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Abstract This work presents and analyzes, on unstruc-
tured grids, a discrete duality finite volume method
(DDFV method for short) for 2D-flow problems
in nonhomogeneous anisotropic porous media. The
derivation of a symmetric discrete problem is estab-
lished. The existence and uniqueness of a solution
to this discrete problem are shown via the positive
definiteness of its associated matrix. Properties of this
matrix combined with adequate assumptions on data al-
low to define a discrete energy norm. Stability and error
estimate results are proven with respect to this norm.
L2-error estimates follow from a discrete Poincaré in-
equality and an L∞-error estimate is given for a P1-
DDFV solution. Numerical tests and comparison with
other schemes (especially those from FVCA5 bench-
mark) are provided.
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1 Introduction and the model problem

Efficient schemes are required for addressing flow
problems in geologically complex media. The most im-
portant criteria of efficiency are (1) mass conservation
in grid blocks, (2) accurate approximation of Darcy
velocity, (3) capability for dealing with anisotropic flow
on unstructured grids and diverse heterogeneities (rel-
evant to absolute permeability, porosity, etc.), and (4)
easy implementation. The following schemes are well
known for meeting many of the previous efficiency
criteria: (1) mixed finite element methods (see, for
instance, [7, 36]), (2) control-volume finite element
methods (see, for instance, [10, 38]), (3) mimetic
finite difference methods (see, for instance, [6, 8] and
references therein), (4) cell-centered finite volume
methods (see, for instance, [14–18] and certain ref-
erences therein; see also [5, 24, 25]), (5) multipoint
flux approximation (with pioneer works from [2, 37];
see also [1, 11] and some contributions to conver-
gence analysis of MPFA O-scheme like [23]), and
(6) discrete duality finite volume methods (DDFV
methods for short). The DDFV methods come in
two formulations. The first formulation to appear
is based on interface flux computations for primary
and dual meshes, accounting with the interface f lux
continuity. The pioneer works for this formulation
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are [31] and [21] followed by [20, 27, 30, 32] and
[19]. The second formulation of DDFV is based on
pressure gradient reconstructions over a diamond grid.
This formulation has been first introduced in [13] (see
also [33, 34]). Note that this second formulation has
been given focused attention by some mathematicians
as Andreianov, Boyer, and Hubert who have greatly
contributed to its mathematical development. Indeed,
key ideas involved in the pressure gradient reconstruc-
tion approach have been generalized by these authors
(see [3]) to nonlinear operators of Leray–Lions type.
Motivated by the possibility of increasing the order
of convergence of the pressure gradient reconstruction
method for nonlinear operators, Boyer and Hubert
have proposed in [9] the so-called modified DDFV.
In what follows, the first formulation of DDFV is
named flux-based DDFV and the second one is called
gradient-based DDFV. Note that flux is understood
here in the sense of outward normal component of the
Darcy velocity on cell boundaries.

As shown in FVCA5 benchmark test problems,
the flux-based DDFV and gradient-based DDFV may
lead to very different orders of convergence for some
diffusion models. In fact, these two formulations de-
scribe two different ways for solving flow problems in
the framework of DDFV. The theoretical analysis strat-
egy of the flux-based DDFV developed in [30, 32] on a
rectangular mesh follows closely ideas from [14]. Very
different ingredients are used in [3] and [9] for getting
either the numerical scheme or the error estimates.

AS pointed out by some authors (namely
Moukouop-Nguena and Njifenjou in FVCA5 bench-
mark [22]), there exist many variants for the flux-based
DDFV. Following the ideas exposed in [14], some
authors (see [30]) have, on a square grid, investigated
the stability and convergence properties of a variant
of the flux-based DDFV, named reused-value method.
This work is a continuation of the one in [30]. In
other words, our purpose in this paper was to look
for sufficient conditions on general grids for proving
the stability and the convergence of the reused-value
method. More precisely, the main points of our work
are the following:

1. A theoretical analysis of the flux-based DDFV on
general grids for flow problems in polygonal (possi-
bly nonconvex) anisotropic nonhomogeneous me-
dia

2. Numerical validations on general meshes, thanks
to some FVCA5 benchmark problems exposed in
Section 4

3. Comparison of our flux-based DDFV with other
numerical schemes (including gradient-based DDFV

methods) in terms of convergence rate of approxi-
mate pressure and pressure gradient for L2-norm.

Let us emphasize that one novelty of this work may
be exhibited in terms of methodology for formulating
and theoretically analyzing a DDFV model on general
grids in two dimensions. We start with a 2D linear
diffusion problem: Find a real function ϕ defined over
� such that

−div(K grad ϕ) = f in � (1.1)

ϕ = 0 on � (1.2)

where � is a given open polygonal domain and � its
boundary and where f is a given function. K = K(x),
with x = (x1, x2)

t ∈ �, is a full matrix which meets the
following conditions (symmetry, boundedness, and uni-
form ellipticity):

∀ 1≤ i, j ≤ 2, Kij(x)= K ji(x) a.e. in �

and Kij ∈ L∞ (�) (1.3)

∀ ξ ∈ R
2 γmin |ξ |2 ≤ ξT K(x)ξ ≤ γmax |ξ |2 a.e. in �

(1.4)

where γmin and γmax are strictly positive real numbers
independent of x, | . | denotes the euclidian norm in R

2,
and Kij(.) is the component of K.

Remark 1.1 Note that the flux-based DDFV analyzed
here applies to 3D diffusion phenomena. We should
come back to this point in further developments.

The elliptic operator involved in the left-hand side
of Eq. (1.1) is similar to the one arising in subsurface
single- or multiphase flows (in petroleum and hydroge-
ology engineering), and this motivates our study.

2 The discrete problem: existence and uniqueness

We start with exhibiting the discrete problem. Then,
we focus on existence and uniqueness of a discrete
solution.

2.1 Domain discretizations: some definitions
and notations

For the polygonal (not necessarily convex) domain �,
we consider matching unstructured primary meshes P
made up of arbitrary convex polygons called primary
cells (see Fig. 1). Nevertheless, the method applies to
nonmatching meshes as numerically demonstrated in
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Fig. 1 Example of a primary matching unstructured mesh

Section 4. Let us introduce some definitions very useful
for our presentation.

Definition 2.1 An edgepoint is any point (from �, the
closure of � in the sense of the usual topology of R

2)
located over an edge from P and different from the
extremities of that edge.

Definition 2.2 Two edgepoints I and J are called
neighboring edgepoints if they share some vertex V in
the sense that I and J belong to two different edges
intersecting in V.

In the context of unstructured primary meshes, the
definition of a discrete energy norm similar to the one
in [30] requires that the cellpoints lie inside certain
perimeters to be defined. For this reason, the main
steps for defining the cellpoints are as follows: (1)
Choose arbitrarily one point (different from a vertex)
on each edge of the mesh P . This process generates a
finite family of edgepoints, denoted by E . (2) Join every
pair of neighboring edgepoints by a dotted straight line.
By this way, we generate an auxiliary mesh denoted
by A. (3) Fix arbitrarily one point inside any auxiliary
cell completely embedded in a primary cell. By doing
so, one generates a finite family of cellpoints that may
be identified with the set P of primary cells. Figure 2
illustrates the location of edgepoints and cellpoints.

Remark 2.3 Note that in 3D, for a given primary mesh
on �, the associated auxiliary mesh is generated easily.
Indeed, since each primary cell C involves a finite
number of faces, there is the same number of face
points lying on the boundary of C. Therefore, one could
associate with these face points the smallest polyhedron
containing all of them.

According to the variational theory of linear elliptic
problems, the system (1.1)–(1.2) possesses a unique
solution ϕ in the so-called Sobolev space H1

0 (�), un-

der the assumptions (1.3)–(1.4) and the condition that
f ∈ L2 (�). Let us assume that the diffusion matrix
coefficient K is a piecewise constant matrix function
over �. This assumption is realistic for engineering
problems as reservoir or aquifer simulations.

Definition 2.4 A mesh M defined over � is compatible
with the discontinuities of K in � if these discontinuities
are confined in the interfaces of M.

Main assumptions We assume that the primary mesh
P is compatible with the discontinuities of K in � and
that these discontinuities divide � into a finite number
of convex subdomains {�s}s∈S. On the other hand, we
suppose that the restriction over �s of the exact solu-
tion to Eqs. (1.1)–(1.2), denoted by ϕ|�s

, satisfies to

ϕ|�s
∈ C2(�s) ∀ s ∈ S. (2.1)

2.2 Formulation of the discrete problem

Let us now focus on investigating the flux-based
DDFV formulation of Eqs. (1.1)–(1.2). The investi-
gated DDFV scheme should be a linear system in-
volving the quantities {uP}P∈P and {uP∗ }P∗∈D as dis-
crete unknowns, where D represents the dual mesh
(to be defined later). These unknowns are expected
to be reasonable approximations of {ϕP}P∈P (cell-
point pressures) and {ϕP∗ }P∗∈D (internal vertex pres-
sures), respectively, where ϕP = ϕ

(
xP

1 , xP
2

)
and ϕP∗ =

ϕ
(
xP∗

1 , xP∗
2

)
.

2.2.1 Molecules for DDFV computation of f luxes

Let CP be a primary cell, where P is the correspond-
ing cellpoint. We integrate the two sides of the bal-
ance Eq. (1.1) in CP. Applying the Ostrogradski’s
theorem to the integral in the left-hand side of this
equation leads to computing the flux across the bound-

Fig. 2 A primary mesh (full lines) and the associated auxiliary
mesh (dotted lines), including edgepoints and cellpoints in black
and blue colors, respectively
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ary of CP. Using a suitable quadrature formula for
approximating this flux, a discrete balance equation
is derived. For illustrating our ideas, we consider an
edge [A∗ B∗] associated with the primary cell CP (see
Fig. 3). Let KP be the absolute permeability tensor of
the cell CP. Denoting by ξ P

[A∗ B∗] the unit normal vector
to [A∗ B∗] exterior to CP, the flux expression over the
edge [A∗ B∗] viewed as part of the boundary of CP is
given by

QP
[A∗ B∗] = −

∫

[A∗ I]
grad ϕ.

(
KPξ P

[A∗ B∗]
)

dγ

−
∫

[I B∗]
grad ϕ.

(
KPξ P

[A∗ B∗]
)

dγ. (2.2)

Before starting with the flux computations across the
subedges [A∗ I] and [I B∗], let us set

−→
PI =

∣
∣
∣
−→
PI
∣
∣
∣ σP ,

−−−→
A∗ B∗ =

∣
∣
∣
−−−→
A∗ B∗

∣
∣
∣ τh

where h = max{size(P), size(D)}. (2.3)

Then, it is easily seen that the following identity holds:

KPξ P
[A∗ B∗] = ah

(
KP) σP − b h

(
KP) τh (2.4)

where the real numbers ah
(
KP
)

and b h
(
KP
)

are given
by the relations

ah
(
KP) = 1

cos θ
P,I
h

(
ξ P
[A∗ B∗]

)t
KPξ P

[A∗ B∗],

b h
(
KP) = 1

cos θ
P,I
h

(
ξ B∗
[PI]
)t

KPξ P
[A∗ B∗] (2.5)

where θ
P,I
h is the angle defined by the vectors σP and

ξ P
[A∗ B∗], and where ξ B∗

[PI] denotes the unit normal vector
to [PI] exterior to the triangle (P I B∗). Note that 0 ≤
θ

P,I
h < π

2 , and therefore, 0 < cos θ
P,I
h ≤ 1.

2.2.2 Flux computations across the primary grid edges

The decomposition of KPξ P
[A∗ B∗] given by Eq. (2.4) lets

the first integral in the right-hand side of Eq. (2.2) be
expressed as

−
∫

[I A∗]
grad ϕ · (KPξ P

[A∗ B∗]
)

dγ

= b h
(
KP) [ϕI − ϕA∗ ] + ah

(
KP) hI A∗

hPI

× [ϕp − ϕI
]+ T P

[I A∗] (2.6)

where hI A∗ =
∣
∣
∣
−−→
I A∗

∣
∣
∣, hPI =

∣
∣
∣
−→
PI
∣
∣
∣ and where the trun-

cation error T P
[I A∗] is given by

T P
[I A∗] = −ah

(
KP
)

2

[
h2

I A∗ (σP)t ϕ
′′
(M) τh

− hI A∗ hPI (σP)t ϕ
′′
(Q) σP

]
(2.7)

with M ∈ [I A∗], Q ∈ [PI], and ϕ
′′
(.) being the Hessian

of ϕ. Note that ϕ
′′
(.) exists, thanks to Eq. (2.1).

Let us continue with performing the flux compu-
tation across [I B∗]. For this aim, we use again the
decomposition of ξ P

[A∗ B∗], and therefore, it follows that

−
∫

[I B∗]
grad ϕ · (KPξ P

[A∗ B∗]
)

dγ

= b h
(
KP) [ϕB∗ − ϕI]

+ ah
(
KP) hI B∗

hPI
[ϕP − ϕI] + T P

[I B∗] (2.8)

where hI B∗ =
∣
∣∣
−−→
I B∗

∣
∣∣ and where T P

[I B∗] is the truncation
error given by

T P
[I B∗] = −ah

(
KP
)

2

[
h2

I B∗ (σP)t ϕ
′′
(N) τh

− hI B∗ hPI (σP)t ϕ
′′
(Q) σP

]
(2.9)

Fig. 3 Two molecules for a
DDFV computation of the
flux across the edge [A∗ B∗].
Left: [A∗ B∗] lies inside �,
Right: [A∗ B∗] is part of the
boundary of �
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with N ∈ [I B∗]. Thus, the total exact flux across the
edge [A∗ B∗] viewed as part of the boundary of the cell
CP reads

QP
[A∗ B∗] = b h

(
KP) [ϕB∗ − ϕA∗ ]

+ ah
(
KP) hA∗ B∗

hPI
[ϕP − ϕI] + T P

I(A∗,B∗) (2.10)

where for a fixed Q ∈ [PI] and fixed M, N ∈ [A∗ B∗],
we have set

T P
I(A∗,B∗) = ah

(
KP
)

2

[
hA∗ B∗ hPI (σP)t ϕ

′′
(Q) σP

− h2
I A∗ (σP)t ϕ

′′
(M) τh

− h2
I B∗ (σP)t ϕ

′′
(N) τh

]
. (2.11)

For estimating the truncation error T P
I(A∗,B∗), we start

with some useful notations. First of all, recall that E is
the set made of edgepoints (from the primary mesh of
course). We denote by E int the subset of E made up of
edgepoints lying in �, Eext the subset of E made up of
edgepoints lying on the boundary of �, and E P (for P ∈
P) the subset of E made up of edgepoints lying on the
boundary of the primary cell CP.

Remark 2.5 Note that the set E will sometimes be iden-
tified with the set of primary edges since there is a
trivial bijection between the two sets. In the same order
of ideas, the set of cellpoints and the set of vertices
will sometimes be identified with the set P of primary
cells and the set D of dual cells, respectively. At last,
primary mesh and primal mesh mean the same thing in
this work.

We should also need the following key notion:

Definition 2.6 The system (P, E) defines a regular
mesh system if the following condition is fulfilled:
There exists θ ∈]0 , π

2 [, not depending on h, such
that

0 ≤ θ
P,I
h ≤ π

2
− θ ∀ P ∈ P ∀ I ∈ E P. (2.12)

• Let us give some examples of regular mesh system
in the sense of the previous definition: (1) An ob-
vious example is obtained with P being the set of
square cells and E the set of edge midpoints. In this
example, θ = π

4 . (2) Another example is got with
P taken to be the set of equilateral triangles and E
the set of edge midpoints. In this example, it is clear
that we may take θ = π

6 .

Ingredients are gathered for estimating truncation er-
rors. In this connection, it is easily seen that the follow-
ing result holds:

Proposition 2.7 Assume that the mesh system (P, E)

def ines a regular mesh system in the sense of the pre-
vious def inition and that there exists 0 < � ≤ 1, mesh
independent, such that

∀ P ∈ P ∀ I ∈ E P � h ≤ hPI , hA∗
I B∗

I
≤ h

(2.13)

where A∗
I , B∗

I ∈ D are extremities of the only edge (from
the cell CP) involving the edgepoint I. Under the as-
sumptions (1.3) and (2.1), there exists a strictly positive
number C, mesh independent, such that
∣
∣T P

I(A∗,B∗)
∣
∣ ≤ C h2. (2.14)

The relation (2.14) is a consistency property and so
naturally allows to approximate QP

[A∗ B∗] as it follows

QP
[A∗ B∗] ≈ b h

(
KP) [ϕB∗ − ϕA∗ ]

+ ah
(
KP) hA∗ B∗

hPI
[ϕP − ϕI] . (2.15)

If [A∗ B∗] is part of the domain boundary, the edge
pressure ϕI is given by the Dirichlet conditions (notice
that in this case, ϕA∗ and ϕB∗ are also given as A∗
and B∗ should be lying on the boundary). Otherwise,
[A∗ B∗] is an interface between the cell CP and some
primary cell denoted by CL; in this context, the edge
pressure ϕI is unknown. But, thanks to the principle
of flux continuity, one can approximate it with a linear
function of ϕP, ϕL, ϕA∗ , and ϕB∗ . For investigating the
above-mentioned linear function, we compute the flux
across [A∗ B∗] viewed as part of the boundary of CL.
For this purpose, we set

KLξ L
[A∗ B∗] = âh

(
KL) σL + b̂ h

(
KL) τh (2.16)

where the real numbers âh
(
KL
)

and b̂ h
(
KL
)

are given
by the relations

âh
(
KL) = 1

cos θ
L,I
h

(
ξ P
[A∗ B∗]

)t
KLξ P

[A∗ B∗],

b̂ h
(
KL) = 1

cos θ
L,I
h

(
ξ B∗
[IL]
)t

KLξ P
[A∗ B∗] (2.17)

where θ
L,I
h is the angle defined by the vectors − σL and

ξ P
[A∗ B∗] and where ξ B∗

[IL] denotes the unit normal vector
to [IL] exterior to the half-plane of R

2 containing
the point B∗ and being bordered by the straight line
(IL). Performing the flux computation over the inter-
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element [A∗ B∗], viewed as part of the boundary of CL

(see Fig. 3), leads to

QL
[A∗ B∗] = b̂ h

(
KL) [ϕA∗ − ϕB∗ ]

+ âh
(
KL) hA∗ B∗

hIL
[ϕL − ϕI] + T L

[A∗ B∗] (2.18)

where for a fixed Q′ ∈ [IL] and fixed M′, N′ ∈
[A∗ B∗], we have set

T L
I(A∗,B∗) = âh

(
KL
)

2

[
hA∗ B∗ hIL (σL)t ϕ

′′
(Q′) σL

− h2
I A∗ (σL)t ϕ

′′
(M′) τh

− h2
I B∗ (σL)t ϕ

′′
(N′) τh

]
. (2.19)

Thus, this flux can be approximated with the expression

QL
[A∗ B∗] ≈ b̂ h

(
KL) [ϕA∗ − ϕB∗ ]

+ âh
(
KL) hA∗ B∗

hIL
[ϕL − ϕI] . (2.20)

The approximate fluxes QP
[A∗ B∗] and QL

[A∗ B∗] meet the
principle of flux continuity over the interface between
CP and CL if and only if the approximate edgepoint
pressure ϕI satisfies to the following relation:

ϕI = 1
[
ah
(
KP
) hA∗ B∗

hPI
+ âh

(
KL
) hA∗ B∗

hIL

]

×
{
[
b h
(
KP)− b̂ h

(
KL)] [ϕB∗ − ϕA∗ ]

+ ah
(
KP) hA∗ B∗

hPI
ϕp + âh

(
KL) hA∗ B∗

hIL
ϕL

}
. (2.21)

This is a consistent approximation for ϕI in the sense
that the corresponding truncation error vanishes when
h goes to zero (thanks to Proposition 2.7). So, replac-
ing ϕI in Eq. 2.15 by its approximate value yields the
following conservative scheme:

QP
[A∗ B∗] ≈

[
ah(KP)̂ah(KL)hA∗ B∗

ah(KP)hIL + âh(KL)hPI

]
[ϕP − ϕL]

+
[
âh(KL)b h(KP)hPI + ah(KP)b̂ h(KL)hIL

âh(KL)hPI + ah(KP)hIL

]

× [ϕB∗ − ϕA∗ ] . (2.22)

2.2.3 DDFV f lux balance equations in primary cells

Using the previous notations and thanks to the consis-
tency of the previous DDFV flux approximations (see
Proposition 2.7), the approximate flux balance within
CP is

∑

I∈E P ∩E int

[
ah(KP)̂ah(KL)hA∗ B∗

ah(KP)hIL + âh(KL)hPI
(ϕP − ϕL)

+ âh(KL)b h(KP)hPI +ah(KP)b̂ h(KL)hIL

âh(KL)hPI +ah(KP)hIL
(ϕB∗ −ϕA∗)

]

+
∑

I∈E P ∩Eext

ah
(
KP) hA∗ B∗

hPI
ϕP ≈

∫

CP

f (x)dx ∀ P ∈ P

(2.23)

with

ϕE∗ = 0 ∀ E∗ ∈ D ∩ ∂� (2.24)

where A∗ and B∗ are extremities of the edge containing
I and lying on the boundary of the primary cell CP and
where L ∈ P is such that CP ∩ CL = [A∗ B∗].

2.2.4 Necessity of def ining a dual grid

It is clear that the number of discrete unknowns
{ϕP}P∈P and {ϕP∗ }P∗∈D is greater than the number of
equations in the system (2.23)–(2.24). For closing this
system, we look for discrete equations corresponding to
flux balance over dual cells. For this purpose, we define
a dual mesh as described in Fig. 4. For carrying out our
technique, we need to introduce the notion of pseudo-
edge associated with dual cells. This notion, illustrated
in Fig. 5, is defined as

Fig. 4 Combination of a primary mesh (full lines) and the asso-
ciated dual mesh (red discontinuous lines) including the auxiliary
mesh (black dotted lines)
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Fig. 5 A dual cell (blue discontinuous line) with its four pseudo-
edges that intersect primal edges at red points from E

Definition 2.8 Let P and L be two cellpoints from
the primary mesh (i.e., P, L ∈ P) such that the cor-
responding primary cells CP and CL are adjacent, and
consider I ∈ E P ∩ EL (recall that EE, for E ∈ P , is the
set of edgepoints from E lying on the boundary of
the cell CE). The line [PI] ∪ [IL] defines a pseudo-
edge, denoted by [PIL], whose extremities are P
and L.

Remark 2.9 Note that in our presentation, I is in gen-
eral an angular point of [PIL]. To our knowledge, only
the particular case corresponding to [PIL] defined as
a straight line has been theoretically investigated so far
(see [9] for instance).

We will say that a pseudo-edge is associated with a
dual cell CA∗ if it is part of the boundary of CA∗ .

Remark 2.10 Note that the boundary of any dual cell is
a union of a finite number of pseudo-edges (see Fig. 5).

2.2.5 DDFV f lux balance equations in dual cells

Let us now look for discrete balance equations over
dual cells. This is carried out through the following
steps:

Step 1: Local integration of mass balance equation

We start with integrating the two sides of Eq. (1.1)
in a dual cell CB∗ represented in Fig. 5. Applying
the Ostrogradski’s theorem and exploiting Remark 2.10
leads to
∑

I∈EB∗
−
∫

[PIL]
K grad ϕ . nB∗ dγ =

∫

CB∗
f (x) dx (2.25)

where nB∗ stands for the outward unit normal vector
to the boundary of CB∗ and where [PIL] is a pseudo-
edge associated with the dual cell CB∗ . Recall that EB∗

is
the set of edgepoints lying in the boundary of the dual
cell CB∗ .

Step 2: Flux computations and truncation errors

Let us look for a flux approximation across the pseudo-
edge [PIL] viewed as part of the boundary of CB∗ .
Denoting by QB∗

[PIL] the exact flux over [PIL], it can
be expressed by the relation

QB∗
[PIL] = −

∫

[PI]
grad ϕ .

(
KPξ B∗

[PI]
)

dγ

−
∫

[IL]
grad ϕ .

(
KLξ B∗

[IL]
)

dγ. (2.26)

We should first focus on computations of the flux
across [PI]. So, define the following decomposition of
KPξ B∗

[PI]:

KPξ B∗
[PI] = ch

(
KP) σP − dh

(
KP) τh (2.27)

where σP and τh are unit vectors defined by Eq. (2.3). It
is clear that

ch
(
KP) = b h

(
KP)

dh
(
KP) = 1

cos θ
P,I
h

(
ξ B∗
[PI]
)t

KPξ B∗
[PI] > 0 (2.28)

(recall that θ
P,I
h denotes the angle defined by the vec-

tors σP and ξ P
[A∗ B∗]). Therefore,

−
∫

[PI]
grad ϕ

(
KPξ B∗

[PI]
)

dγ

= −b h
(
KP)

∫

[PI]
grad ϕ . σP + dh

(
KP)

∫

[PI]
grad ϕ . τh

= b h
(
KP) (ϕP − ϕI) + dh

(
KP) hPI

hA∗ B∗
(ϕB∗ − ϕA∗)

+ T B∗
[PI],A∗ (2.29)

where

T B∗
[PI],A∗ = dh

(
KP
)

2

(
h2

PI(τh)
tϕ

′′
(QPI)σP

+ hPIh2
I B∗

hA∗ B∗
(τh)

tϕ
′′
(QI B∗)τh

− hPIh2
I A∗

hA∗ B∗
(τh)

tϕ
′′
(QI A∗)τh

)
(2.30)
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with QPI ∈ [P I], QI A∗ ∈ [I A∗] and QI B∗ ∈ [I B∗].
Neglecting T B∗

[PI],A∗ and exploiting Eq. (2.21) yields the
following approximation:

−
∫

[PI]
grad ϕ

(
KPξ B∗

[PI]
)

dγ ≈ b h(KP) âh(KL) hPI

ah(KP) hIL + âh(KL) hPI
[ϕP − ϕL]

+hPI
(
dh(KP){ah(KP)hIL + âh(KL)hPI} + b h(KP)hIL{b̂ h(KL) − b h(KP)})

hA∗ B∗ [ah(KP)hIL + âh(KL)hPI][ϕB∗ − ϕA∗ ]−1
. (2.31)

Similarly, let us focus on the computation of the flux
across [IL]. For this purpose, we set

KPξ B∗
[IL] = − ĉh

(
KL) σL − d̂h

(
KL) τh (2.32)

where the coefficients ĉh
(
KL
)

and d̂h
(
KL
)

are given by
the following relations:

ĉh
(
KL) = b̂ h

(
KL) , d̂h

(
KL)

= 1

cos θ
L,I
h

(
ξ B∗
[IL]
)t

KLξ B∗
[IL] > 0. (2.33)

So, the same ideas as those developed for the flux
computation over [PI] lead to

−
∫

[IL]
grad ϕ

(
KLξ B∗

[IL]
)

dγ ≈ b̂ h(KL) ah(KP) hIL

ah(KP) hIL + âh(KL) hPI
[ϕP − ϕL]

+hIL
(
d̂h(KL){ah(KP)hIL + âh(KL)hPI} + b̂ h(KL)hPI{b h(KP) − b̂ h(KL)})

hA∗ B∗ [ah(KP)hIL + âh(KL)hPI][ϕB∗ − ϕA∗ ]−1
(2.34)

where truncation errors T B∗
[IL],A∗ are neglected and

read as

T B∗
[IL],A∗ = d̂h

(
KL
)

2

(
h2

IL(τh)
tϕ

′′
(QIL)σL

+ hILh2
I B∗

hA∗ B∗
(τh)

tϕ
′′
(QI B∗)τh

−hILh2
I A∗

hA∗ B∗
(τh)

tϕ
′′
(QI A∗)τh

)
(2.35)

with QIL ∈ [I L], QI A∗ ∈ [I A∗] and QI B∗ ∈ [I B∗].
We have the following global estimate for the previ-

ous truncation errors:

Proposition 2.11 Under the same assumptions as those
of Proposition 2.7, there exists a strictly positive number
C, mesh independent, such that

∣
∣T B∗

[PI],A∗
∣
∣+ ∣∣T B∗

[IL],A∗
∣
∣ ≤ C h2. (2.36)

Step 3: Summary

We summarize the flux approximation across the
pseudo-edge [PIL] in the following way:

QB∗
[PIL] ≈ b h(KP) âh(KL) hPI + b̂ h(KL) ah(KP) hIL

ah(KP) hIL + âh(KL) hPI

×[ϕP − ϕL]

+ ωh(P, L, I)
hA∗ B∗ [ah(KP) hIL + âh(KL) hPI]

× [ϕB∗ − ϕA∗ ] (2.37)

where we have set

ωh(P, L, I) = [ah(KP)hIL + âh(KL) hPI
]

× [dh(KP) hPI + d̂h(KL)hIL
]

+ hPI hIL
[
b̂ h(KL) − b h(KP)

]

× [b h(KP) − b̂ h(KL)
]

(2.38)
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Conclusion We deduce from the previous develop-
ments that the discrete balance equation in any dual cell
CB∗ reads

∑

I∈EB∗

[
b h(KP) âh(KL) hPI + b̂ h(KL) ah(KP) hIL

ah(KP) hIL + âh(KL) hPI

× (ϕP − ϕL)

+ ωh(P, L, I)

hA∗ B∗
(
ah(KP) hIL + âh(KL) hPI

) (ϕB∗ − ϕA∗)

]

≈
∫

CB∗
f (x)dx ∀ B∗ ∈ D (2.39)

where EB∗
is the set of edgepoints lying on the boundary

of the dual cell CB∗ .

2.2.6 Definition of the DDFV discrete problem

From Eqs. (2.23) and (2.39), we define a DDFV
formulation of Eqs. (1.1)–(1.2) as Find {ϕP}P∈P and
{ϕD∗ }D∗∈D such that

∑

I∈E P ∩E int

[
ah(KP)̂ah(KL)hA∗ B∗

ah(KP)hIL + âh(KL)hPI
(ϕP − ϕL)

+ âh(KL)b h(KP)hPI + ah(KP)b̂ h(KL)hIL

âh(KL)hPI + ah(KP)hIL

× (ϕB∗ − ϕA∗)

]

+
∑

I∈E P ∩Eext

ah
(
KP) hA∗ B∗

hPI
ϕP

=
∫

CP

f (x)dx ∀ P ∈ P (2.40)

∑

J∈ED∗

[
b h(KG) âh(KH) hGJ + b̂ h(KH) ah(KG) hJH

ah(KG) hJH + âh(KH) hGJ

× (ϕG − ϕH

)

+ ωh(G, H, J)

hC∗ D∗
(
ah(KG) hJH + âh(KH) hGJ

)
(
ϕD∗ − ϕC∗

)
]

=
∫

CD∗
f (x)dx ∀ D∗ ∈ D (2.41)

with: ϕE∗ = 0 ∀ E∗ ∈ D ∩ ∂� (2.42)

where (G, H) ∈ P × P and C∗ ∈ D are such that
[C∗ D∗] defines the interface between the primary cells
CG and CH . Note that the definition of ωh(G, H, J) is
analogous to that of ωh(P, L, I) (see relation (2.38)).

2.2.7 Concluding remarks

• Assuming that the primary mesh P is a square
grid does not necessarily lead to a much simpler
discrete system in the sense that the system matrix
reduces to a 2 by 2 block diagonal matrix, even if
E is made up of midedge points, and cellpoints are
taken to be cell centers. This is exclusively due to
the anisotropy of the porous medium �. Indeed, if
moreover the permeability matrix K that governs
the flow is taken to be a (strictly positive) real scalar
(not necessarily uniformly constant in �), then the
system matrix reduces to a 2 by 2 block diagonal
matrix. Moreover, each block corresponds to ei-
ther cell-centered or vertex-centered finite volumes
(see [30] for details).

• The DDFV technique exposed in this work ap-
plies to nonmatching grids (and especially to lo-
cally refined grids). Indeed, our approach is based
upon the fact that any primary cell is a (convex)
polygon and so is perfectly defined with a finite
sequence of vertices clearly identified. Recall that
a primary mesh is nonmatching if it possesses a
cell, let us say C, with (at least) one side (i.e., one
edge) denoted by [A∗ B∗] that involves a family
of vertices {M∗

z}1≤z≤Z such that A∗ and B∗ are
different from M∗

z for all z ∈ {1, ..., Z }. So, for any
z ∈ {1, ..., Z }, M∗

z is not associated with the primary
cell C but is associated with some cell C̃ ∈ P ad-
jacent to C. Since [A∗ B∗] = [A∗M∗

1] ∪ [M∗
1 M∗

2] ∪
[M∗

2 M∗
3] ∪ ... ∪ [M∗

Z B∗], the flux computation over
the side [A∗ B∗] could be obtained as the sum
of fluxes computed over the segments [A∗M∗

1],
[M∗

1 M∗
2], [M∗

2 M∗
3], ..., [M∗

Z B∗]. Since each of these
segments involves an edgepoint from E , let us say
I, the corresponding pressure ϕI may be eliminated
from the expression of the approximate value of the
exact flux QC

[M∗
z M∗

z+1] over [M∗
z M∗

z+1] (where A∗ =
M∗

0 and B∗ = M∗
Z+1), thanks to the flux continu-

ity principle on the interface between the cells C
and C̃.
Note that in the context of nonmatching grids, the
construction of auxiliary and dual meshes meets
the same rules as those imposed to a matching
grid (in Section 2.1). Concerning the numerical
validation of our DDFV approach for especially
locally refined grids, we refer to Section 4 and more
specifically to test problem no. 2 with rectangular
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nonconforming grids. The theoretical analysis on
nonmatching grids of the DDFV method exposed
in the current work is in preparation. Moreover, we
should mention that a stability result and error esti-
mates (for our DDFV method) have been proven in
a forthcoming work on rectangular locally refined
grids.

2.3 Existence and uniqueness for a solution
of the discrete problem

Assume that all the cellpoints and all the interior ver-
tices (with respect to the primary mesh) are numbered.
On the other hand, Card(P) and Card(D) denote re-
spectively the total number of cellpoints and interior
vertices. The preliminary result is

Proposition 2.12 Under the assumptions (1.3)–(1.4), the
matrix associated with the linear system (2.40)–(2.42) is
symmetric and positive def inite.

Proposition 2.13 Under the assumptions (1.3)–(1.4), the
linear system (2.40)–(2.42) possesses a unique solution.

It is sufficient to prove Proposition 2.12 as it implies
Proposition 2.13.

Proof It is easily seen that the symmetry of the ma-
trix associated with the linear system (2.40)–(2.42) es-
sentially follows from the symmetry of the diffusion
coefficient K (see assumption (1.3)). We should now
prove the positive definiteness of that matrix. This
will be done in three steps. Before starting, let us
set

�cc = {ϕP}P∈P and �vc = {ϕD∗ }D∗∈D . (2.43)

First step Development of the quadratic expression:

[�cc �vc]

[
A B
Bt C

] [
�cc

�vc

]

where A is a Card(P) × Card(P) symmetric matrix,
C is a Card(D) × Card(D) symmetric matrix, B is a
Card(P) × Card(D) matrix, and Bt is the transpose

form of B, which are the block elements of the system
matrix. It is clear that

[�cc �vc]

[
A B
Bt C

] [
�cc

�vc

]

=
∑

(G,H)∈P2, (C∗,D∗)∈D2 with �G∩�H=[C∗ D∗]

×
[

hC∗ D∗ ah(KG) âh(KH)

âh(KH)hGJ + ah(KG)hJH

(
ϕG − ϕH

)2

+ ωh(G, H, J)

hC∗ D∗ {̂ah(KH)hGJ + ah(KG)hJH}
(
ϕC∗ − ϕD∗

)2

+ 2
{̂ah(KG) b h(KG) hGJ + ah(KG) b̂ h(KH) hJH}

âh(KH)hGJ + ah(KG)hJH

× (
ϕG − ϕH

) (
ϕD∗ − ϕC∗

)
]

+
∑

P∈P

(
∑

I∈E P ∩Eext

ah
(
KP) hA∗ B∗

hPI

)

(ϕP)2

with the convention that

∑

I∈E P∩Eext

= 0 i f E P ∩ Eext = ∅

where �G and �H represent respectively the boundaries
of primary cells CG and CH ; J is the edge point lying
on �G ∩ �H , i.e., J ∈ EG ∩ EH ; and A∗, B∗ ∈ D are such
that �P ∩ � = [A∗ B∗].

Second step We should prove that the homogenized
symmetric permeability matrix KGH is positive definite.
For this purpose, define

KGH
11 = hC∗ D∗ ah(KG) âh(KH)

âh(KH)hGJ + ah(KG)hJH

KGH
22 = ωh(G, H, J)

hC∗ D∗ [̂ah(KH)hGJ + ah(KG)hJH]
KGH

12 = KGH
21

= âh(KH) b h(KG) hGJ + ah(KG) b̂ h(KH) hJH

âh(KH)hGJ + ah(KG)hJH
.

(2.44)
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Then, we have

[�cc �vc]

[
A B
Bt C

] [
�cc

�vc

]
−
∑

P∈P

×
(

∑

I∈E P ∩Eext

ah
(
KP) hA∗ B∗

hPI

)

(ϕP)2

=
∑

(G,H)∈P2, (C∗,D∗)∈D2 with �G∩�H=[C∗ D∗]

×
[

KGH
11

(
ϕG − ϕH

)2 + KGH
22

(
ϕD∗ − ϕC∗

)2

+ 2KGH
12

(
ϕG − ϕH

) (
ϕD∗ − ϕC∗

)]
.

Let us prove that the homogenized symmetric perme-
ability tensor KGH is positive definite, i.e., KGH

11 KGH
22 −

(KGH
21 )2 > 0 . Setting

�GH = KGH
11 KGH

22 − (KGH
21 )2, (2.45)

it is easy to check that

�GH = N1
[
ah(KG)dh(KG) − (b h(KG))2

]

+ N2
[
âh(KH)d̂h(KH) − (b̂ h(KH))2

]
(2.46)

where N1 and N2 are strictly positive numbers defined
as

N1 =
(

âh(KH)hGJ

âh(KH)hGJ + ah(KG)hJH

)2

+ ah(KG)̂ah(KH)hGJhJH
[
âh(KH)hGJ + ah(KG)hJH

]2 (2.47)

and

N2 =
(

ah(KG)hJH

âh(KH)hGJ + ah(KG)hJH

)2

+ ah(KG)̂ah(KH)hGJhJH
[
âh(KH)hGJ + ah(KG)hJH

]2 . (2.48)

Since the diffusion matrix K is symmetric and posi-
tive definite (see assumptions (1.3)–(1.4)), the Cauchy–
Schwarz inequality for the inner product associated
with K ensures that

ah(KG)dh(KG) − (b h(KG))2 > 0 (2.49)

and

âh(KH)d̂h(KH) − (b̂ h(KH))2 > 0 (2.50)

as either ξG
[C∗ D∗] and ξ D∗

[GJ] or ξG
[C∗ D∗] and ξ D∗

[JH] are not
collinear. Therefore, �GH > 0 and thus KGH are sym-
metric and positive definite matrices.

Third step It follows from the previous step that the
matrix KGH possesses strictly positive eigenvalues. Let
λGH

min be its least eigenvalue. So, we have

[�cc �vc]

[
A B
Bt C

] [
�cc

�vc

]

≥
∑

P∈P

(
∑

I∈E P ∩Eext

ah
(
KP) hA∗ B∗

hPI

)

(ϕP)2

+
∑

(G,H)∈P2, (C∗,D∗)∈D2 with �G∩�H=[C∗ D∗]

× λGH
min

{(
ϕG − ϕH

)2 + (ϕD∗ − ϕC∗
)2} ≥ 0. (2.51)

Thanks to the discrete boundary conditions in Eq.
(2.42), the equality holds in Eq. (2.51) if and only if
�cc = 0 and �vc = 0. Thus, the positive definiteness of

the matrix
[

A B
Bt C

]
is proven. ��

3 Stability and error estimates

Fist of all, we assume that the primary mesh is regular in
the sense of Definition 2.6. On the other hand, we use in
what follows the terminology node as the generic name
of cellpoints and vertices (with respect to the primary
mesh).

3.1 DDFV piecewise constant solutions

Let us consider the auxiliary mesh A introduced in the
previous section (see Fig. 2). Note that the closure of
any cell of A contains one node and only one that may
be inside � or on the boundary of �.

Definition 3.1 An auxiliary mesh cell is degenerate if
the corresponding node is lying on the boundary of �.

As soon as the discrete unknowns (located at
cellpoints and vertices with respect to the primary
mesh) are computed, an important issue concerns the
definition of an approximate solution to the continuous
problem (1.1)–(1.2) in terms of function.
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• For addressing this issue, some authors have in the
literature proposed the following: Let us denote by
ϒT the characteristic function of any cell T (from
primary, dual, or auxiliary mesh). Define almost
everywhere in �

ϕP(x) =
∑

P∈P
ϕPϒP(x) and

ϕD(x) =
∑

D∈D
ϕDϒD(x). (3.1)

Following those authors, the DDFV solution ϕapprox

is defined as

ϕapprox(x) = 1

2

[
ϕP(x) + ϕD(x)

]

almost everywhere in �. (3.2)

Recall that ϕ denotes the exact solution of the
continuous problem (1.1)–(1.2) and set

ϕP(x) =
∑

P∈P
ϕ(P)ϒP(x) and

ϕD(x) =
∑

D∈D
ϕ(D)ϒD(x).

Since one can show that (see Theorem 7.1 in [3],
p. 27)

‖ϕP − ϕP‖L2(�) −→ 0 and

‖ϕD − ϕD‖L2(�) −→ 0 as h −→ 0,

it is obvious that ‖ 1
2 [ϕP + ϕD] − ϕapprox‖L2(�) −→ 0

as h −→ 0.
• We propose another formulation of the DDFV

piecewise constant solution based upon the auxil-
iary mesh A. The idea is to introduce the set N of
nodes as the set made of cellpoints and vertices with
respect to the primary mesh P . Then, we define
our DDFV piecewise constant solution ϕh almost
everywhere in � as

ϕh(x) =
∑

N∈N
ϕNϒN(x). (3.3)

It is our purpose in what follows to show that ‖ϕA −
ϕh‖A −→ 0 as h −→ 0. The L2−convergence
should follow from Lemma 3.2.

3.2 A stability result

We denote by S(A) the space of functions v defined al-
most everywhere in � such that v gets a constant value
in any auxiliary cell, except in degenerate ones where
it vanishes. Note that ϕh ∈ S(A) and that the solution
of the discrete system (2.40)–(2.42) could clearly be

identified with ϕh. We endow S(A) with the following
discrete energy norm. For all v ∈ S(A), define

‖v‖A =
⎛

⎝
∑

P∈P such that �P∩Eext �=∅
(VP)2

+
∑

(G,H)∈P2, (C∗,D∗)∈D2 with �G∩�H=[C∗ D∗]

× [(VG − VH)2 + (VD∗ − VC∗)2]
⎞

⎠

1
2

(3.4)

where VY is the constant value of v ∈ S(A) in the auxil-
iary cell associated with the node Y. We now analyze
the stability (in the sense of the norm (3.4)) of the
solution for Eqs. [2.40–2.42]. For this purpose, we need
to introduce as in [30] a key result, namely a discrete
version of Poincaré inequality based upon the following
ingredients. Consider the linear operators defined by

v ∈ S(A) �→ vP ∈ S(P) and v ∈ S(A) �→ vD ∈ S(D)

(3.5)

where S(P) and S(D) are spaces of cellwise constant
functions associated respectively with primary and dual
grids and where

vP(x) =
∑

P∈P
vPϒP(x) and vD(x) =

∑

D∈D
vDϒD(x)

a.e. in �.

So vP and vD are in some sense projections of v on S(P)

and S(D), respectively. The function spaces S(P) and
S(D) could respectively be equipped with the following
discrete norms:

∥∥vP∥∥
P =

⎛

⎝
∑

P∈P such that �P∩Eext �=∅
(VP)2

+
∑

(G,H)∈P2 with �G∩�H∈IP

(VG − VH)2

⎞

⎠

1
2

(3.6)

and

∥
∥vD∥∥

D =
⎛

⎝
∑

(C∗,D∗)∈D2 with [C∗ D∗]∈IP

(VC∗ − VD∗)2

⎞

⎠

1
2

(3.7)
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where IP represents the set of primary mesh interfaces.
The following lemmas are the key ingredients for our
purpose:

Lemma 3.2 (Discrete version of Poincaré inequality)
There exists a strictly positive number C, not depending
on h, such that

∥∥vP∥∥
L2(�)

+ ∥∥vD∥∥
L2(�)

≤ C ‖v‖A ∀v ∈ S(A).

(3.8)

Remark 3.3 In the framework of DDFV analysis of 2D
linear and nonlinear elliptic problems, the inequality
(3.8) is well known. In a general case where L2(�) is re-
placed by LP(�), with 1 < P < +∞, the proof can, for
instance, be found in [3] (see also [4] or Proposition 4.5
in [9] at p. 15).

Lemma 3.4 Consider the symmetric positive def inite
matrix KGH (where G, H ∈ P are such that �G ∩ �H ∈
E) def ined by the relations in Eq. (2.44). Under the
conditions (2.12) and (2.13), there exists a strictly pos-
itive real number μ, mesh independent, such that the
least eigenvalue λGH

min of the matrix KGH satisf ies to μ �
λGH

min .

Proof The eigenvalues λ of the symmetric positive
definite matrix KGH satisfy to the so-called characteris-
tic equation associated with KGH , i.e.,

λ2 − [
KGH

11 + KGH
22

]
λ + [

KGH
11 KGH

22 − (KGH
12 )2

] = 0.

The least eigenvalue of KGH denoted by λGH
min is given

by the relation

λGH
min =

[
KGH

11 + KGH
22

]− √
�

2
(3.9)

where � = [KGH
11 + KGH

22 ]2 − 4[KGH
11 KGH

22 − (KGH
12 )2]

is a strictly positive number. One can easily deduce
that

λGH
min � det(KGH)

[
KGH

11 + KGH
22

] + det(KGH) + 1
(3.10)

where det(KGH) = KGH
11 KGH

22 − (KGH
12 )2 is a strictly

positive number. We should bound the quantities
KGH

11 , KGH
22 and det(KGH) by strictly positive, mesh

independent, real numbers. Let us start first with
det(KGH). We consider a change of coordinates by
moving from the initial Cartesian coordinates to a local

one, namely (J,
−−−→
C∗ D∗

|−−−→
C∗ D∗| , ξ⊥

[C∗ D∗]), where J is the edge-

point fixed on the interface [C∗ D∗] between the cells
CG and CH and where ξ⊥

[C∗ D∗] is a vector orthogonal to

−−−→
C∗ D∗ and oriented such that the basis change matrix
M is a rotation. Denoting the permeability tensor of
the cell CG by KG = {KG

ij} in the initial Cartesian co-
ordinates, and by K̃G = {K̃G

ij } in the local coordinates,
we have K̃G = M−1 KG M. Similarly, we get K̃H =
M−1 KH M for the cell CH . Then, it is easy to check
that

ah(KG)dh(KG) − [b h(KG)]2 = K̃G
11 K̃G

22 − [K̃G
12

]2
,

(3.11)

i.e.,

ah(KG)dh(KG) − [
b h(KG)

]2 = det(K̃G) = det(KG)

(3.12)

where det(.) denotes the determinant. Similarly, we
have for the cell CH

âh(KH)d̂h(KH) − [
b̂ h(KH)

]2 = det(K̃H) = det(KH).

(3.13)

It follows from what precedes that

det(KGH) = N1 det(KG) + N2 det(KH) (3.14)

where N1 and N2 are given by the relations (2.47) and
(2.48).

On one hand, we can deduce from assumptions (1.4),
(2.12), and (2.13) that

Ni � � 2

2

[
γmin

γmax

]2

sin θ ∀ i = 1, 2. (3.15)

On the other hand, we remark that

det(KP) � min{det(Ks), s ∈ S} ∀ P ∈ P (3.16)

where the set S (introduced in Section 2.1, Eq. [2.1])
depends exclusively on the lithologic structure of the
medium �. Then, we deduce that

det(KGH) � � 2

[
γmin

γmax

]2

sin θ [min{det(Ks), s ∈ S}].

(3.17)

Remarking that

det(KGH) � KGH
11 KGH

22 + (
KGH

12

)2

and exploiting again the assumptions (1.4), (2.12), and
(2.13) leads to the following inequality:

det(KGH) � 2 (γmax)
4 max{2, � }

� 3(γmin)2(sin θ)4
. (3.18)
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Thanks again to Eqs. (1.4), (2.12), and (2.13), one can
easily check that

KGH
11 + KGH

22 �
(

γmax√
2 � sin θ

)2 [
1 + 2

�
+ 4 γmax

� sin θ

]
.

(3.19)

Lemma 3.4 follows from the combination of Eqs. (3.17),
(3.18), and (3.19). ��

Let us give now one of the main results of this
section.

Proposition 3.5 (A stability result) Assume that the
condition (2.13) is fulf illed and that the mesh system
(P, E) is regular in the sense of Def inition 2.6, i.e., the
condition (2.12) is satisf ied. Then, the piecewise con-
stant solution ϕh of the problem (1.1)–(1.2) obeys the
inequality

∥
∥ϕh

∥
∥
A ≤ C ‖ f‖L2(�) (3.20)

where C is a strictly positive, mesh-independent real
number.

Proof Multiplying Eq. (2.40) by ϕP and Eq. (2.41) by
ϕD∗ and summing over P ∈ P and D∗ ∈ D respectively
leads to

[�cc �vc]

[
A B
Bt C

] [
�cc

�vc

]
= [Ucc Uvc]

[
Fcc

Fvc

]
. (3.21)

Set: LHS = [�cc �vc]

[
A B
Bt C

] [
�cc

�vc

]

RHS = [�cc �vc]

[
�cc

�vc

]
.

We know from Lemma 3.4 that under the conditions
(2.12) and (2.13), there exists a strictly positive, mesh-
independent number α such that

α
∥∥ϕh

∥∥2
A ≤ LHS. (3.22)

On the other hand, we have

1

2
{RHS}2 ≤

∣
∣∣
∣
∣

∑

P∈P

∫

CP

f ϕP

∣
∣∣
∣
∣

2

+
∣
∣∣
∣
∣

∑

D∗∈D

∫

CD∗
f ϕD∗

∣
∣∣
∣
∣

2

.

We get from the Cauchy–Schawrz inequality that

∣
∣
∣∣
∣

∑

P∈P

∫

CP

f ϕP

∣
∣
∣∣
∣

2

≤ ‖ f‖2
L2(�)

∥
∥ϕP

h

∥
∥2

L2(�)
and

∣
∣
∣∣
∣

∑

D∗∈D

∫

CD∗
f ϕD∗

∣
∣
∣∣
∣

2

≤ ‖ f‖2
L2(�)

∥
∥ϕD

h

∥
∥2

L2(�)
.

Therefore,

RHS ≤ √
2 ‖ f‖L2(�)

{∥
∥ϕP

h

∥
∥2

L2(�)
+ ∥
∥ϕD

h

∥
∥2

L2(�)

} 1
2
.

(3.23)

Comparing Eq. (3.22) with Eq. (3.23) and consid-
ering Lemma 3.2 leads to the end of the proof of
Proposition 3.5. ��

3.3 Error estimates for the DDFV solution ϕh

Following the ideas developed in [30], we investigate
here error estimates (in the sense of the discrete energy
norm (3.4)) for the piecewise constant approximate
solution ϕh.

3.3.1 Exact nodal potentials as a solution of a discrete
system

Adding the truncation error to the flux approximation
(2.22) across [A∗ B∗] = �P ∩ �L leads to the following
identity:

QP
[A∗ B∗] =

[
ah(KP)̂ah(KL)hA∗ B∗

ah(KP)hIL + âh(KL)hPI

]
[ϕP − ϕL]

+
[

âh(KL)b h(KP)hPI + ah(KP)b̂ h(KL)hIL

âh(KL)hPI + ah(KP)hIL

]

× [ϕB∗ − ϕA∗ ] + RP
I(A∗,B∗,L) (3.24)

where I is the edgepoint fixed in [A∗ B∗] and where the
truncation error RP

I(A∗,B∗,L) is defined by

RP
I(A∗,B∗,L) =

[
1 + ah(KP)hIL

ah(KP)hIL + âh(KL)hPI

]
T P

I(A∗,B∗)

+ ah(KP)hIL

ah(KP)hIL + âh(KL)hPI
T L

I(A∗,B∗).

(3.25)
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Similarly, according to Eq. (2.37), the exact flux across
[PIL] (part of the boundary of the dual cell CB∗ ) meets
the identity

QB∗
[PIL] = b h(KP) âh(KL) hPI + b̂ h(KL) ah(KP) hIL

ah(KP) hIL + âh(KL) hPI

×[ϕP − ϕL]
+ ωh(P, L, I)

hA∗ B∗ [ah(KP) hIL + âh(KL) hPI]
× [ϕB∗ − ϕA∗ ] + RB∗

I(P,L,A∗) (3.26)

where the truncation error RB∗
I(P,L,A∗) is given by

RB∗
I(P,L,A∗)

= T B∗
[PI],A∗ + T B∗

[IL],A∗

+
{

T P
I(A∗,B∗) + T L

I(A∗,B∗)

} {
b̂ h(KL) − b h(KP)

}

ah(KP) hA∗ B∗
hPI

+ âh(KL) hA∗ B∗
hIL

.

(3.27)

Let us give some estimates related to flux errors not
only for the set of primal edges but also for the set of
dual edges.

Proposition 3.6 (L∞−Estimates for flux errors over
primary and dual edges) Under the same assumptions as
those of Proposition 2.7, the truncation errors RP

I(A∗,B∗,L)

and RB∗
I(P,L,A∗) associated respectively with f lux approx-

imations across any primary edge [A∗ B∗] and over the
corresponding dual edge [PIL] meet the following in-
equalities:

∣
∣RP

I(A∗,B∗,L)

∣
∣ ≤ C h2 and

∣
∣RB∗

I(P,L,A∗)
∣
∣ ≤ C h2.

(3.28)

Note that we mean by corresponding dual edge the
unique pseudo-edge that intersects with the primary edge
[A∗ B∗].

Proof It essentially follows from Proposition 2.7 that
∣∣RP

I(A∗,B∗,L)

∣∣ ≤ C h2 (3.29)

On the other hand, according to Proposition 2.7 and
Proposition 2.11, the following inequality holds:
∣
∣RB∗

I(P,L,A∗)
∣
∣ ≤ C h2. (3.30)

��

Remark 3.7 The inequalities in Eq. (3.28) may be writ-
ten in the following compact forms: Start with defining
the flux error vectors RP and RD by RP = (RP

e )e∈E ,
with RP

e of the form RP
I(A∗,B∗,L), and by RD = (RD

e )e∈E∗ ,

with RD
e of the form RB∗

I(P,L,A∗), where E∗ denotes the
set of pseudo-edges. Then, the following estimates hold:

max
e∈E

|RP
e | ≤ C h2 and max

e∈E∗ |RD
e | ≤ C h2.

All the ingredients are gathered for writing the sys-
tem of equations satisfied by the vector of exact nodal
potentials {ϕP}P∈P and {ϕD∗ }D∗∈D:

∑

I∈E P ∩E int

[
ah(KP)̂ah(KL)hA∗ B∗

ah(KP)hIL + âh(KL)hPI
(ϕP − ϕL)

+ âh(KL)b h(KP)hPI + ah(KP)b̂ h(KL)hIL

âh(KL)hPI + ah(KP)hIL
(ϕB∗ − ϕA∗)

]

+
∑

I∈E P ∩Eext

ah
(
KP) hA∗ B∗

hPI
ϕP

=
∫

CP

f (x)dx −
∑

I∈E P ∩E int

RP
I(A∗,B∗,L)

−
∑

I∈E P ∩Eext

T P
I(A∗,B∗) ∀ P ∈ P (3.31)

∑

J∈ED∗

[
b h(KG) âh(KH) hGJ + b̂ h(KH) ah(KG) hJH

ah(KG) hJH + âh(KH) hGJ

× (ϕG − ϕH)

+ ωh(G, H, J)

hC∗ D∗
(
ah(KG) hJH + âh(KH) hGJ

) (ϕD∗ − ϕC∗)

]

=
∫

CD∗
f (x)dx−

∑

J∈ED∗
RD∗

J(G,H,C∗) ∀ D∗ ∈ D (3.32)

with

ϕE∗ = 0 ∀ E∗ ∈ D ∩ ∂� (3.33)

where (G, H) ∈ P × P and C∗ ∈ D are such that
[C∗ D∗] defines the interface between the primary cells
CG and CH . See Eq. (2.38) for the definition of
ωh(P, L, I) and define similarly ωh(G, H, J).

3.3.2 Error analysis of the piecewise constant
solution ϕh

Our purpose in this subsection is to investigate some
error estimates (for convenient norms) when ϕh is
taken to be an approximate solution of the diffusion
problem (1.1)–(1.2). Due to the conservativity of the
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flux approximations, the truncation errors obey to the
following relation:

Ra
I(.,.,b) + Rb

I(.,.,a) = 0 ∀I ∈ E int,

with Ea ∩ Eb = {I} (3.34)

where a and b are two cellpoints or vertices and Ea and
Eb are sets of edgepoints respectively associated with a
and b (that also represent two primary or dual adjacent
cells: see Remark 2.5).

The notion of diamond cell plays a key role in what
follows. So, let us now introduce this notion after what
follows. We mean by adjacent cellpoints two cellpoints
lying in two adjacent primary cells.

Definition 3.8 Given two adjacent cellpoints P and L
sharing [A∗ B∗] as common interface, the quadrangle
(P, A∗, L, B∗) defines a diamond cell. The set of di-
amond cells is a diamond mesh denoted by M in the
sequel.

Note that each diamond cell is actually associated with
one and only one interface [A∗ B∗]. When [A∗ B∗] is
lying on the domain boundary, the corresponding dia-
mond cell is degenerate since it is defined as a triangle
(see illustrations in Fig. 6). The following assumption
plays a key role in what follows:

∃ ν, ζ ∈ R
∗
+ such that : ν h2 ≤ meas(M) ≤ ζh2

∀ M ∈ M (3.35)

where ν and ζ are strictly positive, mesh-independent
numbers and meas(.) is the Lebesgue measure in any
spatial dimension. Let us set

EP = ϕP − ϕP, for P ∈ P and ED∗ = ϕD∗ − ϕD∗ ,

for D∗ ∈ D.

An adequate linear combination of Eqs. (3.36)–(3.38)
with Eqs. (2.40)–(2.42) yields

∑

I∈E P ∩E int

(
ah(KP)̂ah(KL)hA∗ B∗

ah(KP)hIL + âh(KL)hPI
(EP − EL)

+ âh(KL)b h(KP)hPI + ah(KP)b̂ h(KL)hIL

âh(KL)hPI + ah(KP)hIL

× (EB∗ − EA∗))

+
∑

I∈E P ∩Eext

ah
(
KP) hA∗ B∗

hPI
EP

= −
∑

I∈E P ∩E int

RP
I(A∗,B∗,L)

−
∑

I∈E P ∩Eext

T P
I(A∗,B∗) ∀ P ∈ P (3.36)

∑

J∈ED∗

[
b h(KG) âh(KH) hGJ + b̂ h(KH) ah(KG) hJH

ah(KG) hJH + âh(KH) hGJ

× (EG − EH)

+ ωh(G, H, J)

hC∗ D∗
(
ah(KG) hJH + âh(KH) hGJ

) (ED∗ − EC∗)

]

= −
∑

J∈ED∗
RD∗

J(G,H,C∗) ∀ D∗ ∈ D (3.37)

with

EQ∗ = 0 ∀ Q∗ ∈ D ∩ ∂�. (3.38)

Remark that the quantities {EP}P∈P and {ED∗ }D∗∈D
can be viewed as values in auxiliary cells of a function
Eh ∈ S(A). Note that these quantities are solution to
a linear system of the same type as Eqs. (2.40)–(2.42)
in the sense that both of them are associated with the

Fig. 6 Left: A normal
diamond cell. Right: A
degenerate diamond cell
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same matrix. Consequently, it follows from Lemma 3.4
and scheme conservativity that

δ ‖Eh‖2
A ≤

∑

I(P,L,A∗,B∗)∈E int

Rmax
I(P,L,A∗,B∗)

× (|EP − EL| + |EB∗ − EA∗ |)
+

∑

I(P,A∗,B∗)∈Eext

∣∣T P
I(P,A∗,B∗)

∣∣ |EP| (3.39)

where we have set

Rmax
I(P,L,A∗,B∗) = max

{∣∣RP
I(A∗,B∗,L)

∣
∣ ,
∣
∣RB∗

I(P,L,A∗)
∣
∣}

(3.40)

and where δ is some strictly positive number that is
mesh independent. Due to Eqs. (3.30) and (3.29), there
exists Ĉ > 0, mesh independent, such that

0 ≤ Rmax
I(P,L,A∗,B∗) ≤ Ĉ h2. (3.41)

On the other hand, define the following:
SI(P,L,A∗,B∗) = 2D Lebesgue measure of the diamond
cell defined by the points P, L, A∗, and B∗ and associ-
ated with I ∈ E int,
SI(P,A∗,B∗) = 2D Lebesgue measure of the degenerate
diamond cell defined by the points P, A∗, and B∗ and
associated with I ∈ Eext.

Therefore, thanks to the Cauchy–Schawrz inequal-
ity, it follows from Eq. (3.39) that

δ ‖Eh‖2
A ≤

⎛

⎝
∑

I(P,L,A∗,B∗)∈E int

SI(P,L,A∗,B∗)

+
∑

I(P,A∗,B∗)∈Eext

SI(P,A∗,B∗)

⎞

⎠

1
2

×
⎛

⎜
⎝

∑

I(P,L,A∗,B∗)∈E int

2
(

Rmax
I(P,L,A∗,B∗)

)2

SI(P,L,A∗,B∗)

× [(EP − EL)2 + (EB∗ − EA∗)2]

+
∑

I(P,A∗,B∗)∈Eext

(
T P

I(A∗,B∗)

)2

SI(P,A∗,B∗)
(EP)2

⎞

⎟
⎠

1
2

.

(3.42)

We conclude with the help of the assumption (3.35) that
‖Eh‖A ≤ C̃ h, where C̃ is a strictly positive number
without dependency on h. We summarize what pre-
cedes as

Proposition 3.9 (Error estimates) Assume that the dis-
continuities in � of the piecewise constant permeability
tensor K generate a f inite number of subdomains {�s}s∈S

over which the exact solution ϕ of Eqs. (1.1)–(1.2) meets
the following property:

ϕ|�s
∈ C2(�s) ∀ s ∈ S.

Under the conditions (1.3), (1.4), (2.12), and (2.13),
the function Eh ∈ S(A), associated with the error vector
whose components are {EN = ϕN − ϕN}N∈N , satisf ies
the following estimates:

‖Eh‖A ≤ C h and ‖Eh‖L2(�) ≤ C h

where C represents diverse, strictly positive, mesh-
independent constants.

Remark 3.10 The second inequality in Proposition 3.9
follows directly from Lemma 3.2. The first inequality
ensures the convergence with order 1 (at least) of
ϕP and ϕD for the norms ‖.‖P and ‖.‖D defined by
Eqs. (3.6) and (3.7), respectively.

3.4 Error estimates for piecewise linear approximate
solutions

It is shown in [30] for square meshes that the solution
ϕ to the problem (1.1)–(1.2) could be approximated
with diverse continuous cellwise polynomial functions
over �. Moreover, in [30], error estimates have been
obtained for cellwise linear, bilinear, and biquadratic
solutions. A generalization of these results to non-
structured meshes does not seem obvious, except for
cellwise linear solution that can be obtained in a general
grid context as follows. Any cell from the primary mesh
P is a (convex) polygon and so can be split into a
finite number of triangular elements (see Fig. 7). Let
{T}T∈T (P) be the triangular mesh generated by this
way. So, the set of vertices of each triangular element
T ∈ T (P) is made up of nodes where approximate

Fig. 7 Division of a primary cell into triangular elements



408 Comput Geosci (2013) 17:391–415

pressures are available as unique solution of DDFV
problem (2.40)–(2.42). Next, the exact pressure ϕ is
approximated in T by a linear function �h,T defined by
previously computed pressures at vertices of T.

One can show (following [30]) that the cellwise linear
approximate solution �h associated with the triangular
mesh {T}T∈T (P) converges to the exact solution for
L2-norm. More precisely, we have

Proposition 3.11 Under the same assumptions as those
of Proposition 3.9, the exact solution ϕ and the piecewise
linear approximate solution �h satisfy to the following
estimates:

‖ ∧h ϕ − �h‖L2(�) ≤ C h, ‖ ∧h ϕ − �h‖L∞(�) ≤ C h
1
2 ,

‖ϕ − �h‖L2(�) ≤ C h. (3.43)

where ∧h represents the classical linear Lagrange in-
terpolation operator associated with the set of nodes
and where C stands for diverse, strictly positive, mesh-
independent constants.

4 Numerical tests and comparison with other methods

We deal in this section with test problems extracted
(with corresponding grids) from FVCA5 benchmark
(see [22]). Let us start with recalling some variants of
the DDFV method exposed in this work. In diverse test
problems analyzed in this section, the proposed DDFV
method is referred to as reused-value method.

4.1 Variants of the proposed method

The method exposed in this work could be slightly
modified in the following way: One performs the
flux approximation over each (primary and dual) cell
boundary with imposing the flux continuity per half-
edge. This is a variant named half-edge method in [27].
Alternatively, one could impose the flux continuity per
edge for primary cell boundaries and per half-edge
for dual cell boundaries. This process leads to another
variant named mixed method in [27]. For more details
concerning these variants, see [27].

4.2 Notations

We have adopted the same notations as in [22].
Indeed, we denote by nunkw the number of unknowns,
nnmat the number of nonzero terms in the discrete
problem matrix, and sumflux the discrete flux balance,
i.e., sumflux = flux0 + flux1 + fluy0 + fluy1 − sumf,

where flux0, flux1, fluy0, and fluy1 are respectively
the outward approximate fluxes across the following
boundaries: {(x, y); x = 0 and 0 ≤ y ≤ 1}, {(x, y); x = 1
and 0 ≤ y ≤ 1}, {(x, y); 0 ≤ x ≤ 1 and y = 0}, and
{(x, y); 0 ≤ x ≤ 1 and y = 1} and where sumf =∑

P∈P
meas(CP) f (xP) with xP denoting the coordinates

of the cellpoint P associated with the primary cell CP.
min is the minimum value of the approximate solution
while max is its maximum value. When the analytical
solution is available and the mesh is refined, we set

erL2 =
⎛

⎜
⎝

∑

P∈P
meas(CP)[ϕ(xP) − ϕP]2

∑

P∈P
meas(CP)[ϕ(xP)]2

⎞

⎟
⎠

1
2

which is the relative discrete L2-norm of the error
for the exact potential. Defined by analogy, ergradL2
is the relative discrete L2-norm of the error on
the exact potential gradient. We denote by erL2(i)
(resp. ergradL2(i)) the relative discrete L2-norm (resp.
ergradL2) of the error on the exact potential (resp.
exact potential gradient) corresponding to a level i
(integer ≥ 2) of refinement for a given mesh. Let us set
for all integers i ≥ 2

ratioL2(i) = −2
ln[erL2(i)] − ln[erL2(i − 1)]

ln[nunkw(i)] − ln[nunkw(i − 1)] .

We define ratiogradL2(i), for all integers i ≥ 2, with the
same relation as for ratioL2(i), except that erL2 is re-
placed by ergradL2. We respectively denote by erflx0,
erflx1, erfly0, and erfly1 the relative error between flx0,
flx1, fly0, and fly1 and the corresponding exact flux.
erflm stands for L∞-norm of the error on the mean
value of the flux across the mesh edges. In other words,
we have

erflm = max
σ∈E

1

meas(σ )
|Qσ − Qσ |

where Qσ and Qσ are respectively the exact and the
approximate flux across σ which is either a primary
edge or a dual edge. Note that a dual edge is actually a
pseudo-edge and recall that the notion of pseudo-edge
is defined in Definition 2.8.

We denote by ocvL2 (resp. ocvgradL2) the order of
convergence of the approximate potential (gradient of
potential) in L2-norm. ocvL2 is given by the formula

ocvL2 = ln[erL2(imax)] − ln[erL2(imax − 1)]
ln[h(imax)] − ln[h(imax − 1)]

where imax is the maximum level of refinement of a
given mesh and h(imax) the corresponding mesh size.
ocvgradL2 is defined by the same formula as for ocvL2
except that erL2 is replaced by ergradL2. ocvdisennorm



Comput Geosci (2013) 17:391–415 409

Fig. 8 Coarse and refined meshes under consideration for Part I. Left: Triangular meshes, middle: distorted quadrilateral meshes, and
right: rectangular nonconforming meshes

denotes the order of convergence in the norm (3.4) of
the error on the exact potential.

4.3 Test problems

Remark 4.1 If we had to comment on how the irregu-
lar grids are refined, we would say that irregularity is
imposed on all refinement levels.

Part I: Let � be the square ]0, 1[×]0, 1[ with the follow-
ing permeability tensor:

K =
(

1.5 0.5
0.5 1.5

)
. (4.1)

We equip alternatively � with the classes of meshes de-
picted in Fig. 8, which are triangular, distorted quadri-
lateral, and nonconforming rectangular.

• Test problem no. 1: The exact solution to Eqs.
(1.1)–(1.2) is ϕ(x1, x2) = 16x1x2(1 − x1)(1 − x2).
Note that it is easy to get the corresponding source
term f .

Triangular mesh solutions: For this test case, compu-
tations in Table 1 confirm our theoretical result for
the reused-value method (see estimates in Proposi-
tion 3.9). On the other hand, these computations exhibit
a quadratic convergence in L2-norm for the pressure
and its gradient (no contradiction with estimates from
Proposition 3.9). According to the FVCA5 benchmark
report (see [22]), only a few methods have achieved
this level of performance. Many of them (including our

contribution within that benchmark, namely the half-
edge method (Table 2)) have displayed a quadratic
convergence for pressure and only a linear convergence
for pressure gradient in L2-norm.

The flux errors for L∞-norm exhibited in Table 3
are in accordance with the theoretical results given in
Proposition 3.6 which states that the flux error for L∞-
norm is of the same magnitude order for both primal
and dual edges (see also Remark 3.7).

Distorted quadrilateral mesh solutions Hereafter, i =
1 is the coarse level and i = 2 corresponds to the refined
level of gridding.

According to Table 7, the quadrilateral mesh so-
lution to the diffusion problem (1.1)–(1.2) converges
much faster than the above triangular mesh one for
the norm (3.4). This quadrilateral mesh solution and
its gradient converge at the same rate as the triangular
mesh ones for L2-norm. The Half-edge and the mixed
methods possess a common convergence rate. From
the flux computation viewpoint, both of these methods
are less powerful than the reused-value method (see
Tables 4, 5, 6, and 7).

• Test problem no. 2: The exact solution to
the diffusion problem (1.1)–(1.2) is ϕ(x1, x2) =
sin[(1 − x1)(1 − x2)] + (1 − x1)

3(1 − x2)
2. Note that

it is easy to determine the corresponding (source
term) function f .

Triangular mesh solutions: In this second test prob-
lem, we have first performed the solution computations

Table 1 Test problem no. 1
and triangular mesh:
convergence rate of the
reused-value method for
L2-norm and for discrete
H1

0 -norm

Parameters Reused-value method

i nunkw nnmat erL2 ergradL2 ratioL2 ratiogradL2

1 77 557 2.1E−02 1.8E−02 0.00E00 0.00E00
2 321 2,593 5.8E−03 5.2E−03 1.79E00 1.76 E00
3 1,313 11,201 1.5E−03 1.4E−03 1.93E00 1.88E00
4 5,313 46,561 3.8E−04 3.7E−04 1.97E00 1.89E00
5 21,377 189,857 9.3E−05 1.1E−04 1.99E00 1.89E00
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Table 2 Test problem no. 1
and triangular mesh:
convergence rate of the
half-edge method for
L2-norm and for discrete
H1

0 -norm

Parameters Half-edge method

i nunkw nnmat erL2 ergradL2 ratioL2 ratiogradL2

1 77 557 2.3E−02 2.7E−02 0.00E00 0.00E00
2 321 2,593 6.4E−03 1.3E−02 1.78E00 1.09E00
3 1,313 11,201 1.6E−03 6.2E−03 1.92E00 1.04E00
4 5,313 46,561 4.1E−04 3.1E−03 1.97E00 0.978E00
5 21,377 189,857 1.0E−04 1.4E−03 1.98E00 0.989E00

over triangular meshes (see Fig. 8) for the reused-value
method and its two variants. Numerical results are
shown in Tables 8, 9, 10, and 11.

The reused-value method displays a quadratic con-
vergence in L2-norm for pressure and pressure gradi-
ent, but only a linear convergence for the discrete en-
ergy norm defined by Eq. 3.4. This last result confirms
our theoretical convergence result given in Proposi-
tion 3.9. The mixed method gets a less performance,
while the half-edge method deceives with a poorer per-
formance. In [22], some schemes have displayed such a
poor performance for the current test problem.

Rectangular nonconforming mesh solutions. Solving
the current test problem on a rectangular noncon-
forming mesh with the reused-value method, half-edge
method, and mixed method leads to the results shown
in Tables 12, 13, and 14, respectively.

Concluding remarks The convergence rates for the
pressure are in concordance with the ones obtained
in [22]. Concerning the pressure gradient, the reused-
value method and the mixed method show equal per-
formance, while the half-edge method is weaker. Note
that flux errors for L∞-norm exhibited in Table 9
confirm our theoretical result as the numerical magni-
tude orders of these errors are the same for both primal
and dual edges (see Proposition 3.6 and Remark 3.7).

Part II: We now consider a nonhomogeneous aniso-
tropic porous medium � =]0, 1[×]0, 1[ whose perme-

Table 3 Test problem no. 1 and triangular mesh: flux error for
L∞-norm and global flux balance with the reused-value method

Reused-value method

i erflm(i) sumflux(i)

Primal mesh Dual mesh

1 5.12E−02 4.32E−02 1.89E−13
2 4.39E−02 3.48E−02 1.78E−13
3 1.78E−02 1.56E−02 0.89E−13
4 0.85E−02 0.67E−02 7.12E−14
5 2.33E−03 2.04E−03 3.64E−15

ability matrix K is defined as follows (see [22] and
[3]):

K(x1, x2) = 1

x2
1 + x2

2

[
10−3x2

1 + x2
2 (10−3 − 1)x1x2

(10−3 − 1)x1x2 x2
1 + 10−3x2

2

]
.

(4.2)

• Test problem no. 3: It is easy to exhibit the
unique f such that the diffusion problem (1.1)–
(1.2) governed by the previous permeability ma-
trix possesses as unique solution: ϕ(x1, x2) =
sin[π x1] sin[π x2].

According to [22], this test case led to numerical
locking difficulties for some participating schemes. We
have used the same family of square meshes as the
one in [22] for computing the reused-value method
solutions (see Table 15). A quadratic convergence of
the pressure and its gradient for L2-norm is exhibited.
Due to the homogeneous geological structure of �

for test problems of Part I, the approximate pressure
gradient and the approximate flux have the same rate of
convergence. In Part II (and the next one), the situation
is different as � is taken to be inhomogeneous; so, it
is necessary to investigate the rate of convergence of
approximate interface fluxes. Let Rate denote the in-
vestigated quantity (for L∞-norm); it could be defined
as follows:

Rate = ln[erflm(imax)] − ln[erflm(imax − 1)]
ln[h(imax)] − ln[h(imax − 1)] (4.3)

Using the relation (4.3), one can see from Table 16 that
the convergence rate of the flux is almost 1.93 across
the primal edges and 1.97 on the dual edges. This is a
confirmation of our theoretical results which claim that
the rates of convergence of the flux on primal and dual
edges have the same magnitude order at least equal to
2 for L∞-norm (see Proposition 3.6 and Remark 3.7).

Part III: Following [22] for the test case exposed now,
� =]0, 1[×]0, 1[ is taken to be a geologically complex
porous medium (see Fig. 9). More precisely, � is a pile
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Table 4 Test problem no. 1 and distorted quadrilateral mesh: computation of flux error for L∞-norm and global flux balances with the
reused-value method

Level Reused-value method

i erflx0 erflx1 erfly0 erfly1 sumflux(i) erflm(i)

Primal Dual

1 0.94E−03 3.22E−04 3.11E−03 4.15E−03 −1.20E−13 2.58E−01 2.74E−01
2 3.97E−04 110E−06 1.02E−04 2.34E−04 1.05E−14 4.03E−02 3.97E−02

Table 5 Test problem no. 1 and distorted quadrilateral mesh: computation of flux error for L∞-norm and global flux balances with the
half-edge method

Level Half-edge method

i erflx0 erflx1 erfly0 erfly1 sumflux(i) erflm(i)

Primal Dual

1 5.09E−03 2.58E−02 6.11E−02 1.98E−02 −2.01E−12 3.09E−01 3.64E−01
2 2.46E−03 2.25E−03 1.96E−03 2.75E−03 1.78E−13 3.52E−02 2.07E−02

of anisotropic layers with a vertical fault in the middle
of the structure. From the macroscopic scale viewpoint,
this fault may be mathematically modeled as an in-
terface in �, involving discontinuities of the diffusion
coefficients distributed along the line {x1 = 1

2 } (see, for
instance, [26] concerning details about this point of
view). This discontinuity line geometrically divides �

into two parts. Therefore, one may define � as a union
of two anisotropic heterogenous materials, namely �1

and �2, with �2 = � \ �1 and �1 = �l
1 ∪ �r

1, where

�l
1 = (0.; .5] × (∪4

k=0[.05 + 2k × .1; .05 + (2k + 1) × .1])
(4.4)

�r
1 =(.5; 1) × (∪4

k=0[2k × .1; (2k + 1) × .1]). (4.5)

The figure below illustrates the geological structure of
the anisotropic nonhomogeneous porous domain �.

The medium permeability tensor K is defined as

K(x1, x2) =
[

K11 0
0 K22

]
(4.6)

with

K11 = 102 and K22 = 10 for (x1, x2) ∈ �1 (4.7)

K11 = 10−2 and K22 = 10−3 for (x1, x2) ∈ �2.

(4.8)

• Test problem no. 4: The pressure ϕ is prescribed
on the domain boundary � (Dirichlet boundary
conditions):

ϕ(x1, x2) = 1 − x1 on �

Table 6 Test problem no. 1 and distorted quadrilateral mesh: computation of flux error for L∞-norm and global flux balances with the
mixed method

Level Mixed method

i erflx0 erflx1 erfly0 erfly1 sumflux(i) erflm(i)

Primal Dual

1 2.47E−03 2.06E−02 2.42E−02 2.11E−02 0.34E−13 6.85E−01 5.74E−01
2 1.93E−03 1.91E−03 1.80E−03 2.04E−03 2.50E−14 1.77E−02 0.38E−02

Table 7 Test problem no. 1 and distorted quadrilateral mesh : convergence rates of the reused-value method

Parameters Performance of reused-value method

i nunkw nnmat sumflux erL2 ergadL2 ratioL2 ratiogradL2

1 545 4,641 −1.63E−13 2.15E−02 6.32E−02 0.00E00 0.00E00
2 2,245 19,669 −1.01E−13 5.32E−03 1.53E−02 1.97E00 2.01E00
3 5,101 45,101 −3.41E−13 2.36E−03 6.77E−03 1.99E00 1.98E00
4 9,113 80,937 −2.13E−13 1.32E−03 3.80E−03 1.99E00 1.99E00
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Table 8 Test problem no. 2
and triangular mesh:
computed rates of
convergence

Parameters Performance of Reused-value method

i nunkw nnmat erL2 ergradL2 ratioL2 ratiogradL2

1 77 557 3.64E−03 1.17E−02 0.00E00 0.00E00
2 321 2,593 8.80E−04 3.61E−03 1.90E00 1.64E00
3 1,313 11,201 2.22E−04 1.05E−03 1.95E00 1.76E00
4 5,313 46,561 5.61E−05 2.92E−04 1.97E00 1.82E00
5 21,377 189,857 1.41E−05 8.03E−05 1.99E00 1.86E00

Table 9 Test problem no. 2
and triangular mesh: edge
flux error in L∞-norm for the
reused-value method

Parameters Reused-value method

i nunkw nnmat erflm(i) sumflux(i)

Primal mesh Dual mesh

1 77 557 5.54E−02 1.21E−01 3.11E−15
2 321 2,593 2.88E−02 7.84E−02 −2.53E−14
3 1,313 11,201 1.44E−02 4.41E−02 −2.22E−14
4 5,313 46,561 7.19E−03 2.34E−02 1.47E−13

Table 10 Test problem no. 2
and triangular mesh:
computed rates of
convergence of the half-edge
method

Parameters Performance of half-edge method

i nunkw nnmat erL2 ergradL2 ratioL2 ratiogradL2

1 77 557 3.11E−03 1.83E−01 0.00E00 0.00E00
2 321 2,593 7.88E−04 1.44E−01 2.05E00 3.83E−01
3 1,313 11,201 1.93E−04 1.07E−01 1.99E00 4.21E−01
4 5,313 46,561 4.79E−05 7.73E−02 1.99E00 4.62E−01
5 21,377 189,857 1.19E−05 5.54E−05 1.99E00 4.81E−01

Table 11 Test problem no. 2
and triangular mesh:
computed rates of
convergence of the mixed
method

Parameters Performance of mixed method

i nunkw nnmat erL2 ergradL2 ratioL2 ratiogradL2

1 77 557 3.26E−03 1.19E−02 0.00E00 0.00E00
2 321 2,593 7.32E−04 3.71E−03 2.09E00 1.69E00
3 1,313 11,201 1.77E−04 1.15E−03 2.04E00 1.65E00
4 5,313 46,561 4.37E−05 3.95E−04 2.02E00 1.65E00
5 21,377 189,857 1.09E−05 1.59E−04 2.01E00 1.51E00

Table 12 Test problem no. 2
and rectangular
nonconforming mesh:
computed convergence
orders of the reused-value
method

Parameters Reused-value method

i nunkw nnmat erL2 ergradL2 ratioL2 ratiogradL2

1 73 569 5.78E−03 5.12E−02 0.00E00 0.00E00
2 305 2,561 1.38E−03 2.00E−02 1.95E00 1.31E00
3 1,249 10,865 3.36E−04 7.32E−03 1.98E00 1.43E00
4 5,057 44,753 8.29E−05 2.6E−03 1.98E00 1.48E00

Table 13 Test problem no. 2
and rectangular
nonconforming mesh:
computed convergence
orders

Parameters Half-edge method

i nunkw nnmat erL2 ergradL2 ratioL2 ratiogradL2

1 73 569 5.44E−03 1.94E−01 0.00E00 0.00E00
2 305 2,561 1.27E−03 1.33E−01 2.03E00 5.38E−01
3 1,249 10,865 3.15E−04 9.11E−02 1.98E00 5.32E−01
4 5,057 44,753 7.86E−05 6.28E−02 1.98E00 5.07E−01

Table 14 Test problem no. 2
and rectangular
nonconforming mesh:
computed convergence
orders

Parameters Mixed method

i nunkw nnmat erL2 ergradL2 ratioL2 ratiogradL2

1 73 569 5.62E−03 4.86E−02 0.00E00 0.00E00
2 305 2,561 1.32E−03 1.88E−02 2.03E00 1.33E00
3 1,249 10,865 3.24E−04 6.91E−03 2.01E00 1.42E00
4 5,057 44,753 7.98E−05 2.47E−03 2.00E00 1.47E00
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Table 15 Test problem no. 3:
convergence orders for the
reused-value method

Parameters Computed convergence orders

i nunkw nnmat erL2 ergradL2 ratioL2 ratiogradL2

1 25 169 1.14E−02 6.68E−02 00E00 00E00
2 113 897 2.41E−03 7.28E−03 1.88E00 1.73E00
3 481 4,081 5.88E−04 1.87E−03 1.94E00 1.89E00
4 1,985 17,361 1.40E−04 4.78E−04 1.99E00E 1.96E00
5 8,065 71,569 3.48E−05 1.19E−04 2.00E00E 1.99E00

Table 16 Test problem no. 3:
flux error in L∞-norm of the
reused-value method for
primal and dual edges

Parameters Reused-value method

i nunkw h(i) erflm(i) sumflux(i)

Primal mesh Dual mesh

1 25 1/4 3.25E−01 2.87E−01 1.78E−15
2 113 1/8 2.49E−01 1.53E−01 4.44E−15
3 481 1/16 1.43E−01 7.72E−02 1.15E−14
4 1,985 1/32 7.55E−02 3.99E−02 1.27E−13
5 8,065 1/64 1.98E−02 1.02E−02 0.63E−14

and the source term f is taken to be zero. Ac-
cording to the (continuous) maximum principle, the
exact solution for the system (1.1)–(1.2) should be
bounded by 0 and 1. Our purpose in this test case is
to check if the computed solution takes its values
between 0 and 1. For this purpose, a rectangular
coarse mesh (see Fig. 10) and a refined conforming
square mesh (made up of 20 × 20 cells) have been
considered.

We are also interested in (1) knowing whether the
proposed method meets the global mass conservation
in � and (2) computing the rate of convergence for the
approximate interface fluxes. Since the global energy
dissipated (in � by viscous forces related to the flow)
could be used to compute the effective permeability
tensor of � (see, for instance, [29, 35] but also [12]
and the references therein), we are interested in in-

Fig. 9 Geological architecture of the porous medium �

vestigating the capabilities of the reused-value method
to compute this energy (whose exact value is almost
43.2E00 and could be obtained from a reference square
mesh made of 320 × 320 cells).

Let us start with some definitions and notations
(inspired from [22]). We denote by Ener1 and Ener2
two approximations of the same quantity (namely the
global energy dissipated in �) based on two inte-
gral expressions (perfectly identical in their continuous
setting):

E1 =
∫

�

(K grad ϕ) . grad ϕ dx,

E2 =
∫

�

ϕ (K grad ϕ · n)ds (4.9)

Fig. 10 A nonconforming rectangular coarse mesh defined on �
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Table 17 Test problem no. 4 with discontinuous permeability tensor and a vertical fault in �: flux error in L∞-norm of the reused-value
method for primal and dual edges

Parameters Reused-value method and flux computation

i h(i) erflm(i) sumflux(i)

Primal mesh Dual mesh

Coarse = 1 1/10 1.26E−01 1.67E−01 6.85E−11
Refined = 2 1/20 3.25E−02 4.19E−02 9.07E−13

Table 18 Test problem no. 4 with discontinuous permeability tensor and a vertical fault in �: verification of the maximum principle
and computation of viscous force energy with formulas shown in Eq. (4.9)

Parameters Reused-value method and energy computation

Level nunkw nnmat Min Max Ener1 Ener2 Eren

Coarse 200 1,291 −1.66E00 2.29E00 6.72E01 4.45E01 3.38E−01
Refined 761 4,507 0.00E00 1.00E00 4.36E01 4.34E01 4.6E−03

The relative error Eren is defined by relation (4.10)

On the other hand, Eren denotes the quantity defined
by the relation

Eren = |Ener1 − Ener2|
max{Ener1, Ener2} . (4.10)

Thanks to relation (4.3), one can see from Table 17
that the convergence rate of the flux is 1.95 across the
primal edges and grows into 1.99 on the dual edges.
So, the flux globally converges slightly faster on dual
edges than it does on primal edges. These convergence
rates confirm our theoretical results that assert a con-
vergence of order 2 (at least) for edge fluxes in L∞-
norm. On the other hand, it is clear from Table 18
that if the mesh becomes finer and finer, the DDFV
approximation of the energy expressions given by Eq.
(4.9) leads to almost the same real value that converges
to the energy dissipated by viscous forces in �.

5 Conclusions and perspectives

In this work, we have presented a theoretical analysis
and a numerical implementation of the DDFV method
for subsurface flow problems. The discrete solutions are
nothing than approximate pressures at cellpoints and
vertices. With any discrete solution, a P1-finite volume
solution is associated. We have proven the stability
and some error estimates for the discrete solution (see
Proposition 3.5 and Proposition 3.9). From these error
estimates, the convergence of a P1-finite volume solu-
tion with order 1.00 for L2-norm and 0.50 for L∞-norm
is derived. From the implementation and comparison
point of view, the efficiency and competitiveness of
the reused-value method have been shown for diverse
unstructured and/or nonconforming meshes. Espe-
cially, convergence (with the same magnitude order)

of approximate fluxes across primal and dual edges is
theoretically and computationally proven. The theoret-
ical analysis of this method for nonconforming unstruc-
tured meshes could be an interesting challenge.
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