we conclude
that an initial increase in annual averaged temperature
T emp(1) has a negative effect on the achievement of land
degradation neutrality.

5.2 Sensitivity of the SOC change index to the N (1)
P

ratio

According to Definition 3, the sensitivity of the SOC change
index to N

(1)
P is given by s

�soc,N
(1)
P

:= 1ᵀs
�c,N(1)

P

. The

following theorem holds.

Theorem 5 The sensitivity of the SOC change index to N
(1)
P

satisfies the following initial value problem

ds
�soc,N

(1)
P

dt
= −ρ(1)(r)δkᵀs

�c,N(1)
P

+ 1

T
,

t ∈]t0 + T , t0 + 2T ]
s
�soc,N

(1)
P

(t0 + T ) = 0. (22)

Moreover, s
�soc,N

(1)
P

(t) ≥ 0 for all t ∈ [t0 + T , t0 + 2T ].

Remark 3 The sensitivity of the SOC change index to
N

(1)
P is positive, consequently an increase of the N

(1)
P ratio

increases the null initial value of �soc. Recalling that the
sign of the index �soc(t) detects if at the time t the sum
of soil carbon contained in compartments is greater than
its initial value, we conclude that an increase in annual
NPP values has a positive effect on the achievement of land
degradation neutrality.

5.3 Sensitivity of the SOC change index
to the parameter r

According to Definition 3, the sensitivity of the SOC change
index to r is given by s�soc,r := 1ᵀs�c,r . The following
theorem holds.

Theorem 6 The sensitivity of the SOC change index to r

satisfies the following initial value problem

ds�soc,r

dt
= −ρ(1)(r)δkᵀs�c,r − ∂ρ(1)(r)

∂r
δkᵀ�c

s�soc,r (t0 + T ) = 0, (23)

for t ∈]t0 + T , t0 + 2T ]. Moreover, if ϑ(1) is positive, then
there exists an ε > 0 such that s�soc,r (t) ≤ 0 for all
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t ∈ [t0 + T , t0 + T + ε]. Conversely, if ϑ(1) is negative,
then there exists an ε > 0 such that s�soc,r (t) ≥ 0 for all
t ∈ [t0 + T , t0 + T + ε].

Remark 4 For sufficiently small values of t , the sensitivity
of the SOC change index to r has the opposite sign of
ϑ(1). This means that an initial increase in the parameter
r increases or decreases the null initial value of �soc

accordingly to negative or positive values of ϑ(1). More in
details, when changes in temperature increase the annual
value of the NPP more then the modifying factor ρ(1)(r),
both with respect to their initial values i.e. NPP(t0+T )

NPP (t0)
≤

ρ(1)(r)

ρ(0)(r)
, this positively impacts all land use classes; vice

versa, when changes in temperature increase the modifying
factor ρ(1)(r) more then the annual value of the NPP with

respect to their initial value i.e. NPP(t0+T )
NPP (t0)

>
ρ(1)(r)

ρ(0)(r)
, then

SOC change negatively impacts all the land use class. In
both positive and negative case the arable land use class
results to be the most affected.

6 Increasing SOC in arable with farmyard
manure amendments

To achieve SOC neutrality it is necessary to implement land-
based mitigation solutions that sequester large amounts of
CO2 from the atmosphere [12]. For instance, this can be
done by enhancing the natural sink of carbon via refor-
estation, through bioenergy cultivation with carbon capture
and storage, and via carbon sequestration in agricultural
soils through improved management practices [8]. Agricul-
tural soils are markedly SOC-depleted as a consequence
of cultivation because the continuous harvesting of plants
reduces the amount of plant litter that is returned to the soil.
The addition of carbon input is the best option to increase
SOC stocks in agricultural soils [2] and, for croplands, this
can be achieved with recommended management practices
based, for example, on the use of crop species and vari-
eties that have a greater root mass or the use of cover crops
during fallow periods. The objective of increasing carbon
input can be also gained by means of the addition of FYM
amendments.

In this section, in view of the achievement of neutrality
for SOC indicator, we look for the FYM amendments able to
reverse a negative departure of SOC change index in arable
soils. The theoretical tools are given by Theorem 2 and
Corollary 1: the idea is to determine the temporal evolution
of the function f (t) or all t ∈]t0 + nT , t0 + (n + 1)T ]
and n = 1, 2, . . . , in such a way that the FYM input term
f (t)a(f ) assures that the SOC carbon index values soc(t)

are above the baseline value soc(t0) assumed at the initial
time. The following result can be derived.

Theorem 7 The solution �soc(t) of Eq. 14 corresponding
to the solution �c(t) of Eq. 13 with normalized farmyard

manure rate
f (t)

P (t0) + F(t0)
= max

[
0, qξ (t)

]
where

qξ (t) := ρ(t)

[
δkᵀ�c(t) + 1

Tρ(0)(r)

]
− ξN

(n)
P ĝr (t),

is positive for all t ∈]t0 + nT , t0 + (n + 1)T ] and n =
1, 2, . . . .

Proof Notice that
d

dt
�soc(t) = −qξ (t) + max

[
0, qξ (t)

]
.

For all t ∈]t0 + nT , t0 + (n + 1)T ], n = 1, 2, . . . ,
d

dt

�soc(t) = 0 if qξ (t) ≥ 0 or
d

dt
�soc(t) > 0 when qξ (t) <

0. Consequently,
d

dt
�soc(t) ≥ 0 and, from �soc(t0) = 0

it follows that �soc(t) ≥ 0 for all t ∈]t0 + nT , t0 + (n +
1)T ], n = 1, 2, . . . .

The positive quantity max
[
0, qξ (t)

]
is referred to as the

normalized fertilization rate, i.e. the rate of fertilization,
normalized with respect to the total initial carbon input,
which assures positive trends of the SOC change index
�soc(t).

For seek of clarity, let us explicitly consider three illus-
trative cases.

– Case ξ = 1. This case corresponds to F(t0) = 0, i.e.
a null initial fertilization input. For example, this is the
case of arable unfertilized land for which is intended to
undertake a farmyard manure amendment that manages
to keep positive the trend of SOC. Starting from �c(t0+
T ) = 0 we solve

d�c
dt

= ρ(t)A�c +
(

N
(n)
P ĝr (t) − ρ(t)

Tρ(0)(r)

)
a(g)

+ max [0, q1(t)] a(f ),

with

q1(t) = ρ(t)

[
δkᵀ�c(t) + 1

Tρ(0)(r)

]
− N

(n)
P ĝr (t),

for all t ∈]t0 + nT , t0 + (n + 1)T ], n = 1, 2, . . . .
The specific rate of the farmyard manure amendment
necessary to keep SOC change positive can be only
evaluated once P(t0) is known3 and it is given by

f (t) = max [0, q1(t)] P(t0).

– Case ξ = 1/2. This case corresponds to P(t0) =
F(t0). This means that the fertilization program in the
reference year [t0, t0 + T ] has provided an addition of

3If the initial distribution of carbon in soil compartments c(t0) is
known, we can evaluate P(t0) from Eq. 10.
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carbon input equal to the one due to plant residuals.
Starting from �c(t0 + T ) = 0 we solve

d�c
dt

= ρ(t)A�c + 1

2

(
N

(n)
P ĝr (t) − ρ(t)

Tρ(0)(r)

)
a(g)

− ρ(t)

2Tρ(0)(r)
a(f ) + max

[
0, q 1

2
(t)

]
a(f ),

with

q 1
2
(t) = ρ(t)

[
δkᵀ�c(t) + 1

Tρ(0)(r)

]
− 1

2
N

(n)
P ĝr (t),

for all t ∈]t0 + nT , t0 + (n + 1)T ], n = 1, 2, . . . .
As before, the specific fertilization rate necessary to
keep SOC change positive can be only evaluated once
P(t0) + F(t0) = 2P(t0) = 2F(t0) is known (or
evaluated from Eq. 10) and it is given by

f (t) = 2 max
[
0, q 1

2
(t)

]
P(t0).

– Case ξ = 0. This case corresponds to P(t0) = 0, i.e.
a null initial plant carbon input. For example, a land at
rest in the reference year and subjected to a farmyard
manure treatment may fall in this case. Starting from
�c(t0 + T ) = 0 we solve

d�c
dt

= ρ(t)A�c− ρ(t)

Tρ(0)(r)
a(f )+max [0, q0(t)] a(f ),

with

q0(t) := ρ(t)

[
δkᵀ�c(t) + 1

Tρ(0)(r)

]
,

for all t ∈]t0 + nT , t0 + (n + 1)T ], n = 1, 2, . . . .
When F(t0) is available (or evaluated by Eq. 10) we
can deduce the specific fertilization rate f (t) from its
normalized quantity:

f (t) = max [0, q0(t)] F(t0).

In Section 8.2.2 we will illustrate the distribution of
the normalized fertilization rate max

[
0, qξ (t)

]
for ξ =

1, 1/2, 0 in the case when the model is applied to a
protected zone in the Italian Apulian region, with environ-
mental and weather conditions in the years 2006-2019.

7 A non-standard approximation of SOC
changes

In [20] the author proved that the original discrete RothC
model in [3] can be thought of as a one-step, first-order
in time, discretization of the continuous model (1). In
light of this interpretation, a novel non-standard first-order
approximation, which inherits the discrete decomposition
process of the original model and has the same equilibrium
state of the continuous dynamics (1), was proposed in
[5]. When applied as a monthly time-stepping procedure,

it can be considered a suitable alternative to the original
discrete RothC model. In monthly units the annual length
corresponds to T = 12 and the interval [t0 + nT , t0 + (n +
1)T ] is discretized in the set of instants t

(n)
m := t

(n)
m−1 + �tm,

with m = 1, . . . , 12 and t
(n)
0 := t0 + nT . The step lengths

are set as �tm := T

365
Nm ≈ 1, where Nm is the number

of days of the mth month of the nth year. By denoting with
I the 4-dimensional identity matrix, and setting f(c; t) :=
ρ(t)Ac + b(t) and Ã := −(I − �)D(I − �)−1, with

� =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
α α α α

β β β β

⎞
⎟⎟⎠ , D =

⎛
⎜⎜⎝

kdpm 0 0 0
0 krpm 0 0
0 0 kbio 0
0 0 0 khum

⎞
⎟⎟⎠ ,

the approximated values c(n)
m ≈ c(t(n)

m ) of the solution of
Eq. 12, are given by

c(n)
m+1 = c(n)

m + �tmϕ(�tmρ(t(n)
m )Ã)f(c(n)

m ; t (n)
m ) (24)

or, equivalently,

c(n)
m+1 = F(�tmρ(t(n)

m ))c(n)
m + �tmϕ(�tmρ(t(n)

m )Ã)b(t(n)
m ),

(25)

where F(t) := �+(I−�)e−tD and �tmϕ(�tmρ(t
(n)
m )Ã) =

O(diag(�tm)) [5], the function ϕ being defined in Eq. 20.
The formulation (24) emphasizes the sharing of the
stationary equilibria of the continuous autonomous model
dc
dt

= f(c) in case when the explicit temporal dependence

is neglected and temporal averaged quantities are exploited.
Formulation (25) highlights the similarity with the discrete
original RothC model which proceeds according to

c(n)
m+1 = F(�tmρ(t(n)

m ))c(n)
m + �tmb(t(n)

m ). (26)

In this paper, we are interested in finding an analogous
monthly time-stepping procedure for approximating the
changes of c(t) provided by the evolution of the variable
�c(t). From the observation that the homogeneous systems
for c(t) and �c(t) are both governed by the matrix ρ(t)A,
it makes sense to use the non standard procedure described
above. Consequently, the approximated values �c(n)

m ≈
�c(t(n)

m ) of the solution of Eq. 13, are given by

�c(n)
m+1 = �c(n)

m + �tmϕ(�tmρ(t(n)
m )Ã)f(�c(n)

m ; t (n)
m ) (27)

or, equivalently,

�c(n)
m+1 = F(�tmρ(t(n)

m ))�c(n)
m

+�tmϕ(�tmρ(t(n)
m )Ã)b(t(n)

m ), (28)

where, with abuse of notation, f(�c; t) = ρ(t)A�c + b(t)

and

b(t) =
(

N
(n)
P ĝr (t) − ρ(t)

Tρ(0)(r)

)
a(g)
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in case of no farmyard manure input, while

b(t) =
(

N
(n)
P ĝr (t) − ρ(t)

Tρ(0)(r)

)
ξa(g)

− ρ(t)

Tρ(0)(r)
(1 − ξ)a(f ) + f (t)

P (t0) + F(t0)
a(f ),

where 0 < ξ := P(t0)

P (t0) + F(t0)
< 1, in the opposite case.

Finally, �soc(t
(n)
m ) are approximated by �soc

(n)
m :=

1ᵀ�c(n)
m , for m = 1, . . . , 12 and n = 1, 2 . . . .

8 A test case: trends of SOC changes
in the Alta Murgia National Park

As an application of the illustrated procedure, we analyze
the change of SOC in the Alta Murgia National Park, a
protected area in the Italian Apulia region, southern Italy,
established in 2004 (see Fig. 3). Two parameters are fixed
for all the land surface area of 68077 ha, i.e. the depth
layer is fixed at d = 23 cm and the clay content is set
at the percentage cly = 50, i.e. the value used in [7] for
experiments at the experimental farm of the CRA-Cereal
Research Centre (41 ◦C 27′ N, 15 ◦C 30′ E) in Foggia.
Temperature, rainfull, diurnal temperature range from 2005
to 2019 at (40 ◦C 75′ N, 16 ◦C 75′ E,) are extracted from the
CRU TS 4.04 grid-box dataset [11] of the Climatic Research
Unit (University of East Anglia) and NCAS (see Fig. 4).
Potential evapotranspiration is calculated from the available
climate data according to the Thornthwaite’s formula given
in the Appendix. Estimates of the Net Primary Production
across Earth’s entire vegetated land surface are taken from
the MOD17 project,4 part of the NASA Earth Observation
System (EOS) program, which is the first satellite-driven
dataset [23] to monitor vegetation productivity on a global
scale. We have extracted the NPP data in the temporal
range from 2005 to 2019 by means of the Application
for Extracting and Exploring Analysis Ready Samples
(AppEEARS) [26] in a polygonal containing the boundary
of the Alta Murgia Park (see Fig. 5).

In Fig. 6 we report the annual NPP values and the
averaged annual temperatures with respect to their reference
values set at t0 = 2005, extracted by the above dataset. As
expected, to increasing temperatures correspond increasing
values for NPP.

Three different formulations are used for modelling the
periodic function ĝr (t). For values of r ∈ r(a) := {r ≥ 1}
corresponding to the arable class, we set ĝr (t) = ĝr(a)(t);
for r ∈ r(g) := {0.5 ≤ r < 1} associated with the
grassland class, ĝr (t) = ĝr(g)(t) and we set ĝr = ĝr(f )(t)

4https://www.ntsg.umt.edu/project/modis/mod17.php

in correspondence of the forest class described by values
r ∈ r(f ) := {0 ≤ r ≤ 0.5}. The monthly values at
t = t

(n)
m for m = 1, . . . 12, of the three main land use

distributions ĝr(a), ĝr(g), ĝr(f ) are reported in Table 1. The
reported values are assumed equal to the distribution of
plant carbon inputs given in [9] which mimics the dynamics
of typical crop rotations and permanent grassland or forest
in Europe. Finally, in Table 1 we report also the values
for kc(t, r) at t = t

(n)
m , for the three main land use, i.e

kc(t
(n)
m , r(a)), kc(t

(n)
m , r(g)), kc(t

(n)
m , r(f )), assuming that

the soil cover function Sr(t) is periodic. Plant cover was
assumed to occur in months 1–7 and 12 for the arable
(croplands) class [25].

8.1 Numerical trends of sensitivity from 2005 to
2007

In this section, using the Alta Murgia National Park data
in the period 2005–2007 we want to show the behaviour
of the sensitivities of the SOC change index to average
annual temperature, to the relative value of NPP and to r =
DPM/RPM ratio. We chose t0 = 2005T , with T = 12, thus
T emp(1) = 14.27 ◦C is the average temperature of 2006 and
N

(1)
P = 1.08 is the ratio between the Net Primary Production

of 2006 and the Net Primary Production of 2005. Once
we have computed the numerical solution of the Cauchy
problem (17), we obtain the sensitivities by summing up
the four components of the numerical solution of the initial
value problems Eqs. 29, 30 and 31 (see Appendix).

The numerical approximation of the sensitivity to the
average temperature in 2006, depicted in Fig. 7a, is a
negative function of time, consistently with Theorem 4.
Thus, an increase in the average temperature of 2006 would
have reduced �soc during the year and, consequently, the
sum of the soil carbon contained in compartments would
have decreased too.

Moreover, since the sensitivity of �soc to T emp(1) is
a decreasing function of time, we can deduce that the
perturbation in the average temperature of 2006 would have
affected the rate of decomposition at every month, and this
effect would have been amplified over time.

Analogously, we can observe that the numerical approx-
imation of the sensitivity of �soc to N

(1)
P is consistent with

Theorem 5. In fact, in Fig. 7b it is depicted as a positive (and
increasing) function of time. This means that an increase in
the Net Primary Production in 2006 with respect to the Net
Primary Production in 2005, would have increased �soc,
and consequently the sum of the soil carbon contained in
compartments, during the year. Moreover, the perturbation
in N

(1)
P would have affected the rate of decomposition at

every month with this effect amplified over time although at
a decreasing pace.
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Fig. 3 Boundaries of the Alta
Murgia National Park from
Google Earth

Finally, let us focus on the sensitivity of �soc to the
parameter r . According to our data, ϑ(1) = 4.3620 · 10−4.
Thus, since ϑ(1) is positive, by Theorem 6 we have that
the sensitivity is a negative function of time and this is
consistent with Fig. 7c. Thus, an increase in the parameter
r at the beginning of 2006, i.e. a transition from forest
to grassland and to arable classes, would have caused a
decrease in �soc and the sum of the soil carbon over
the compartments during that year. Also in this case,
the perturbation in r would have affected the rate of
decomposition at every month, again with an amplification
of the effect over time.

8.2 SOC changes scenarios in years 2005–2019

We are going to illustrate the evolution of SOC changes
in the Alta Murgia National Park in the period 2005–2019
taking as the baseline its distribution in 2005 (t0 = 2005T

with T = 12). The approximated values �c(n)
m ≈ �c(t(n)

m )

of the solution of Eq. 13 for t
(n)
m ∈ [t0 + nT , t0 + (n + 1)T ]

with n = 1, . . . , 14, provided by means of the non-standard
discrete procedure described in Eq. 28, are evaluated for the
three main land use classes: forest, grassland and arable. For

the arable case, we also show the farmyard manure program
which would be able to assure the achievement of land
degradation neutrality in 2019 with respect to 2005 taken as
the reference year.

8.2.1 SOC changes in forest and grassland classes

For the forest and grassland classes, the evolution of
�soc(t

(n)
m ), together with its averaged annual values, is

given in Figs. 8 and 9, respectively. For the forest class, we
set r = 1e − 4, r = 0.25 (i.e. the value used in the case of
forest class in literature [3]), and r = 0.5 in order to span
all the values corresponding to this class. We notice that, for
r spanning the reference set r(f ), the trends do not differ
much. For the grassland class, we set r = 0.67 (i.e. the value
used in the case of grassland class in literature [3]), r = 0.9
and r = 0.95 in order to span all the values corresponding to
this class. Notice that, differently from the forest scenario,
the dynamics of the SOC change index are much influenced
by the value of r . For both land use classes the general trend
of �soc, even oscillating, is towards decreasing values. This
suggests a scenario of loss of soil carbon stocks for both
land use classes.

Fig. 4 Climate data at (40 ◦C
75′ N, 16 ◦C 75′ E) from CRU
TS 4.04 grid-box dataset of the
Climatic Research Unit
(University of East Anglia)
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Fig. 5 Selected layer and
temporal values of NPP from the
MOD17 project of the NASA
EOS program

Fig. 6 Behaviour of relative
values of NPP and annual
averaged temperatures in
temporal interval [2005, 2019]
with respect to their initial values
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Table 1 Monthly (t = t
(n)
m , n = 0, 1, 2, . . . ) distribution of plant carbon inputs into the soil expressed as a proportion of the total ĝr (t) and rate

modifying factor kc(t, r) related to soil cover. Data from [9] and [25]

t ĝr(a)(t) kc(t, r(a)) ĝr(g)(t) kc(t, r(g)) ĝr(f )(t) kc(t, r(f ))

t
(n)
1 (Jan, 31) 0.0 0.6 0.05 0.6 0.025 0.6

t
(n)
2 (Febr, 28) 0.0 0.6 0.05 0.6 0.025 0.6

t
(n)
3 (Mar, 31) 0.0 0.6 0.05 0.6 0.025 0.6

t
(n)
4 (Apr, 30) 1/6 0.6 0.05 0.6 0.025 0.6

t
(n)
5 (May, 31) 1/6 0.6 0.10 0.6 0.05 0.6

t
(n)
6 (Jun, 30) 1/6 0.6 0.15 0.6 0.05 0.6

t
(n)
7 (Jul, 31) 0.5 0.6 0.15 0.6 0.05 0.6

t
(n)
8 (Aug, 31) 0.0 1 0.10 0.6 0.05 0.6

t
(n)
9 (Sept, 30) 0.0 1 0.10 0.6 0.20 0.6

t
(n)
10 (Oct, 31) 0.0 1 0.10 0.6 0.20 0.6

t
(n)
11 (Nov, 30) 0.0 1 0.05 0.6 0.20 0.6

t
(n)
12 (Dec, 31) 0.0 0.6 0.05 0.6 0.10 0.6

8.2.2 SOC change in arable class and fertilization program

For the arable class, we firstly assume that no farmyard manure
enters the system so that the evolution of �soc(t

(n)
m ),

together with its averaged annual values, is given in Fig. 10.
We set r = 1, r = 1.44 (i.e. the value used in the case of
forest class in literature [3]), and r = 100 in order to span all

the values corresponding to this class. This case is the most
critical one: the general trend departing from the baseline of
positive values is much more pronounced.

An indirect proof of this trend can be extrapolated
by an experiment run in the area whose environmental
conditions and soil composition have been used for the
model parameter settings. The experiment was performed

Fig. 7 Numerical non-standard
approximation of the temporal
evolution of s�soc,T emp(1) ,
s
�soc,N

(1)
P

and s�soc,r in 2006,

with time-step �t = 0.01.
Parameters: r = 0.25 for the
forest class, r = 0.67 for the
grassland class and r = 1.44 for
the arable class
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Fig. 8 The temporal evolution
of �soc(t

(n)
m ), together with its

averaged annual values
(arithmetic annual means of the
monthly simulated values) for
the forest class. Parameters
r = 10−4, r = 0.25, r = 0.5

on a time span of 16 years, partially overlapping with the
time interval considered in our study [1]. A similar trend
in temperature and NPP has been observed for both the

experiment and our analysis. The result of the experiment
is an overall 14% decrease of SOC thus confirming, at least
qualitatively, the results shown in Fig. 10.

Fig. 9 The temporal evolution
of �soc(t

(n)
m ), together with its

averaged annual values
(arithmetic annual means of the
monthly simulated values) for
the grassland class. Parameters
r = 0.67, r = 0.9, r = 0.95
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Fig. 10 The temporal evolution
of �soc(t

(n)
m ), together with its

averaged annual values
(arithmetic annual means of the
monthly simulated values) for
the arable class. Parameters
r = 1, r = 1.44, r = 100

Fig. 11 Box plot (with stacked
values of 14 consecutive years)
of the normalized fertilization
rate max

[
0, qξ (t)

]
for the arable

class with r = 1.44. Parameter
ξ = 1 (only plant initial carbon
input i.e. F(t0) = 0), ξ = 0.5
(same content of plant and FYM
initial carbon inputs i.e.
P(t0) = F(t0)), ξ = 0 (only
FYM initial carbon input i.e.
P(t0) = 0)
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For this class, in order to reach positive quantities, it
is necessary to intensify the organic carbon input. To this
aim, we can apply the findings of Theorem 7 in order to
detect the farmyard manure program necessary to enforce
positive values of �soc. In Fig. 11 we report the monthly
boxes of the normalized fertilization rate max

[
0, qξ (t)

]
,

stacked on the years 2006–2019 for the arable class as
defined in Theorem 7, for values of ξ = 1, 1/2, 0. From
the stacked plot we see that the normalized fertilization
rate increases with ξ and during the years, is distributed
with a maximum value around August and decreases from
August to December. Low values are generally taken on
winter months but the lowest rates are assumed in April
and July for values of ξ > 0 corresponding to an initial
non null carbon input coming from plant residual (P(t0) �=
0). The effects of the fertilization process are shown in
Fig. 12 in which we have added the case corresponding
to ξ = 0.8. The greatest effect in increasing the SOC
change index due to the farmyard amendments is obtained
in correspondence of ξ = 1, which is the case when
the initial carbon input is only due to the plant residual
and no fertilization program has been implemented in the
reference year (F(t0) = 0). On the contrary, the lowest
effect of the fertilization action provides a constant (null)
SOC index for ξ = 0. This is the case of P(t0) = 0
which corresponds, for example, to land at rest where
farmyard manure has been applied. In this case, no initial

contribution to carbon input is supposed to come from plant
residuals.

9 Comments and future research directions

Soil carbon models (e.g. RothC [3], Century [22]), which
take into account the interactions between climate and land
use management, are widely used to predict SOC changes
under future climate scenarios. Warmer temperatures posi-
tively affect SOC stocks since they reduce decomposition,
as an effect of decreased soil moisture, and also increase
Net Primary Production thus augmenting carbon inputs to
the soil. On the other hand, increasing temperatures nega-
tively affect SOC stocks as they increase the decomposition
rate of soil organic matter. Hence, whether soils gain or
lose SOC depends upon how balanced the competing gain
and loss processes are, with subtle interacting changes in
temperature, moisture, soil type and land use [9].

With the aim of improving the prediction of the factors
that determine the size and direction of change, we have
introduced the so-called SOC change index and we have
described its evolution based on the RothC carbon model.
Under the hypothesis of constant environmental and organic
fertilization conditions, it does not require evaluating or
measuring the specific initial value of SOC, as it describes
the deviation from the assumed initial equilibrium.

Fig. 12 The temporal evolution
of �soc(t), together with its
averaged annual values for the
arable class with r = 1.44
controlled by farmyard manure.
Increasing values of �soc(t) for
parameters ξ = 0 (only FYM
initial carbon input) ,
ξ = 0.5, 0.8, and ξ = 1 (only
plant initial carbon input)
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The strength of our method is in the context of a land
degradation analysis [18]. Indeed, for establishing if land
degradation neutrality (LDN) has been achieved or not, we
need only to establish the sign of the change of the main
indicators with respect to an initial value taken as a baseline.

As concern the SOC indicator to establish the sign of its
change, in absence of farmyard manure inputs, by means of
the classical RothC method, one needs

1. available measured data about the initial total carbon
content soc(t0) and its distribution among the pools
c(t0);

2. to run the model in ‘reverse’ mode to establish the initial
plant carbon input P(t0) which makes c(t0) the initial
equilibrium state of the system;

3. to run the model in forward mode to evaluate soc(t);
4. to perform the difference soc(t) − soc(t0) to establish

the sign of the change.

To make the same prevision with the proposed methodology,
one only needs to run the model for the variable �c starting
from the null initial value and check the sign of the sum
of its components which provides the value of �soc(t).
Indeed, the dynamics of �c given in Eq. 16 do not depend
on P(t0) nor on c(t0) and �soc(t) has the same sign of

the SOC change since �soc(t) := soc(t) − soc(t0)

P (t0)
with

P(t0) > 0.
The simulation example here proposed presents the kind

of qualitative results that our model is able to provide.
The effectiveness of the SOC change index has been
tested for evaluating the impact of warming temperatures
on the achievement of land degradation neutrality for the
SOC indicator in Alta Murgia National Park, a protected
area in the Apulia region located in the south of Italy.
The performed sensitivity analysis, based on time-averaged
parameter values, has provided local information on the
impact of change in mean annual temperature, of deviations
of the mean annual NPP from its reference value and
of the degree of decomposability of plant material. The
results of the sensitivity analysis are in accordance with
the experimental results, as we found that the SOC change
index is negatively affected by increasing mean annual
temperature and positively by increasing deviation of NPP.
Changes in DPM/RPM ratio r , which in turn are related
to land use change, indicate that all land use classes are
positively affected when the deviation of NPP prevails on
deviation in decomposition and negatively in the opposite
case. In both cases, the arable class is the most affected.

The simulated dynamics of the SOC change index in
the Alta Murgia National Park in years [2005, 2019] with
climate data of CRU (University of East Anglia) and
estimates of NPP taken from the MOD17 project indicate

negative trends for all the land use classes. The arable class,
which is most affected by changes in NPP and temperature,
as suggested by our sensitivity analysis, shows a more
pronounced negative trend, which is supported by some
in-field experiments.

In view of the achievement of neutrality for SOC
indicator, we have determined the normalized fertilization
rate able to reverse a negative departure of the SOC change
index in arable soils. The dynamics of the SOC change
index under the hypothesis of farmyard manure input has
revealed a powerful tool for predicting the suitable land
fertilization practice to implement for enhancing the SOC
stocks in the arable soil of Alta Murgia Park and invert the
negative trend.

In this paper, the dynamics of the SOC change index has
been tailored to the RothC model. In principle, its dynamics
can be described by any soil organic carbon model. The
versatility of RothC relies on its special linear functional
form which allows to derive in a (almost) ‘straightforward’
way the specific equations for the SOC change index
dynamics. However, we stress that our approach might
be generalized to other soil models (for example Century
model [22]) along the path here described: tracing the SOC
change index under the hypothesis of initial equilibrium and
studying its sensitivity to the main parameters. In particular,
a future research direction is represented by the description
of the SOC change index under a suitable carbon model
dynamics which places the action of bacteria at the heart of
the mechanisms of the decomposition process as indicated
in [10, 13].

The sensitivity analysis identifies the sensitive carbon
compartments only in view of their contribution, positive
or negative, to the sensitivity of the global SOC metric. To
take some general conclusions or to make some meaningful
previsions, the qualitative trends of the SOC change index
and the qualitative results of its sensitivity analysis to
the main parameters should result independent of the soil
organic carbon model considered (and the number and the
nature of its compartments). This question also deserves to
be addressed in the next future.

Appendix

A.1 Proof of Theorem 2

By plugging the expression of P(t0 + nT ) into the Eq. 12,
for all t ∈ [t0 + nT , t0 + (n + 1)T ], and n = 1, 2, . . . , we
have

dc
dt

= ρ(t)Ac + P(t0)N
(n)
P ĝr (t)a(g) + f (t)a(f ).

1362



Computational Geosciences (2022) 26:1345–1366

Thus,

d�c
dt

= 1

P(t0) + F(t0)

(
ρ(t)Ac + P(t0)N

(n)
P ĝr (t)a(g)

+f (t)a(f )
)

= ρ(t)A�c + 1

P(t0) + F(t0)(
ρ(t)Ac(t0) + P(t0)N

(n)
P ĝr (t)a(g) + f (t)a(f )

)

= ρ(t)A�c + P(t0)

P (t0) + F(t0)
N

(n)
P ĝr (t)a(g)

+ ρ(t)Ac(t0)
P (t0) + F(t0)

+ f (t)

P (t0) + F(t0)
a(f ).

Recalling the relation between P(t0) and c(t0) in Eq. 9 that
yields

Ac(t0) = − 1

Tρ(0)(r)

(
P(t0)a(g) + F(t0)a(f )

)
,

we have

d�c
dt

= ρ(t)A�c +
(

N
(n)
P ĝr (t) − ρ(t)

Tρ(0)(r)

)
ξa(g)

− ρ(t)

Tρ(0)(r)
(1 − ξ)a(f ) + f (t)

P (t0) + F(t0)
a(f ).

A.2 Proof of Theorem 3

From

d�c(t0 + T )

dt
= ρ(t0 + T )A�c(t0 + T )

+ϑ(t0 + T )a(g) = ϑ(t0 + T )a(g)

it results that, for t = t0 + T + ε,

�c(t) = εϑ(t0 + T )a(g) + O(ε2);
consequently,

�c(t)−�c(t)=ε
(
ϑ(1)ϕ (B(ε))−ϑ(t0+T )I

)
a(g)+O(ε2).

Notice that the eigenvalues of A, are negative and distinct
from each other (λ1 < λ2 < λ3 < λ4 < 0),
therefore there is a nonsingular matrix V ∈ R

4×4 such
that A = V −1EV , where E is the diagonal matrix
whose diagonal components are the eigenvalues of A.
Consequently, ϕ(B(ε)) is diagonalizable and its eigenvalues
are positive and less than one. In fact,

ϕ(B(ε)) = ϕ(ερ(1)(r)A) = V −1ϕ
(
ερ(1)(r)E

)
V,

where ϕ
(
ερ(1)(r)E

)
is diagonal and its components are 0 <

ϕ(ερ(1)(r)λi) < 1, for i = 1, . . . , 4 because ερ(1)(r)λi <

0.
Now, let us consider the norm on R

4 such that for all
vector x ∈ R

4, ‖x‖ := ‖V x‖2 and the corresponding matrix

norm that for all M ∈ R
4×4, ‖M‖ = ‖V MV −1‖2. We have

that

‖ϕ(B(ε))‖ = ‖V ϕ(B(ε))V −1‖2 = ‖ϕ(ερE)‖2

= ϕ(ερ(1)(r)λ4) < 1.

Moreover, since all norms on finite-dimensional vector
spaces are equivalent, there exists a constant c > 0 such
that for all vector x ∈ R

4 it results that ‖v‖ ≤ c‖x‖2, in
particular ‖a(g)‖ < c‖a(g)‖2 = c. So,

∥∥∥
(
ϑ(1)ϕ (B(ε)) − ϑ(t0 + T )I

)
a(g)

∥∥∥
≤ c

∥∥∥ϑ(1)ϕ (B(ε)) − ϑ(t0 + T )I

∥∥∥
≤ c

(
|ϑ(1)|‖ϕ (B(ε)) ‖ + |ϑ(t0 + T )|

)

≤ 2c max
(
|ϑ(1)|, |ϑ(t0 + T )|

)
.

A.3 Proof of Theorem 4

Since the sensitivity of �soc to T emp(1) is defined as
s�soc,T emp(1) = 1ᵀs�c,T emp(1) , let us begin by obtaining the
initial value problem for s�c,T emp(1) . According to Eq. 15,
applied to Eq. 17, we have that for all t ∈]t0 + T , t0 + 2T ]
ds�c,T emp(1)

dt
= ρ(1)(r)As�c,T emp(1)

+ ∂

∂T emp(1)

(
ρ(1)(r)A�c + ϑ(1)a(g)

)
,

s�c,T emp(1) (t0 + T ) = ∂�c(t0 + T )

∂T emp(1)
= 0,

(29)

where

∂

∂T emp(1)

(
ρ(1)(r)A�c + ϑ(1)a(g)

)

= ∂ρ(1)(r)

∂T emp(1)
A�c + ∂ϑ(1)

∂T emp(1)
a(g)

= ∂ρ(1)(r)

∂T emp(1)

(
A�c − a(g)

Tρ(0)(r)

)
.

Thus, for all t ∈]t0 + T , t0 + 2T ]
ds�c,T emp(1)

dt
= ρ(1)(r)As�c,T emp(1)

+ ∂ρ(1)(r)

∂T emp(1)

(
A�c − a(g)

Tρ(0)(r)

)
.

By multiplying both sides of the previous equation by 1ᵀ,
and by recalling that 1ᵀA = −δkᵀ, and 1ᵀa(g) = 1, Eq. 21
is proved.

For proving the second part of the statement, let us
consider the expression of �c(t) in Eq. 19.
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By setting ψ(t) := kᵀϕ
(
ρ(1)(r)A(t − t0 − T )

)
a(g), we

have that

kᵀ�c(t) = (t − t0 − T )ψ(t)ϑ(1),

and, by replacing ϑ(1) with its definition in Eq. 18, Eq. 21
becomes

ds�soc,T emp(1)

dt
= −ρ(1)(r)δkᵀs�c,T emp(1)

− ∂ρ(1)(r)

∂T emp(1)

[
δ(t − t0 − T )ψ(t)

T(
N

(1)
P − ρ(1)(r)

ρ(0)(r)

)
+ 1

Tρ(0)(r)

]
.

Consider that ψ(t0 + T ) = kᵀa(g) > 0, then, by continuity,
there is a number ε̄ > 0 such that ψ(t) > 0 for all
t ∈]t0 + T , t0 + T + ε̄]. By defining kmin := mini ki ,
then kᵀs�c,T emp(1) ≥ kmin1

ᵀs�c,T emp(1) , and δ(t − t0 −
T )ψ(t)N

(1)
P > 0 for all t ∈]t0 + T , t0 + T + ε̄]. It follows

that

ds�soc,T emp(1)

dt
≤ −ρ(1)(r)δkmin1

ᵀs�c,T emp(1)

− ∂ρ(1)(r)

∂T emp(1)

1−δ(t−t0−T )ψ(t)ρ(1)(r)

Tρ(0)(r)

for all t ∈]t0 + T , t0 + T + ε̄].
Notice that the function (t − t0 − T )ψ(t) is positive

for all t ∈]t0 + T , t0 + T + ε̄] and it is equal to zero at

t = t0 + T . Since
1

δρ(1)(r)
> 0, there exists an ε > 0 such

that (t−t0−T )ψ(t) ≤ 1

δρ(1)(r)
for all t ∈]t0+T , t0+T +ε].

Thus, exploiting the positivity5 of
∂ρ(1)(r)

∂T emp(1)
, we have that

ds�soc,T emp(1)

dt
≤ −ρ(1)(r)δkmin1

ᵀs�c,T emp(1) ,

∀t ∈]t0 + T , t0 + T + ε]
s�soc,T emp(1) (t0 + T ) = 0.

The solution of the Cauchy problem
dx

dt
= −ρ(1)(r)δkminx,

with x(t0 + T ) = 0, is the function x(t) ≡ 0, for all
t ∈ [t0 + T , t0 + T + ε]. Since s�soc,T emp(1) (t0 + T ) =
x(t0 + T ) = 0, we have that s�soc,T emp(1) ≤ x(t) = 0, for
all t ∈ [t0 + T , t0 + T + ε].

5 ∂ρ(1)(r)

∂T emp(1) = 106.06
47.91 (ka(T emp(1)))2kb(Acc(1))kc(r)

e

106.06
T emp(1)+ 106.06

log(46.91)
−T emp(0)

(T emp(1)+ 106.06
log(46.91)

−T emp(0))2 > 0.

A.4 Proof of Theorem 5

At first, let us consider the sensitivity of �c to N
(1)
P , which

satisfies the following initial value problem

ds
�c,N(1)

P

dt
= ρ(1)(r)As

�c,N(1)
P

+ a(g)

T
, t ∈]t0+T , t0 + 2T ]

s
�c,N(1)

P

(t0 + T ) = 0, (30)

according to Eq. 15 applied to Eq. 17.
By recalling that 1ᵀA = −δkᵀ and 1ᵀa(g) = 1 it is easy

to see that s
�soc,N

(1)
P

satisfies the initial value problem (22).

To complete the proof, let us define kmax := maxi ki .
Thus,

ds
�soc,N

(1)
P

dt
≥ −ρ(1)(r)δkmaxs�soc,N

(1)
P

,

for all t ∈]t0 + T , t0 + 2T ]. Since s
�soc,N

(1)
P

(t0 + T ) = 0,

we have that s
�soc,N

(1)
P

≥ 0 for all t ∈ [t0 + T , t0 + 2T ].

A.5 Proof of Theorem 6

Let us begin by obtaining the initial value problem for s�c,r .
According to Eqs. 15 applied to Eq. 17, we have that

ds�c,r

dt
= ρ(1)(r)As�c,r

+ ∂

∂r

(
ρ(1)(r)A�c + ϑ(1)a(g)

)

s�c,r (t0 + T ) = ∂�c(t0 + T )

∂r
= 0, (31)

where

∂

∂r

(
ρ(1)(r)A�c + ϑ(1)a(g)

)
= ∂ρ(1)(r)

∂r
A�c + ϑ(1) ∂a(g)

∂r

= ∂ρ(1)(r)

∂r
A�c + ϑ(1)

(r + 1)2
v

and v := [1, −1, 0, 0]ᵀ. Thus, we have that

ds�c,r

dt
= ρ(1)(r)As�c,r + ∂ρ(1)(r)

∂r
A�c + ϑ(1)v

(r + 1)2
.

By multiplying both sides of the above equation by 1ᵀ, and
recalling that 1ᵀA = −δkᵀ, and 1ᵀv = 0, Eq. 23 is proved.

For the second part of the proof, as in the proof of
Theorem 4, there exists an ε > 0 such that for all t ∈
]t0 + T , t0 + T + ε] the sign of the function

kᵀ�c(t) = ϑ(1)(t−t0−T )kᵀϕ
(
ρ(1)(r)A(t − t0 − T )

)
a(g)

is the same as the sign of ϑ(1). For this reason, we
distinguish the two cases: ϑ(1) ≥ 0 and ϑ(1) < 0. Let us
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observe that
∂ρ(1)(r)

∂r
> 06 so that, when ϑ(1) ≥ 0, it results

ds�soc,r

dt
= −ρ(1)(r)δkᵀs�c,r − ∂ρ(1)(r)

∂r
δkᵀ�c

≤ −ρ(1)(r)δkmins�soc,r .

Since s�soc,r (t0 + T ) = 0, we have that s�soc,r (t) ≤ 0
for all t ∈ [t0 + T , t0 + T + ε]. If ϑ(1) < 0, then
ds�soc,r

dt
≥ −ρ(1)(r)δkmaxs�soc,r so that, as s�soc,r (t0 +

T ) = 0, then s�soc,r (t0 + T ) ≥ 0, for all t ∈ [t0 + T , t0 +
T + ε] and this completes the proof.

A.6 Thornthwaite’s formula for estimating
the potential evapotranspiration

We need to estimate the potential evapotranspiration pet (t),
[mmmonth−1], estimated by means of the Thornthwaite’s
formula which is expressed, for the nth year, on a monthly

basis at the instants t
(n)
m := t0 + nT + T

365

m∑
i=1

Ni with

m = 1, . . . , 12 and Ni denoting the number of days of the
ith month of the nth year,7 as follows:

pet (t(n)
m ) := 16

L
(n)
d,m

12

Nm

30

(
10T emp

(n)
d,m

In

)a

.

In the above formula, L
(n)
d,m and T emp

(n)
d,m represent

the average day length (hours) and the average daily
temperature of the mth month of the nth year, respectively.
Finally, In is the heat index for the nth year given by

In =
12∑

k=1

(
T emp

(n)
k

5

)1.5

where T emp
(n)
k :=

ˆ t
(n)
k

t
(n)
k−1

T emp(s)ds

t
(n)
k − t

(n)
k−1

is the kth monthly

mean temperature, for k = 1, . . . , 12. Finally,

a = 6.710−7I 3
n − 7.710−5I 2

n + 1.810−2In + 0.49.

A.7 Estimation of the accumulate soil moisture
deficit

The accumulate soil moisture deficit in the nth year, is also
estimated on a monthly basis at the instants t

(n)
m := t0+nT +

6 ∂ρ

∂r
(T emp(1), r) = ka(T emp(1))kb(Acc(1))Nb

ex(r)

r2
(
1 + ex(r)

)2
,

x(r) = 30(r − 1)

r

7In a leap year t
(n)
m := t0 + nT + T

366

m∑
i=1

Ni and N2 = 29.

T

365

m∑
i=1

Ni with m = 1, . . . , 12. Then Acc(t
(n)
m , M) = 0

for all m = 1, . . . , m̄ such that pet (t
(n)
m ) ≤ rain(t

(n)
m ),

while

Acc(t(n)
m , M) = min

(
max

(
M, Acc(t

(n)
m−1, M)

+rain(t(n)
m ) − pet (t(n)

m )
)

, 0
)

for m = m̄ + 1, . . . , 12.
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