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Abstract From a system-theoretical point of view and
for a given configuration of wells, there are only a
limited number of degrees of freedom in the input–
output dynamics of a reservoir system. This means
that a large number of combinations of the state vari-
ables (pressure and saturation values) are not actually
controllable and observable from the wells, and
accordingly, they are not affecting the input–output be-
havior of the system. In an earlier publication, we there-
fore proposed a control-relevant upscaling methodol-
ogy that uniformly coarsens the reservoir. Here, we
present a control-relevant selective (i.e. non-uniform)
coarsening (CRSC) method, in which the criterion for
grid size adaptation is based on ranking the grid block
contributions to the controllability and observability of
the reservoir system. This multi-level CRSC method
is attractive for use in iterative procedures such as
computer-assisted flooding optimization for a given
configuration of wells. In contrast to conventional flow-
based coarsening techniques our method is indepen-
dent of the specific flow rates or pressures imposed
at the wells. Moreover the system-theoretical norms
employed in our method provide tight upper bounds
to the ‘input–output energy’ of the fine and coarse
systems. These can be used as an a priori error-estimate
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of the performance of the coarse model. We applied our
algorithm to two numerical examples and found that it
can accurately reproduce results from the correspond-
ing fine-scale simulations, while significantly speeding
up the simulation.
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Nomenclature

A System matrix
B Input matrix
C Output matrix
D Direct throughput matrix
e Relative error
E Energy
I Identity matrix
J Well index matrix, m3/(Pa s)
k Counter (discrete time)
K Absolute permeability, m2

l Number of snapshots
� Cut-off value for singular values
L Cholesky factor
n Number of states; number of grid blocks

in fine-scale model
p Pressure vector, Pa
q Well flow rate vector, m3/s
t Time, s
T Transformation matrix; transmissibility

matrix, m3/(Pa s)
u Input vector; singular vector
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U Matrix of left singular vectors
V Matrix of right singular vectors; accumu-

lation matrix
W Gramian
x State vector
X Snapshot matrix for the forward model
y Output vector
Y Snapshot matrix for the adjoint model
z Adjoint state vector
α Threshold value
ε Machine epsilon
σ Singular value
� Diagonal matrix containing singular

values
Subscripts
a Adjoint
c Continuous
cum Cumulative
C Controllability
E Energy
HSV Hankel singular values
k Counter (discrete time)
l Counter (grid blocks)
O Observability
p Pressure
q Flow rate
w Well
Superscripts
r Order of low-rank approximated

Cholesky factors
T Transpose

1 Introduction

1.1 Conventional upscaling

At present, the computational limits for reservoir flow
simulation restrict the model order typically to 104 to
106, for single-core implementations. Here, the model
order is defined as the number of time-dependent vari-
ables (i.e. state variables such as grid block pressures,
saturations or component accumulations) which is typi-
cally equal to the number of active grid blocks times the
number of components (i.e. hydrocarbon components
and water) in the simulation. The number of time-
independent model parameters is usually of the same
order of magnitude because they are also proportional
to the number of grid blocks (e.g. grid block permeabil-
ities and porosities). However, geological subsurface
models often represent the subsurface heterogeneity
with 106 to 109 parameters (‘voxels’) and some form of

upscaling is therefore required to transfer the relevant
features of a geological model to a flow simulation
model. The uncertainty of the geological parameters
is increasingly taken into account by simulating an
ensemble of model realizations, which significantly in-
creases the computational demands, especially when it
is also required to perform repeated simulations for
iterative procedures such as computer-assisted flooding
optimization or history matching. In particular, we con-
sider the application of reservoir simulation for ‘closed-
loop reservoir management’, which involves the use of
simulation models during the producing life of a reser-
voir for near-continuous flooding optimization based
on frequently updated, ‘evergreen’, reservoir models
[8, 20, 21, 27, 32]. Even although the rapid increase
of cluster computing facilitates such operational use
of reservoir simulation, reducing the number of grid
blocks, and thus the model order, through upscaling
remains a computational and practical necessity. There
are different grid-based upscaling techniques varying
from simple averaging methods on uniform Cartesian
cells to sophisticated flow-based techniques on adap-
tive and unstructured grids. Extensive reviews of the
different methods were written by, e.g., [10, 11, 30, 41].

1.2 Control-relevant upscaling

In most conventional upscaling techniques, the coarse-
scale parameters are calculated based on the fine-scale
parameters and some local flow calculations, but not
any other system property. However, we argue that,
from a system-theoretical point of view, there are only
a limited number of degrees of freedom in the input–
output dynamics of a reservoir system [43]. This means
that, for a given configuration of wells, a large number
of combinations of the state variables (pressure and
saturation values) are not actually controllable and
observable from the wells, and accordingly, they are
not affecting the input–output behavior of the system.
Therefore, the complexity level of a model should be
adjusted to the amount of available information and
the extent of control that is possible in the reservoir
system. In an earlier publication, we therefore pro-
posed a control-relevant upscaling (CRU) method that
uniformly coarsens the reservoir model based on the
relevant level of information and control (see [37]).
Note that we use the terms upscaling and coarsening
interchangeably.

The CRU method is a global method, in the sense
that it relies on the system properties of the entire
reservoir. It does not, however, require any forward
simulation, neither of the full nor of the upscaled
model. It also does not depend on a particular control
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strategy, but instead uses the dynamical system equa-
tions directly. Its dependency on well locations, how-
ever, implies that it should be (partially) repeated when
those locations are changed. Moreover, the formula-
tion as presented in Vakili-Ghahani and Jansen [37]
is restricted to fine-scale models with a maximum of
around 105 grid blocks because of current limits on the
computation of the underlying system norms. In Vakili-
Ghahani et al. [35] we proposed to overcome this com-
putational limit by combining CRU with model-order
reduction techniques. In Vakili-Ghahani and Jansen
[36], we followed a different route and proposed a
two-level control-relevant selective coarsening (CRSC)
algorithm. Here we will treat the latter approach more
in-depth, extend it to multiple levels of coarsening,
include alternative computational methods, perform an
operations count analysis, and add a second numerical
example.

The multi-level CRSC algorithm selectively refines
the grid to various degrees in the most controllable and
observable parts of the reservoir. Alternatively, it starts
from a uniformly coarsened grid and then selectively
refines it. In addition to a computational advantage, the
selective coarsening/refinement is also expected to be
more accurate, in the sense that a selectively upscaled
model is expected to introduce smaller upscaling errors
than a uniformly upscaled model with the same number
of grid blocks. The main contribution of this paper is
to present a control-relevant criterion for grid adapta-
tion, and use it in a selective (non-uniform) coarsen-
ing/refinement approach that is applicable to large fine-
scale models. In the next sections we will first provide
some background information on system-theoretical
concepts and definitions. Thereafter we will explain
the CRSC algorithm and demonstrate its performance
using two numerical examples.

2 System-theoretical concepts

Some basic system-theoretical notations and their
definitions are briefly discussed in this section. The
system-theoretical material presented here is well-
established, see, e.g. [2, 33]. For recent applications of
system theory to reservoir modeling see [6, 14, 19, 24,
25, 34, 37, 38, 43].

2.1 State-space representation of the reservoir model

Consider an isothermal weakly compressible single-
phase flow model with a given set of boundary and
well conditions (e.g. [3]). Spatial discretization of the

original partial differential equations, after some ma-
nipulation, results in
⎡
⎣
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0 V22 0
0 0 V33

⎤
⎦

⎡
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ṗ1

ṗ2

ṗ3

⎤
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⎦ , (1)

where the diagonal block matrices Vii, i = 1, 2, 3 are
accumulation matrices with entries that depend on the
grid block size, grid block porosities, and the total
compressibility, and the band-diagonal block matrices
Tij, i = 1, 2, 3, j = 1, 2, 3 are transmissibility matri-
ces with entries that depend on the grid block size,
grid block permeabilities, and the fluid viscosity. The
elements of vector p1 are the pressures in those grid
blocks (elements) that are not penetrated by a well. The
elements of p2 are the pressures in the blocks where
the source terms are prescribed well flow rates q̆w, and
those of p3 are the pressures in the blocks where the
source terms are obtained through prescription of the
bottom-hole pressures with the aid of a well model,

q̄w = Jp
(
p̆w − p3

)
. (2)

Here Jp is a diagonal matrix of well indices, the el-
ements of p̆w are the prescribed pressures, and the
elements of q̄w are the resulting well flow rates. To
compute the bottom-hole pressures p̄w in the wells
where the flow rates have been prescribed, we need an
additional diagonal matrix Jq of well indices such that

q̆w = Jq
(
p̄w − p2

)
. (3)

Equations 2 and 3 can be combined to give
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(4)

If we define the vectors

x =
⎡
⎣

p1

p2

p3

⎤
⎦ , (5)

u =
[

q̆w

p̆w

]
, (6)

y =
[

p̄w

q̄w

]
, (7)



162 Comput Geosci (2012) 16:159–176

Equations 1 and 4 can be rewritten, respectively, as

ẋ = Acx + Bcu, (8)

y = Cx + Du, (9)

where

Ac = −
⎡
⎣

V−1
11 T11 V−1

11 T12 V−1
11 T13

V−1
22 T21 V−1

22 T22 V−1
22 T23

V−1
33 T31 V−1

33 T32 V−1
33

(
T33 + Jp

)

⎤
⎦ , (10)

Bc =
⎡
⎣

0 0
V−1

22 0
0 V−1

33 Jp

⎤
⎦ , (11)

C =
[

0 I 0
0 0 −Jp

]
, (12)

D =
[

J−1
q 0
0 Jp

]
. (13)

Equations 8 and 9 give the standard continuous-time
‘state-space representation’ of a LTI system, as used in
systems and control theory. The matrices Ac ∈ Rn×n,
Bc ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m are respectively
referred to as the ‘system matrix’, because it contains
the properties of the system, the ‘input matrix’, because
it maps the inputs to the states, the ‘output matrix’, be-
cause it maps the states to the outputs, and the ‘direct-
throughput matrix’. Here, the subscript c refers to the
continuous-time form. Moreover, for a system with m
inputs, p outputs and n state variables, the input vector
u(t) ∈ Rm, where t ∈ R represents time, and the output
vector y(t) ∈ Rp include the flow rates and bottom-
hole pressures in those wells where they can actually
be controlled and/or observed. In a reservoir simulator
we have access to all wells, such that m and p are
both equal to the number of wells, while B = CT . In
reality control/and or observation of individual wells
may not be possible, e.g. because oil is produced via
a subsea manifold without individual well controls, or
because injection water is distributed over a group of
wells without individual rate allocation. In that case
generally m m �= p and B �= CT . The state vector x(t) ∈
Rn+ represents the state variables, i.e., for single-phase
flow, the pressure values in all grid blocks. The order
(or dimension) of the system is equal to n. Using an
implicit time discretization with a fixed time step �t,

Eqs. 8 and 9 can formally be rewritten in discrete-time
form as

xk+1 = Axk + Buk, (14)

yk = Cxk + Duk, (15)

where

A = (I − �tAc)
−1 , (16)

B = (I − �tAc)
−1 �tBc. (17)

We note that the notation xk indicates x(tk), i.e. the
value of x at continuous time t = tk, where the subscript
k is the time step counter or discrete time. Moreover, in
a practical computational scheme the inverse matrices
will not actually be computed, and a computationally
more efficient approach will be followed. Equations 14
and 15, also known as the ‘system’ and ‘output’ equa-
tions respectively, are the standard discrete-time linear
time-invariant state-space equations as used in the sys-
tems and control literature.

2.2 Balanced realization of a linear system

A stable linear time-invariant system represented by
Eqs. 14 and 15 is state-controllable if we can bring it
from any initial state to any final state by choosing a
proper input. It is state-observable if we can reconstruct
the initial state from the knowledge of the outputs.
Controllability and observability can be quantified with
the aid of the Gram matrices, Gramians in short, which
are square and symmetric matrices, defined as

WC =
∞∑

k=0

AkBBT (
AT)k

, (18)

and

WO =
∞∑

k=0

(
AT)k

CTCAk. (19)

The necessary and sufficient condition for the state
controllability and observability is that the respec-
tive Gramians are positive definite. Instead of having
to compute the infinite sum of Eqs. 18 and 19, the
Gramians can be found as solutions of Lyapunov
equations

AWCAT + BBT = WC, (20)

and

ATWOA + CTC = WO. (21)
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Note that in the case that B = CT only one of these
equations needs to be solved and WC = WT

O. Further-
more, to assess the degree of the system’s controllabil-
ity the control energy is defined as the minimum energy
that is required to bring the system from the zero state
to state x, and it is given by EC(x) = xTW−1

C x. Similarly,
the maximum observation energy, when the system is
in state x, is defined as EO(x) = xTWOx. The Gramians
can therefore give a measure of the degree of control-
lability and observability of each individual state, i.e.,
the degree to which a state is influenced by the inputs
and the effect that changes in this state have on the
outputs. Note that the term ‘energy’ is used loosely
here, motivated by the fact that energy can often be
written as a quadratic form (e.g. potential energy as a
function of squared pressure). A balanced realization
combines the controllability and observability proper-
ties of a system by finding a transformation matrix
T that gives an equivalent model with equal and di-
agonal controllability and observability Gramians, i.e.
W̄C = W̄O.

As an aside, we note that the model-order reduction
technique known as proper orthogonal decomposition
(POD) is based on an empirical controllability Gramian
obtained by collecting state snapshots from a model
simulation. The balanced version of the POD method,
known as BPOD, also includes an empirical observ-
ability Gramian obtained by collecting adjoint state
snapshots. The diagonal entries of the balanced Grami-
ans, known as Hankel singular values, give a ranked
measure of the energy of the individual transformed
states (which are linear combinations of the original
states), or their contribution to the input–output behav-
ior. Therefore, Hankel singular values can be used to
identify those linear combinations of the states that rep-
resent the most important input–output characteristics
of the system.

3 Control-relevant selective coarsening

The general idea behind selective (non-uniform) coars-
ening is to only coarsen those parts of the spatial do-
main that are the least important for the flow simu-
lation according to some predefined criterion. In our
CRCS application we use a control-relevant criterion
based on the quantification of the controllability and
observability subspaces over the spatial domain. Other
selective gridding methods have been proposed, some-
times with an adaptive, i.e. time-dependent, strategy for
selective refinement and coarsening based on different
criteria. In particular, adaptive gridding is often applied

to maintain a fine grid in areas of high permeability or
in areas where high saturation or concentration gradi-
ents occur; see, e.g., [5, 13] and references therein.

3.1 Spatial quantification of observability
and controllability

As discussed in Section 2, we can quantify the con-
trollability and the observability of a linear reservoir
system by computing the Gramians WC and WO. The
square roots of the eigen values of WCWO are then
equal to the Hankel singular values (HSVs) of the
system. The HSVs can give a measure of the combined
controllability and observability of the balanced states
of the system. In [35, 37] we used this analysis to
develop a uniform CRU method that indirectly focuses
on the most controllable and observable states of the
system. There we found the coarse grid block para-
meters by minimizing the difference between the fine
and the coarse reservoir models in terms of a system
norm that characterizes the input–output behavior for
a given configuration of wells. Here, in addition to the
HSVs, we also consider the singular vectors. These are
obtained by a singular value decomposition of

WCWO = U�2VT , (22)

where � contains the HSVs and U contains the corre-
sponding singular vectors as columns. From the rela-
tions between the Gramians and the balanced Grami-
ans, we obtain

WCWO = T−1W̄CW̄OT = T−1�2T. (23)

Consequently, for a balanced realization of the sys-
tem, the singular vectors are equivalent to the columns
of T−1, where T is the balancing transformation ma-
trix which results in equal and diagonal Gramians. In
most reservoir models, the magnitude of HSVs are
rapidly decreasing, indicating that a large number of
the states are weakly controllable/observable. Hence,
they weakly influence the input–output behavior of
the system [34, 39, 43]. Considering this effect, we can
rewrite Eq. 22 as

WCWO = [
U1 U2

] [
�2

1 0

0 �2
2

][
VT

1

VT
2

]
, (24)

where �1 = diag(σ1, σ2, · · · , σ�) contains the first �

HSVs of the system (corresponding to the most control-
lable/observable states) which are significantly larger
than the HSVs in �2 = diag(σ�+1, σ�+2, · · · , σn). Note
that each column of U has n entries that are related to
n states, which are in turn connected to n grid blocks.
Moreover, the first � columns of U, corresponding to
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the first �HSVs, are representing the most control-
lable/observable subspace of the state-space and, con-
sequently, are related to those combination of the states
that are most controllable/observable. Therefore, the
singular vectors related to the first few HSVs of the
system can be used to quantify the controllability and
observability spatially. We select the number of HSVs
that should be retained in the computations, based on
the definition of the total energy transferred through
the system. This energy is defined as the square root
of the sum of the squared HSVs and is also referred
to as the Hilbert–Schmidt–Hankel (HSH) norm [17].
However, in most cases, we only calculate �HSVs be-
cause the order of magnitude of the rest is below ma-
chine precision. Therefore an upper bound to the total
‘input–output energy’ EHSV can be defined as

EHSV =
√√√√ �∑

i=1

σ 2
i + (n − �) ε (25)

where ε represents the machine epsilon. Usually, the
second term under the square root sign in Expression
(25) will be much smaller than the first one so that the
upper bound is very tight. Alternatively, we may choose
a computationally more efficient implementation in
which only a limited number � of Hankel singular
values is computed, i.e. not all that are above machine
precision. In that case, we need to replace ε in Eq. 25
with σ�+1 which results in a somewhat looser upper
bound.

As an illustration of our approach, consider a single-
phase two-dimensional (2D) numerical reservoir model
with a permeability field given in Fig. 1. The model
has 16,384 grid blocks, and therefore 16,384 (pressure)
states, one injector and four producers (we will explain
this example in more detail in Test Case 1 below).
Figure 2 displays the first 130 diagonal entries of the
balanced Gramians, i.e. the Hankel singular values,
for this reservoir system. Note that the y-axis is rep-
resented on a logarithmic scale, and that the smallest
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Fig. 2 Hankel singular values for Test Case (1)

singular values of the system are smaller than 10−16, i.e.
machine precision in Matlab. The sum of the first 130
squared Hankel singular values equals 1.9977 while the
sum of the remaining 16,254 squared singular values,
which could not be computed, has an upper bound of
only 1.6254 × 10−12. For practical purposes, the sum of
the 130 computed squared singular values can therefore
be used as an accurate measure of EHSV. Given that
Hankel singular values offer a measure of the degree
of the combined controllability and observability of
linear combinations of states, the rapid decline in the
magnitude of these values implies that the number
of combinations required to describe the input/output
behavior of the system is much smaller than 16,384. Ac-
cordingly, the dominant reservoir dynamics ‘lives’ in a
state-space of much smaller dimensions than suggested
by the number of grid blocks.

To visualize the controllability/observability, we con-
sider ‘directions’ u1, u2, ..., u6, corresponding to the six
largest HSVs of the system. Patterns 1 to 6 in Fig. 3
show the directions mapped onto the computational
grid. Because each component of the state represents
the pressure in a grid block, this mapping allows us
to quantify the variation of the controllability and ob-
servability of the system over the spatial domain in
the form of ‘patterns’. For a better visualization, in
Fig. 4, we have sorted the grid blocks based on their
importance (the magnitude of their non-zero values in
the previous figure). The colors therefore represent the
‘grid importance’; i.e. the ranked importance of the
individual grid block contributions to the system con-
trollability/observability (in terms of the ‘input–output
energy’ EHSV), ordered from high contributions (red)
to negligible contributions (blue).

The significance of each mapped pattern is propor-
tional to the magnitude of the related Hankel singular
value. The vector sum of all patterns, each weighted



Comput Geosci (2012) 16:159–176 165

0 100 200

0 0

50

100

 x , m

 y
 , 

m
pattern 1

 

 

-8

-6

-4

 
  

 

 

 
  

0 100 200

0

50

100

 x , m

 y
 , 

m

pattern 4

 

 

-8

-6

-4

 
  

 

 

 
  

 

0 100 200

50

100

 x , m

 y
 , 

m

pattern 2

 

 

-8

-6

-4

 
  

 

 

0 100 200

0

50

100

 x , m
 y

 , 
m

pattern 5

 

 

-7

-6

-5

 
  

 

 
  

 

 

 

0 100 200

0

50

100

 x , m

 y
 , 

m

pattern 6

 

 

-9
-8
-7
-6
-5

 
  

 

0 100 200

0

50

100

 x , m

 y
 , 

m

pattern 3

 

 

-8

-6

-4

Fig. 3 Patterns 1 to 6 represent the log10 singular vectors corresponding to the six largest Hankel singular values of the system in Test
Case (1)

with its corresponding singular value, therefore gives
the ‘dominant’ pattern that represents the spatial vari-
ation of the combined controllability and observability
of the system. However, because of the rapid decay of
the singular values, only a few patterns related to �1

in Eq. 24 need to be taken into account to accurately
capture this combined controllability and observability.
Accordingly, the dominant pattern is given by

ū =
r∑

i=1

σi

σ1
ui. (26)

We can select the number of patterns that needs to be
retained in the computations, based on the definition
of the total energy (Eq. 25). For Test Case (1), the ne-

glected energy for 10, 30 and 60 Hankel singular vectors
is 6.8e-3, 5.98e-4, and 1.13e-10 times the (very tight)
upper bound to the total energy (EHSV), respectively.
Here we choose to use the weighted sum of the first
60 patterns. Figure 5 presents the resulting dominant
pattern, both in terms of the log10 singular values and
as grid block importance map. It is clear from this figure
that, for the given example, the most controllable and
observable regions (red) are in the vicinity of the wells
and in high-permeable areas connected and close to the
wells. This observation is also in line with earlier results
from [43]. Note that the area in the vicinity of producer
4 is less controllable/observable, compared to other
producers, because it is located in a low-permeable part
of the reservoir.
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Fig. 4 Grid block importance maps. Visualization of patterns 1 to 6 in Test Case (1) in terms of grid importance, i.e. ranked grid block
contribution to EHSV . Red High, blue low
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Fig. 5 Visualization of the dominant pattern for controllability
and observability variation over the spatial domain for Test Case
(1); the Gramians were obtained by LCRF-ADI algorithm. Left

Weighted sum of the first sixty log10 singular vectors. Right
Weighted sum of the first sixty grid block importance maps (red
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This method to rank the grid block contributions
to the observability and controllability properties of
a reservoir model forms the basis for our CRSC al-
gorithm. The basic idea is to perform grid coarsening
only in the weakly controllable and observable areas,
i.e. in those areas that have the least effect on the
input/output behavior of the system. We note that after
the coarsening has been performed we can simply re-
compute the upper bound to the total energy EHSV such
that it is possible to quantify the effect of the upscaling
in terms of system controllability/observability without
performing any reservoir simulations.

3.2 CRSC algorithm

Algorithm

The CRSC method can be implemented using direct
selective coarsening, or using initial uniform coarsen-

ing followed by selective refinement. In case of direct
selective coarsening (see Fig. 6a) we take the following
steps:

Algorithm 1

1.1 Spatially quantify the combined controllability
and observability of the system based on the fine
model.

1.2 Selectively coarsen the domain in the areas of
the lowest grid importance, i.e. the areas that
contribute least to the combined controllability
and observability.

In case of selective refinement after uniform coarsening
(see Fig. 6b) we take the following steps:

Algorithm 2a

2a.1 Perform a uniform coarsening with a local up-
scaling technique.

Fig. 6 Two strategies to
implement CRSC; a (Top)
direct selective coarsening.
b (Bottom) initial uniform
coarsening and subsequent
selective refinement
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2a.2 Spatially quantify the combined controllability
and observability of the system based on the f ine
model.

2a.3 Selectively refine the domain in the areas of
the highest grid importance, i.e. the areas that
contribute most to the combined controllability
and observability.

Alternatively, we may modify step 2a.2 to enable a
faster but potentially less accurate implementation:

Algorithm 2b

2b.1 Perform a uniform coarsening with a local up-
scaling technique.

2b.2 Spatially quantify the combined controllability
and observability of the system based on the
coarse model.

2b.3 Selectively refine the domain in the areas of
the highest grid importance, i.e. the areas that
contribute most to the combined controllability
and observability.

In the following, we explain Algorithms 2a and 2b in
more detail:

Step (2a/b.1)

We choose an upscaling technique to generate a coarse-
scale model. A fast and simple upscaling method is a so-
called local upscaling technique, in which coarse-scale
parameters are calculated from local flow calculations
subject to some generic boundary conditions [40]. An
alternative technique is a local–global approach, in
which the generic boundary conditions are only used
to obtain an initial coarse-scale flow solution. The in-
terpolation of the coarse-scale solution then gives more
accurate local boundary conditions to find the new
coarse-scale parameters and the process is iterated until
the solution converges [7, 13].

Step (2a.2)

To spatially quantify the most controllable/observable
patterns of the original fine-scale system, we first need
to compute the balanced Gramians of the system by
solving Lyapunov equations (Eqs. 20 and 21). The
balanced Gramians may then also be used to compute
a measure of the system observability/controllability in
the form of a tight upper bound to the ‘input–output en-
ergy’ EHSV. An extensive overview of methods to com-
pute exact and approximate solutions to the Lyapunov
equations can be found in [2, 25] and the references
therein.

We tried three different methods to compute the
Gramians. The first method is to use direct algo-
rithms for small dense Lyapunov equations such as
the Bartels–Stewart technique [4] and Hammarling’s
method [16], which are already implemented in Matlab
as functions lyap and lyapchol. A shortcoming is, how-
ever, a very high computational time and memory re-
quirement for large systems (with an order of higher
than 104 cells).

The second option is to use a low-rank iterative
approximation of the Gramians. This method has been
implemented in LYAPACK [29], which is a Matlab
toolbox for the solution of large-scale problems in
control theory. It uses iterative algorithms and it is
intended for solving large and sparse Lyapunov equa-
tions. In many cases like in our application, the eigen-
values of the Gramians are decaying very fast, indicat-
ing that there exist accurate low-rank approximations.
Let

WC = LCLT
C, (27)

and

WO = LOLT
O, (28)

where LC and LO are the Cholesky factors of the
controllability and the observability Gramians, respec-
tively. For large systems we replace the full-rank ma-
trices LC and LO by a low-rank approximation of
Cholesky factors (LRCFs) Lr

C and Lr
O, where r is the

lower rank related to the order of the controllable and
observable subspaces. For instance, for Test Case 1
with n = 16,384, Fig. 2 suggests that r could be around
60. Consequently, we can store n × r matrices Lr

C and
Lr

O instead of the dense n × n matrices WC and WO.
Therefore, in addition to reducing the computational
cost, we reduce the memory requirements. The use
of LRCFs together with alternating direction-implicit
(ADI) iteration algorithm in LYAPACK leads to an
efficient technique that can approximate the system
Gramians nearly up to the machine precision. The fast
and reliable LRCF-ADI approach, therefore, will be
used to compute the Gramians in Test Cases 1 and 2
below. For a detailed implementation of this method
see [29].

The third method to approximate the system Grami-
ans is based on (balanced) proper orthogonal decompo-
sition ((B)POD). Several authors have investigated the
idea of combining the balanced truncation and POD
including Moor [26], Willcox and Peraire [42], Lall et al.
[23], Antoulas [2], and Rowely [31]. To compute the
POD modes of a system for a particular set of well and
boundary conditions, one has to perform a fine-scale
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simulation and take l snapshots at different points in
time to form the snapshot matrix

X = [
x1 x2 . . . xl

]
. (29)

A singular value decomposition (SVD) of X gives X =
U�V, where U and V are orthogonal matrices, and �

is a diagonal matrix containing the singular values σ

of the system. Moreover, the continuous-time adjoint
(dual) model of a linear system is defined as

ż = AT
c z + CT

c ua, (30)

where Ac is the continuous-time system matrix, Cc is
the continuous-time output matrix and ua represents
the adjoint input. It is known that the POD modes of
the impulse response of the forward (adjoint) system
are equivalent to the dominant eigenvalues of the con-
trollability (observability) Gramian of the system, and
accordingly WC � XXT and WO � ZZT . Therefore,
computing the BPOD approximate Gramians involves
the simulation of the forward and the adjoint systems,
and storing several state and adjoint state snapshots in
matrices X and Z, respectively. Subsequently, from the
solution of the SVD problem ZTX = U�VT , we can
obtain the balanced transformation matrix as

T = XV�−1/2, (31)

where the diagonal entries of � are the Hankel singular
values of the system.

Note that if the inputs and outputs are located in
the same spatial locations (well positions), we have
B = CT and therefore WC = WT

O, in which case we only
need to perform POD and no BPOD. Using (B)POD
we avoid the expensive step of solving the Lyapunov
equations for large systems. However, this comes at the
cost of having to perform forward (and adjoint) fine-
scale simulations to generate the snapshots required for
the (B)POD method. The Hankel singular values
and the corresponding directions are then used to

quantify the variation of the system’s controllability
and observability properties over the spatial domain.
Figure 7 depicts the dominant pattern obtained from
the approximate BPOD Gramians. The resulted map-
ping is very close to the one in Fig. 5, which was ob-
tained by using the LCRF-ADI technique to calculate
the Gramians.

Before finishing step 2a.2, the coarse-scale grid
blocks that are located in the areas corresponding to
highly controllable/observable states (red areas in Fig. 5
or Fig. 7), are flagged to be refined in the next step. A
grid block is flagged if the following condition holds:

ūi

‖ū‖ > α, (32)

where 0 ≤ α ≤ 1 is a threshold value. A zero threshold
value means that all the grid blocks should be flagged
and the corresponding coarse-scale grid blocks need
to be refined, while a unit threshold value means no
refinement. From our experience and for the following
examples, we found out that setting a threshold value
of about 0.005 produced accurate coarse-scale results,
while significantly reducing the number of grid blocks.
However, the optimal choice of the threshold value is
still an open question.

Step (2b.2) An alternative and faster, but potentially
less accurate, approach is to use a approximated coarse-
scale (but still relatively fine) model to compute the
balanced Gramians and perform this step. Steps 2b.2
and 2b.3, in that case, need to be iterated to get more
accurate approximation of the controllable/observable
subspaces. This approach is particularly attractive for
very large fine-scale models, for which a direct calcula-
tion of the fine-scale Gramians is infeasible.

Step (2a/b.3) The last step is to refine the flagged
coarse-scale grid blocks to finer ones, or even back to
the initial fine-scale grid blocks. The result is a system
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Fig. 7 Visualization of the dominant pattern for controlla-
bility and observability variation over the spatial domain for
Test Case (1); the Gramians were obtained using BPOD. Left
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sum of the first eight grid block importance maps (red high
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Fig. 8 Non-uniform grid blocks

of non-uniform grid blocks as depicted in Fig. 8. To
discretize partial differential flow equations over non-
matching grid blocks, we choose a cell-centered finite
volume technique. The interface fluxes for each control
volume are calculated by using a two-point flux approx-
imation method [1, 12]. Therefore, the flux between
grid blocks 2 and 1 in Fig. 8 is given by

q2 = −
(

1

μ

2K2 K1

�x2 K1 + �x1 K2
�y2

)
(p2 − pa2), (33)

where K1 and K2 are the permeability values of grid
blocks 1 and 2, p2 and pa2 are pressure values at points
2 and a2, μ is the fluid viscosity, and �x and �y are the
grid block dimensions. One issue here is to calculate the
pressure values at the auxiliary points like a2 and a3.
Although there are various ways to do so, for simplicity
we assume that they are equal to the average pressure
for the entire grid block. However, to maintain the
accuracy around the interface, we require that each
grid block may only be refined once in each direction,
i.e. at each refinement level, a grid block may contain
up to four sub grid blocks. More accurate pressure
calculations at the auxiliary points can be found in e.g.
[12, 13, 15, 22]. Spatial and temporal discretization of
the flow equation over the non-uniform grid blocks
leads to a system of equations that can be written in
state-space form Eq. 14. After completion of step 2a/b.3
we can recompute a tight upper bound to the ‘input–
output energy’ EHSV, and thus quantity the effect of the
coarsening on the system controllability/observability.

4 Numerical results

The performance of CRSC will be demonstrated with
the aid of two numerical test cases. The first one
concerns a channelized reservoir with relatively small
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Fig. 9 Prescribed well bottom-hole pressures for Test Case (1)

permeability fluctuations, while the second one con-
cerns a strongly channelized system. In both cases, we
assume single-phase flow subject to no-flow boundary
conditions. The liquid flow into and out of the reservoir
is therefore through the wells. We consider a fixed
configuration of the wells which are controlled by a
prescribed variable bottom-hole pressure, while pro-
duction and injection rates are recorded as the output
of the system. The bottom-hole pressure is related to
the grid block pressure by using a well index which is a
function of the grid block geometry and permeability
[28]. For Test Case (1), we also compare the results
of our non-uniform coarsening method to those of
two velocity-based non-uniform upscaling techniques,
in which the regions of potentially high fluid velocities
are represented with finer grid blocks. To determine
those high-velocity regions, we use a flux-based and
a streamline-based approach. In the flux-based ap-
proach, adapted from Durlofsky et al. [10], first an
initial approximate coarse-scale model is constructed.
Then the flow rate across each coarse-scale face is
approximated as the sum of the flow through the
corresponding fine-scale faces. Two coarse-scale grid

Fig. 10 Selectively coarsened grid for Test Case (1) using the
CRSC method (Algorithm 2a)
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Table 1 CRSC performance for Test Case (1) using fine-scale Gramians (Algorithm 2a)

Model Fine-scale Coarse (32 × 8) CRSC Flux-based Streamline-based Coarse (128 × 32)

eq (%) 0 29 0.36 0.36 0.25 13
eE (%) 0 73 6.4e-3 2.3e-3 1.9e-3 45
n-ratio 1 0.02 0.23 0.23 0.24 0.25

blocks sharing a face are then refined if the approxi-
mated flux across that face is larger than a prescribed
amount (which is specified as a fraction of the max-
imum flow rate through any coarse-scale face). Sim-
ilarly, in the streamline-based approach, regions with
high streamline densities are represented with a finer
grid (see, e.g. He and Durlofsky [18] and the references
therein).

To compare the performance of the non-uniformly
coarsened model obtained by the CRSC algorithm with
those of the original fine-scale model, the uniformly
coarsened model, and the velocity-based non-uniform
techniques, we define a relative production error as

eq =
∣∣∣∣
qfine − qcoarse

qfine

∣∣∣∣ × 100%, (34)

where q is the total cumulative production of the reser-
voir. We also define an ‘energy’ error as

eE =
∣∣∣∣

EHSV,fine − EHSV,coarse

EHSV,fine

∣∣∣∣ × 100%. (35)

Note that it is possible to compute eE from the system
equations without performing any simulations. Fur-
thermore we define an ‘n-ratio’ as the ratio of the
number of the grid blocks in each model to that of
the original fine-scale model. This ratio also relates the
number of linear solves and, accordingly, gives a rough
estimate of the computational time that is needed to
simulate each reservoir model compared to that of the
fine-scale one. Clearly, the n-ratio for the fine-scale
system is equal to 1.

Fig. 11 Selectively coarsened grid for Test Case (1) using the
flux-based method

4.1 Test case (1)

The first example is a 2D synthetic reservoir with a
permeability field and well locations depicted in Fig. 1.
The permeability values vary between 5 and 1,000 mD.
There are one injector in the middle and four producers
around that, resembling an inverted five-spot pattern.
All wells are controlled by prescribed bottom-hole
pressures. The time-varying bottom-hole pressure for
injector 1 is shown in Fig. 9. Note that the placement of
a well in a low-permeable area is not common practice.
We did this, nevertheless, for producer 4 to illustrate
the controllability/observability variation for different
well placements. Moreover, due to the relatively poor
resolution of seismic data, in practice the exact location
of the channels may be uncertain or unknown.

We chose factors of 8 in each direction to scale up
the 256 × 64 fine-scale model to a uniform 32 × 8
coarse model by using a local upscaling technique. The
grid refinement for this example was then based on
the quantification of the state’s combined controlla-
bility and observability over the spatial domain using
a grid importance map as illustrated in Fig. 5. Here,
we used the fine-scale model to compute the balanced
Gramians, i.e. we applied Algorithm 2a. The level
of refinement for each flagged coarse grid depends
on its importance compared to other grid blocks. In
red grid blocks, which are located in the most con-
trollable/observable areas, we perform three levels of
refinement to return to the original fine-scale model.
Figure 10 shows the selectively coarsened grids ob-
tained by CRSC Algorithm 2a. Clearly the refinement
around producer 4 is less than around the other wells

Fig. 12 Streamline groups for Test Case (1)
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Fig. 13 Selectively coarsened grid for Test Case (1) using the
streamline-based method

because this producer is located in a low-permeable
part of the reservoir and it has less effect on the input–
output behavior of the system. Table 1 presents the
relative error and n-ratio for the simulation of Test
Case (1) with different models. To make a fair compari-
son the boundary conditions for all non-uniform coarse
models are the same and the n-ratio is between 0.23 and
0.24. Although the uniform coarse model (32 × 8) gives
a very fast simulation with an n-ratio of 0.02, the CRSC
algorithm vastly outperforms the uniformly coarsened
grid in terms of accuracy. More interestingly, the CRSC
model with 3,794 grid blocks gives a much smaller error
than the uniform coarse model (128 × 32) with 4,096
cells. This illustrates that for this example, in addition
to a computational advantage, the selective coarsening
is also more accurate than a uniformly upscaled model
with the same number of grid blocks.

The performance of the model generated with the
CRSC method is comparable to those of the models
generated with the flux-based and streamline-based
techniques, although the non-uniform grids are slightly
different (see Figs. 11, 12 and 13). The streamline-
based method gives a slightly better solution, but it
also has a slightly larger number of grid blocks (n-
ratio of 0.24). Note that the streamline-based technique
is more intended for displacement processes, in which
it is important to capture high-flow paths to be able
to accurately predict the key transport elements such
as the breakthrough time of the injected fluid (He
and Durlofsky [18]). However, if the inputs rates are
changing substantially over the course of the simula-
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Fig. 14 HSV plots for the fine-scale, uniform coarse-scale, and
CRSC models in Test Case (1)

tion, a new streamline pattern may will have to be
generated and a new coarsening to be performed. This
dependence on the magnitude of the flowrates in the
wells is also a feature of the flux-based technique. In
contrast, the CRSC method is completely independent
of the input rates, and, contrary to the other two non-
uniform techniques, it requires no fine- or coarse-scale
simulations.

We can also use the Gramians of the initial coarse-
scale model for spatial quantification of the control-
lability/observability, and thus for flagging the most
controllable and observable parts of the reservoir (i.e.
Algorithm 2b). Table 2 gives the results for Test Case
(1) after two iterations. Surprisingly, we observe that,
for this example, the errors are comparable to the result
obtained from Algorithm 2a, i.e. using the fine-scale
Gramians (even without any iteration), while the com-
putational time that is needed to compute the CRSC
grid is decreased from 188 s for the fine-scale case to
85 s for the coarse-scale Gramians with one iteration,
and to 42 s without any iterations. Note that there is no
change in the results after two iterations.

Finally, we compare the HSV plots of all uniform
and non-uniform coarse models of Test Case (1) in
Fig. 14. As expected, the HSV plots of the CRSC
models, using either fine-scale Gramians (Algorithm
2a) or coarse-scale Gramians (Algorithm 2b) are better
matched to the HSV plot of the fine-scale model.

Table 2 CRSC performance
for Test Case (1) using
coarse-scale Gramians
(Algorithm 2b)

Iteration 0 1 2

eq (%) 0.61 0.59 0.59
eE (%) 1.2e-2 1.1e-2 1.1e-2
Number of grid blocks 3794 3824 3824
Gridding time (s) 42 85 135
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4.2 Test case (2)

The second test case is a 2D reservoir with a chan-
nelized permeability field taken from layer 44 of the
SPE10 comparative solution project [9], modeled with
220 × 60 grid blocks. Permeability values for this chan-
nelized system are between 0.0001 and 17,000 mD.
There are one injection and two production wells with
prescribed bottom-hole pressures. The permeability
field and the well locations are depicted in Fig. 15.
Figure 16 illustrates the dominant pattern obtained
from the weighted sum of the Hankel singular vectors
corresponding to the Hankel singular values of the
system. Recall that the red grid blocks are the most
relevant ones in terms of input/output behavior. We
observe again that the highly controllable/observable
states correspond to the grid blocks in the vicinity of
the wells, and of adjacent connected high-permeable
zones. Interestingly, the high-permeable areas in the
upper left and lower right corners, which are either
disconnected or far away from the wells, are weakly
controllable/observable.

We scaled up the fine-scale model to a 55 × 15 coarse
model using a local upscaling technique. Subsequent

    

Fig. 17 Selectively coarsened grid for Test Case (2)

refinement of the grid blocks corresponding to the
most controllable/observable parts of Fig. 16 leads to
a pattern of selectively coarsened grid blocks shown
in Fig. 17. The original fine-scale grid, the uniformly
coarsened grids (55 × 15) and (110 × 30), and the
CRSC grids were used to simulate the flow behavior
in the reservoir. Table 3 gives the simulation results
for different models in terms of cumulative production
error and the n-ratio. As in Test Case 1, it turns out that
the CRSC method appropriately reproduces the fine-
scale results, and clearly outperforms both uniformly
coarsened models obtained with a local upscaling tech-
nique. Note that in highly channelized cases local tech-
niques are well known not to resolve the permeabil-
ity connectivities between different coarse blocks and,
therefore, to result in large upscaling errors.

4.3 Complexity analysis

In order to obtain a rough approximation of the compu-
tational efficiency of CRSC algorithm, we investigated
the computation of the most expensive operations. This
includes the computation of the Gramians and the
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Fig. 16 Visualization of the dominant pattern for controllability
and observability variation over the spatial domain for Test
Case (2). Left Weighted sum of the first 52 log10 singular vectors.

Right Weighted sum of the first 52 grid block importance maps
(red high importance, blue low importance)
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Table 3 CRSC performance
for Test Case (2)

Model Fine Coarse (55 × 15) CRSC Coarse (110 × 30)

eq (%) 0 76 0.08 39
eE (%) 0 82 3.6e-3 43
n-ratio 1 0.06 0.20 0.25

calculation of the Hankel singular values (balancing).
We restricted our analysis to single-core implementa-
tions, and did not consider ultra large reservoir models
(with typically more than 106 cells) in which the flow
equations need to be solved on multiple cores.

The balancing step requires a singular value decom-
position of operation of order n3. However, in practice,
we only perform it for the first � largest singular values
and therefore the computational overhead is in the
order of �3, where � � n. This makes the implementa-
tion of the SVD on very large matrices still possible.
Consequently, the limiting part in the application of
CRSC algorithm to large systems is the computation of
the Gramians, i.e. the solution of Lyapunov equations.
In case of direct Lyapunov solvers, e.g. Stewarts’ and
Hammarling’s Lyapunov solvers, the solver requires
operations in the order of n3 and storage in the order
of n2. The high storage requirement arises because, in
addition to producing dense Gramians, these methods
are based on Schur decomposition of the sparse system
matrix which produces dense matrices. Consequently,
these methods are only applicable to systems with
an order of <104 which disqualifies them for realistic
reservoir simulation applications.

The second approach is the LRCF-ADI method, for
which the operation requirement is in the order of kn
where k is the number of columns that are used for
the computation. Moreover, the storage cost for this
method is much smaller (also in the order of kn). The
reason is that here we work directly with low-rank
Cholesky factors of the Gramians, compared to direct
methods, in which we need to store the full-rank dense
Gramians (in the order ofn2). Therefore, this is the
method that can be also applied to very large systems.
In particular, for large systems in which the input and
output matrices B and C have a low rank, i.e. for small
numbers of inputs and outputs, the eigenvalues of the
Gramians are decaying very fast, indicating that there
exist accurate low-rank approximations. For instance,
Fig. 1 shows that the Hankel singular values for Test
case (1) are rapidly decreasing. This means that for
Test case (1) (n = 16,384), k can be chosen equal to
60 or even less (note that the y-axis is represented on
a logarithmic scale). Therefore, the use of the LRCF-
ADI method for this example can drastically reduce
the computational time and storage requirement, com-
pared to direct methods.

The last approach was to approximate the Gramians
from the method of snapshots or BPOD. In this case
the computational overhead is in the order of l3, where
l � n is the number of snapshots. For Test case (1),
the number of snapshots is equal to 61. Therefore, this
method is also applicable to large systems. However,
it requires also the solution of the flow equation over
the original fine-scale model and the associated adjoint
model with operations in the order of n. For a more
detailed complexity analysis of different methods for
computation of the Gramians, the reader is referred to
[2, 25].

Finally, the grid blocks obtained by the CRSC algo-
rithm are used to solve the flow equation. We assume
that the flow equation requires the solution of a system
of n equation in each time step, where n is the total
number of grid blocks. Note that for large systems it
is more efficient to use an iterative method to solve this
system of equations. For the pressure solution over the
CRSC grid, an extra operation is required to minimize
the effective bandwidth. However, it can be neglected
particularly for larger systems. The other steps in the
simulation are similar for the uniform and CRSC grid
systems. This means that for both systems the simu-
lation cost is roughly related to O(n) for an iterative
solver.

In summary, for large systems, the CRSC grid can be
obtained efficiently by using approximation methods to
compute the Gramians, applying a proper grid block
numbering, optimizing the bandwidth of the system
matrix, and using a proper unstructured data approach
to optimize the grid data storing and loading during the
simulation.

Note that CRSC grid blocks need to be obtained only
once and in an offline part of the simulation, whereas
simulation of the flow equation over CRSC grid blocks
might be performed several times in iterative proce-
dures. This holds in particular for flooding optimization
for a given well configuration. In that case multiple con-
trol settings have to be simulated for a single or multiple
reservoir models with given model parameters. The
method may also be attractive for iterative computer-
assisted history matching, although in that case strong
changes to the model parameters may require a repeti-
tion of the upscaling procedure. In this light we note
that for single-phase flow the identifiability of para-
meter values is closely related to the observability of
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state variables [43], which implies that strong updates
of parameter values outside the observable region, and
therefore the need to repeat the upscaling, are un-
likely. However, the identifiability of parameter values
in multi-phase flow, after breakthrough in the wells,
is more complex, and the computational advantage of
CRSC for history matching of multi-phase flow models
therefore needs further investigation.

4.4 Discussion

This research is primarily concerned with the system-
theoretical aspects of upscaling in reservoir simulation.
The main objective is to exploit information in high-
resolution models that is relevant for control and mea-
surement for a given configuration of wells. In [42], we
demonstrated that the observability of reservoir pres-
sures from output in the wells is very limited and that
therefore also the identifiability of reservoir parameters
from production data is very limited. At the same time
there is a very limited controllability of the reservoir
pressures by manipulating the inputs in the wells. Pres-
sures and their spatial derivatives, i.e. velocities, deter-
mine the propagation of fluids through the reservoir.
For a system with inputs and outputs in the same wells,
the (few) identifiable parameter patterns correspond
just to the (few) controllable state patterns that are
available to influence the fluid flow in the reservoir
[20, 21, 43]. The CRU and CRSC methods therefore
aim at maintaining precisely those aspects of the reser-
voir system model that are essential for the ‘closed-
loop’ control of reservoir fluid flow based on produc-
tion measurements. The computational efficiency of
the presented algorithms has not been optimized. In
particular, for the sake of simplicity, we used simple
gridding and discretization techniques, and we imple-
mented them in MATLAB. Alternative gridding and
discretization strategies might improve the CRSC per-
formance in terms of both accuracy and computational
efficiency. The CRSC method can also conceptually be
extended to 3D applications.

The CRSC method as presented here is a single-
phase upscaling technique. The performance of the
resulting CRSC grids for two-phase flow applications
needs further research. Furthermore, the CRSC algo-
rithm can, in theory, also be extended to two-phase flow
simulations. However, for nonlinear two-phase flow
cases, we need to either linearize the system, or com-
pute the controllability and observability Gramians em-
pirically (for an empirical calculation of the Gramians,
see e.g. [31, 42]). Another important issue in two-phase
flow is to deal with moving saturation fronts. Since
the saturations are only controllable along the front

and only observable after water breakthrough in the
wells [39], the performance of CRSC algorithm would
be improved by adding grid adaptation to resolve the
strongly controllable/observable areas along the mov-
ing saturation fronts. Further research is required to
evaluate the computational benefits of CRSC approach
in multi-phase flow applications. Another possible so-
lution to treat saturation changes in a two-phase flow
simulation might be applying a multi-scale framework,
in which the CRSC grid blocks are only used to solve
the pressure equation while the saturation equation is
solved over the fine-scale grid blocks.

5 Conclusions

Based on the theory and the numerical examples dis-
cussed above, we reached the following conclusions:

1. Computation of the Hankel singular vectors of a
reservoir model and mapping them on the reser-
voir grid allows for spatial quantification of the
combined controllability and observability prop-
erties of the model.

2. An improved visualization is obtained by ranking
the grid blocks according to their relative contri-
bution to the ‘input–output energy’ EHSV.

3. For a given configuration of wells, the most con-
trollable/observable areas appear to be in the
vicinity of the wells and in high-permeable areas
close to and connected to the wells.

4. CRSC can either be achieved by direct selective
coarsening or by initial uniform coarsening and
subsequent selective refinement in areas of high-
est combined controllability and observability.

5. For the case of initial uniform coarsening followed
by selective refinement it is possible to compute
the required system properties using the fine grid
or the coarse grid. The latter is faster but poten-
tially more inaccurate. In our test cases no sig-
nificant deterioration of accuracy was observed.

6. Performing the computation of the Hankel sin-
gular vectors using approximation and iteration
methods, such as LRCF-ADI algorithm and the
‘method of snapshots’, allows for application of
the CRSC algorithm to very large models, say
models up to 106 gridblocks which can still be run
on a single core. Application to ultra large mod-
els, which require multi-core implementations, is
currently out of scope.

7. In the test cases discussed in this paper, the CRSC
algorithm resulted in models that accurately
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reproduce the flow response of the fine-scale mod-
els for time-varying inputs.

8. In addition to giving a computational advantage,
the selective coarsening gives also more accurate
results than a uniformly upscaled model with the
same number of grid blocks.

9. In contrast to conventional flow-based coarsening
techniques our method is independent from the
specific flow rates or pressures imposed at the
wells.

10. In addition it is possible to compute a tight up-
perbound to the ‘input–output energy’ EHSV, for
the original and the upscaled models which is
independent of specific well flow rates.
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