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et al. 2019; Harrisson et al. 2019; Hedrick and Kalinowski 
2000). Increased homozygosity can lead to reduced fitness 
due to expression of deleterious recessive alleles (“domi-
nance hypothesis”) or increased homozygosity at loci with 
heterozygote advantage (“overdominance hypothesis”, 
Charlesworth and Willis 2009). Regardless of the genetic 
basis for inbreeding depression, it is difficult to identify and 
quantify the physiological mechanisms underlying the fit-
ness costs of inbreeding (Fox and Reed 2011; Kristensen et 
al. 2010; Losdat et al. 2016).

Telomeres are short DNA tandem repeats that are found 
at the tips of most eukaryotic chromosomes (Blackburn and 
Gall 1978; Červenák et al. 2021). Telomeres shorten during 
cell division (Harley et al. 1990), but may also shorten due 
to several other reasons including physiological processes 
generating oxidative stress (Barnes et al. 2019; Monaghan 
and Ozanne 2018; Reichert and Stier 2017; von Zglinicki 
2002). The high guanine content of telomeres (50%) makes 
them particularly vulnerable to oxidative stress (Kawanishi 
and Oikawa 2004). Short telomeres can trigger apoptosis 
and telomere attrition is considered a hallmark of aging 

Introduction

Inbreeding has significant detrimental effects on survival, 
reproduction, and resistance to disease and other stressors in 
wild populations (Keller and Waller 2002). Such decline in 
fitness resulting from an increase in genome-wide homozy-
gosity is known as inbreeding depression (Charlesworth and 
Willis 2009) and is of major concern in small and isolated 
populations, in particular of endangered species (Bozzuto 
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Abstract
Inbreeding can have negative effects on survival and reproduction, which may be of conservation concern in small and 
isolated populations. However, the physiological mechanisms underlying inbreeding depression are not well-known. The 
length of telomeres, the DNA sequences protecting chromosome ends, has been associated with health or fitness in several 
species. We investigated effects of inbreeding on early-life telomere length in two small island populations of wild house 
sparrows (Passer domesticus) known to be affected by inbreeding depression. Using genomic measures of inbreeding we 
found that inbred nestling house sparrows (n = 371) have significantly shorter telomeres. Using pedigree-based estimates 
of inbreeding we found a tendency for inbred nestling house sparrows to have shorter telomeres (n = 1195). This negative 
effect of inbreeding on telomere length may have been complemented by a heterosis effect resulting in longer telomeres 
in individuals that were less inbred than the population average. Furthermore, we found some evidence of stronger effects 
of inbreeding on telomere length in males than females. Thus, telomere length may reveal subtle costs of inbreeding in 
the wild and demonstrate a route by which inbreeding negatively impacts the physiological state of an organism already 
at early life-history stages.
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These contrasting results suggest that the telomere 
dynamics of captive, domesticated species living in a con-
trolled environment may not be representative of wild, 
free-living populations (Chatelain et al. 2020; Pepke and 
Eisenberg 2021; Weinstein and Ciszek 2002). For instance, 
captive populations may be less vulnerable to inbreeding 
because inbreeding depression is greater under stressful 
environmental conditions (Fox and Reed 2011; Reed et al. 
2002). Furthermore, captivity may in itself provide condi-
tions that change the telomere dynamics of the populations 
(Eisenberg 2011), e.g. Hemann and Greider (2000) attrib-
uted the longer telomeres of inbred mice to effects of cap-
tive breeding and not inbreeding per se. For instance, TL 
shortening rates may increase during metabolically costly 
processes such as reproduction (Sudyka et al. 2019; Wood et 
al. 2021) and inbreeding may reduce fecundity (Keller and 
Waller 2002). Such effects have been suggested to explain 
the observation of longer adult TL in some inbred domesti-
cated species (Eisenberg 2011), which could be resolved by 
measuring TL in early-life. Furthermore, most of the studies 
of domesticated animals compared TLs of different popula-
tions or species and their results may not be extrapolated to 
natural variation in TL and inbreeding levels within wild 
populations. Indeed, TL can vary considerably within spe-
cies (Tricola et al. 2018) and across closely related species 
(Pepke et al. 2021c) in the wild. Finally, it is not known 
if outbreeding could be accompanied by a heterosis effect 
(hybrid vigor, e.g. Charlesworth and Willis 2009) acting 
on TL. Physiological mechanisms underlying heterosis are 
not well-known (Wu et al. 2021), but we hypothesize that 
the observed fitness benefits of outcrossing inbred popula-
tions (Frankham 2015) could be reflected in TL restoration 
(Nuzhdin and Reiwitch 2002; Ozawa et al. 2019).

In this study, we utilized a long-term metapopulation 
study to examine how inbreeding affects early-life TL in 
wild house sparrows (Passer domesticus). Inbreeding has 
been shown to reduce fitness components such as recruit-
ment probability, adult lifespan, and both annual and life-
time reproductive success in this metapopulation (Billing et 
al. 2012; Jensen et al. 2007; Niskanen et al. 2020), but the 
physiological effects underlying these phenomena remain 
unknown. We expect that inbred individuals will have shorter 
telomeres if TL is a general biomarker of somatic integrity 
and health (e.g. Bebbington et al. 2016; Boonekamp et al. 
2013; Wilbourn et al. 2018). The effects of inbreeding on TL 
might be sex-specific Benton et al. 2018; Billing et al. 2012; 
de Boer et al. 2018a; de Boer, Eens, & MülleBoer et al. 
2018b) or depend on environmental conditions (Armbruster 
and Reed 2005; Szulkin and Sheldon 2007). However, TL is 
negatively associated with body size or growth rate within 
many species (Monaghan and Ozanne 2018; Ringsby et al. 
2015) and may change with age (Hall et al. 2004; Remot 

(López-Otín et al. 2013), although the causal involvement 
of telomere shortening in organismal senescence is not 
well understood (Simons 2015). However, telomere length 
(TL) may reflect the cumulative stress experienced by an 
individual (Bateson 2016; Monaghan 2014), and TL or TL 
shortening are associated with health or fitness in several 
species (Barrett et al. 2013; Chatelain et al. 2020; Froy et 
al. 2021; Heidinger et al. 2021; Wilbourn et al. 2018). Thus, 
TL is increasingly used as a biomarker of somatic integrity 
in studies of physiological or evolutionary ecology (Bateson 
and Poirier 2019; Haussmann and Marchetto 2010; Pepper 
et al. 2018; Young 2018).

Inbreeding depression can be caused by reduced immune 
response (Charpentier et al. 2008; Reid et al. 2003) and 
higher maintenance metabolism (Ketola and Kotiaho 2009), 
which increases oxidative stress de Boer et al. 2018a; Okada 
et al. 2011). Thus, inbred individuals may experience higher 
levels of oxidative stress (Kristensen et al. 2005; Pedersen 
et al. 2008) and thus have shorter telomeres (von Zglinicki 
2002). We therefore hypothesize that TL could provide an 
integrative measure of the somatic costs associated with 
inbreeding depression in wild populations, with inbred 
individuals having shorter telomeres than outbred individu-
als. However, the few studies investigating associations 
between inbreeding and TL have found equivocal results. 
In line with our expectations, Bebbington et al. (2016) 
found that homozygosity was negatively associated with 
TL in wild Seychelles warblers (Acrocephalus sechellen-
sis) and Seluanov et al. (2008) reported that telomeres were 
shorter in inbred laboratory strains of Norway rats (Rattus 
norvegicus) in captivity compared to a single wild-caught 
rat. Many domesticated species are generally assumed to be 
more inbred than their wild counterparts (Bosse et al. 2018; 
Moyers et al. 2018; Wiener and Wilkinson 2011). However, 
several studies have found that telomeres were longer in 
inbred domesticated strains of laboratory mice (Mus spp. 
and Peromyscus spp., Hemann and Greider 2000; Manning 
et al. 2002; Seluanov et al. 2008), in domesticated strains 
of pearl millet (Pennisetum glaucum, Sridevi et al. 2002), 
in domesticated inbred chicken (Gallus gallus, O’Hare 
and Delany 2009), and across several species of domesti-
cated mammals (Pepke and Eisenberg 2021) compared to 
non-domesticated species. However, there were no clear 
differences in TL between inbred and wild leporid strains 
(Forsyth et al. 2005). Other studies found no association 
between pedigree-based inbreeding coefficients and TL or 
telomere attrition in humans (Homo sapiens, Mansour et al. 
2011), wild sand lizards (Lacerta agilis, Olsson et al. 2018), 
or wild natterjack toads (Epidalea calamita, Sánchez-Mon-
tes et al. 2020). Becker et al. (2015) reported a weak non-
significant but positive association between inbreeding and 
TL in wild white-throated dippers (Cinclus cinclus).
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to 2014 on Hestmannøy and from 2005 to 2014 on Træna) 
were categorized as first-year survivors (i.e. recruits).

Telomere length measurements

Relative erythrocyte telomere length (TL) was successfully 
measured in DNA derived from 2746 whole blood samples 
from house sparrow nestlings using the qPCR method 
(Cawthon 2002) as described in Pepke et al. (2021a). For this 
study, we included only individuals with two known parents 
and at least two known grandparents, or for which genomic 
inbreeding coefficients could be estimated (described 
below), resulting in a sample size of n = 1370 individuals 
(n = 679 males and n = 691 females of which n = 1161 were 
from Hestmannøy and n = 209 from Træna, see sample size 
details in Table 1). TL was determined relative to the amount 
of a non-variable gene (GAPDH, Criscuolo et al. 2009) and 
a reference sample, which was included as a two-fold serial 
dilution (40–2.5 ng/well) on all plates to produce a standard 
curve. All samples were randomized and run in triplicates 
on 2 × 125 96-well plates, which all included a nontarget 
control sample. All samples were processed within a few 
months by the same researcher (MLP) to reduce technical 
effects. Relative TL was computed using qBASE (Helle-
mans et al. 2007) while controlling for inter-run variation. 
All individual plate efficiencies were within 100 ± 10% (see 
Pepke et al. 2021a).

Sex was successfully determined for n = 1360 individuals 
by amplification of the CHD gene on the avian sex chromo-
somes as described in Jensen et al. (2007). For n = 10 indi-
viduals, sex was determined based on their adult plumage.

Microsatellite pedigree construction

Microsatellite (MS) pedigrees were constructed based on 
13 polymorphic microsatellite markers using CERVUS 3.0 
(Kalinowski et al. 2007) as described in previous studies 
(Billing et al. 2012; Jensen et al. 2003, 2008). The assign-
ment of parentage was correct in at least 90% of cases (see 
Jensen et al. 2008). Nestlings within the same clutch were 
assumed to have the same mother. This metapopulation 
pedigree (Jensen et al. 2008) was pruned to contain n = 2184 
informative ancestors (n = 1710 maternities and n = 1734 
paternities), including non-phenotyped ancestors, using the 
R package MCMCglmm (Hadfield 2010). Maximum pedi-
gree depth was 13 generations, the number of equivalent 
complete generations (i.e. the sum of the proportion of 
known ancestors across all generations, Wellmann 2021) 
was 1.834, and the mean pairwise relatedness was 0.006. 
We calculated inbreeding coefficients (FPED), which esti-
mate the expected proportion of an individual’s genome that 
is identical by descent (IBD), based on the MS pedigree for 

et al. 2021) or vary between sexes (Barrett and Richardson 
2011; Remot et al. 2020) and habitat quality (Angelier et 
al. 2013; McLennan et al. 2021; Wilbourn et al. 2017). We 
therefore account for body size (measured as tarsus length), 
age, sex, and habitat type, and test for an interaction between 
inbreeding levels and sex or habitat type, when investigat-
ing the association between TL and inbreeding. We use 
three different measures of inbreeding; marker-based esti-
mates (n = 371) which are better at capturing homozygos-
ity and inbreeding caused by distant ancestors not included 
in a pedigree, and pedigree-based estimates (Kardos et al. 
2016) for which larger samples size may be obtained from 
long-term field studies (n = 1195). Finally, to investigate a 
potential heterosis effect on TL, we test if the association 
between TL and inbreeding is different among outbred and 
inbred individuals.

Materials and methods

Study system

This study was conducted in two natural populations of 
house sparrows in northern Norway. On the island of Hes-
tmannøy (66°33’N, 12°50‘E), the sparrows live around 
dairy farms, where they nest inside barns in cavities or nest 
boxes. The island is characterized by cultivated grassland, 
mountains, forest, and heathland. On the island of Træna 
(66°30’N, 12°05‘E), 34 km further from the mainland, the 
sparrows live in gardens of a small human settlement and 
nest in nest boxes. This island is dominated by heathland, 
sparse forest, and gardens. The natural breeding environ-
ment for house sparrows is human habitation (Hanson et 
al. 2020) and they have evolved their commensal relation-
ship with humans for millennia (Ravinet et al. 2018). While 
human presence or farming provide the natural basis of 
existence for house sparrows (Ringsby et al. 2006), demo-
graphic characteristics, breeding densities, and inbreeding 
rates are comparable to other small isolated wild animal 
populations (Araya-Ajoy et al. 2021; Jensen et al. 2007; 
Niskanen et al. 2020). In the years 1994–2013 (on Hest-
mannøy) and 2004–2013 (on Træna), nestlings at the age of 
5–14 days were ringed with a unique combination of color 
rings for identification. Nestlings were also blood sampled 
by brachial venipuncture, and tarsometatarsus (tarsus) was 
measured with slide calipers to the nearest 0.01 mm. Tarsus 
length is here used as an index of body size (Rising and 
Somers 1989; Senar and Pascual 1997). Blood samples (25 
µL) were stored in 96% ethanol at room temperature in the 
field and at -20 °C in the laboratory until DNA extraction 
(described in Pepke et al. 2021b). Birds that were resighted 
or recaptured in the year following hatching (i.e. from 1995 
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individuals with two known parents and at least two known 
grandparents (n = 1057 from Hestmannøy and n = 138 from 
Træna, Table 1) using the R package pedigree (Coster 2012). 
We also selected a subset of individuals with at least two full 
ancestral generations (i.e. four known grandparents) to only 
include the most robust estimates of FPED (n = 313 from 
Hestmannøy and n = 7 from Træna).

Genomic inbreeding estimation

Starting from year 1997 (Hestmannøy) or 2004 (Træna), 
birds that survived until recruitment (n = 275 from Hestman-
nøy and n = 96 from Træna) were genotyped for 200,000 
Single Nucleotide Polymorphisms (SNPs) as described in 
Lundregan et al. (2018). Two genomic inbreeding coeffi-
cients were then estimated using 118,810 autosomal SNPs 
not in strong linkage disequilibrium, as described in Nis-
kanen et al. (2020).

The weighted average homozygosity over all loci from 
the genomic relationship matrix (FGRM) was estimated for 
the whole metapopulation (consisting of eight island popu-
lations) simultaneously using the GCTA software (F̂ III  in 
Yang et al. 2011). FGRM gives more weight to homozygotes 
of the minor allele than of the major allele, and it is an esti-
mate of the correlation between homologous genes of the 
two gametes of an individual relative to the current popula-
tion (Yang et al. 2011). FGRM can be negative if the probabil-
ity that the two homologous genes of an individual are IBD 
is smaller than that of two homologous genes being drawn 
at random from the reference population (Wang 2014; Yang 
et al. 2011). Thus, the individuals with the smallest esti-
mates of FGRM are expected to be outbred (hybrids) because 
of e.g. mating involving immigrants (Wang 2014). Thus, we 
suggest that if an association between FGRM and TL is stron-
ger among outbred individuals (with FGRM values smaller 
than average) than among inbred individuals (with FGRM 
values larger than average), it may be partly attributed to 
a heterosis effect acting on TL. Alternatively, an associa-
tion between FGRM and TL may be mainly driven by highly 
inbred individuals, or the effect of inbreeding on TL may be 
linear across different levels of homozygosity.

The proportion of the genome within runs-of-homozy-
gosity (FROH ranging from 0 to 1, McQuillan et al. 2008) 
was estimated using the PLINK software (Purcell et al. 
2007). Homozygous sequences of minimum length of 2 
Mbp were extracted using the PLINK settings: --homozyg 
group --homozyg-density 10 --homozyg-gap 1000 --homo-
zyg-kb 2000 --homozyg-snp 50 --homozyg-window-het 
0 --homozyg-window-missing 5 --homozyg-window-snp 
50 (see Niskanen et al. 2020). ROH arise through mating 
of individuals that are IBD, and may therefore be used to 
estimate inbreeding (Curik et al. 2014). Based on the house 

Ta
bl

e 
1 

N
um

be
r o

f n
es

tli
ng

 h
ou

se
 sp

ar
ro

w
s o

f e
ac

h 
se

x 
an

d 
in

 to
ta

l w
ith

 e
ar

ly
-li

fe
 te

lo
m

er
e 

le
ng

th
 a

nd
 in

br
ee

di
ng

 c
oe

ffi
ci

en
t m

ea
su

re
m

en
ts

 w
ith

in
 e

ac
h 

po
pu

la
tio

n 
(H

es
tm

an
nø

y 
an

d 
Tr

æ
na

) f
or

 
ea

ch
 m

ea
su

re
 o

f i
nb

re
ed

in
g 

(m
ic

ro
sa

te
lli

te
 p

ed
ig

re
e-

ba
se

d 
in

br
ee

di
ng

 c
oe

ffi
ci

en
t [

F P
ED

], 
ge

no
m

ic
 in

br
ee

di
ng

 c
oe

ffi
ci

en
t [

F G
RM

], 
an

d 
ru

ns
-o

f-
ho

m
oz

yg
os

ity
 [F

RO
H

])
. N

um
be

r o
f i

nd
iv

id
ua

ls
 w

ith
 a

t 
le

as
t t

w
o 

kn
ow

n 
fu

ll 
an

ce
st

ra
l g

en
er

at
io

ns
 (g

en
.) 

ar
e 

sh
ow

n.
 N

um
be

r o
f i

nd
iv

id
ua

ls
 w

ith
 F

G
RM

 v
al

ue
s a

bo
ve

 a
nd

 b
el

ow
 th

e 
m

ea
n 

F G
RM

, w
hi

ch
 is

 u
se

d 
as

 a
 b

re
ak

 p
oi

nt
 to

 d
iff

er
en

tia
te

 in
di

vi
du

al
s 

th
at

 w
er

e 
m

or
e 

an
d 

le
ss

 in
br

ed
 th

an
 a

ve
ra

ge
, r

es
pe

ct
iv

el
y,

 a
re

 a
ls

o 
sh

ow
n

Is
la

nd
 p

op
ul

at
io

n:
H

es
tm

an
nø

y
Tr

æ
na

M
al

es
Fe

m
al

es
Su

m
:

M
al

es
Fe

m
al

es
Su

m
:

To
ta

l:
F P

ED
 (≥

 1.
5 

ge
n.

)
51

1
54

6
10

57
78

60
13

8
11

95
F P

ED
 (≥

 2 
fu

ll 
ge

n.
)

14
8

16
5

31
3

4
3

7
32

0
F G

RM
14

0
13

5
27

5
49

47
96

37
1

F G
RM

 >
 0

.0
16

43
63

10
6

26
32

58
16

4
F G

RM
 <

 0
.0

16
97

72
16

9
23

15
38

20
7

F R
O

H
14

0
13

5
27

5
49

47
96

37
1

642



Conservation Genetics (2022) 23:639–651

1 3

To investigate heterosis effects on TL, we tested if the 
slopes of the regression between FGRM and TL differed 
between individuals that were more inbred than on average 
(FGRM > mean FGRM) and individuals that were less inbred 
than average (FGRM < mean FGRM). We did this by testing if 
the inclusion of a regression break point at the mean FGRM 
improved the models by comparing the resulting 9 candi-
date models using AICc.

RESULTS

Overall, the individual MS pedigree-based inbreeding coef-
ficient (FPED) was not a good predictor of genomic estima-
tors of inbreeding (Fig. S1a,c; Pearson’s rP = 0.05, n = 371), 
but its relationships with FGRM and FROH were improved 
when including only individuals with at least two genera-
tions known (Fig. S1b,d; rP > 0.30, n = 59). FGRM and FROH 
were strongly correlated (Fig. S1e,f; rP = 0.7, n = 371).

FPED varied from 0.000 to 0.250 (mean 0.007, 16.9% 
non-zero values). None of the models of FPED provided 
strong statistical support for a relationship with TL. The 
highest ranked model explaining variation in TL included 
a negative effect of FPED, but only slightly improved 
the fit of the baseline model (∆2:1AICc = 0.8 [subscripts 
denote which ranked models are compared], w1 = 0.36, 
ER1 = w1/w2 = 1.49, Table S1 in the supporting information). 
Thus, there was a tendency for TL to be shorter in more 
inbred sparrows (βF_PED = -0.169 ± 0.101, CI = [-0.366, 
0.028], n = 1195, Fig. 1a; Table 2). The model ranked third 
(∆3:1AICc = 1.3) indicated that TL was less associated with 
FPED in males than in females (βF_PED*sex[female] = -0.167 ± 0
.196, CI = [-0.549, 0.216]), while the model ranked fourth 
(∆4AICc = 1.9) indicated that TL was less associated with 
FPED in the Hestmannøy population than in the Træna popu-
lation (βF_PED*island[Hestmannøy] = 0.115 ± 0.314, CI = [-0.498, 
0.728]). However, due to high uncertainty in these param-
eter estimates, these effects are not deemed reliable.

When only including individuals with at least 2 full 
ancestral generations known (33.8% non-zero values), 
the model with FPED was ranked second (∆2:1AICc = 1.1, 
βF_PED = -0.205 ± 0.198, CI = [-0.588, 0.189], n = 320, 
Fig. 1b, Table S2-3) and the baseline model was highest 
ranked.

There was a tendency for the negative effect of FPED 
on TL to be weaker in first-year survivors (n = 206, mean 
TL = 0.95 ± 0.02, mean FPED = 0.010 ± 0.003) than in 
non-survivors (n = 989, mean TL = 0.97 ± 0.01, mean 
FPED = 0.007 ± 0.001, βF_PED*first−year survival = 0.304 ± 0.201, 
CI = [-0.089, 0.697], n = 1195, Fig. 1c, Table S4). This 
effect was uncertain with a CI overlapping zero. This sug-
gests that the following analyses using genomic estimators 

sparrow reference genome (Elgvin et al. 2017) and linkage 
map (Hagen et al. 2020), homozygous sequences of 2 Mbp 
would be caused by inbreeding that occurred up to 12 gen-
erations ago (Niskanen et al. 2020).

Statistical analyses

To test whether TL was affected by inbreeding, we fitted lin-
ear mixed models (LMMs) using the package lme4 (Bates 
et al. 2015) in R v. 3.6.3 (R Core Team 2020). TL (response 
variable) was log10-transformed to conform to the assump-
tion of normally distributed residuals and the models were 
fitted with a (continuous) fixed effect of one of the inbreed-
ing coefficients (FPED [n = 1195], FPED with at least two 
full generations known [n = 320], FGRM [n = 371], or FROH 
[n = 371], see Table 1 for sample size details). Since genomic 
estimators of inbreeding (FGRM and FROH) were only avail-
able for recruits (first-year survivors), we tested whether the 
relationship between TL and FPED varied between survivors 
(“1”, n = 206) and non-survivors (“0”, n = 989) by including 
an interaction effect between FPED and first-year survival. 
Tarsus length increases with nestling age, so tarsus length 
was age-corrected by taking the residuals from a regression 
of tarsus length on age and age squared. This allowed us to 
include both tarsus length and age in the models describing 
variation in TL. Thus, age-standardized tarsus length, fledg-
ling age at sampling (in number of days), hatch day (ordi-
nal date mean centered across years), population identity 
(categorical: Hestmannøy or Træna), and sex (categorical: 
male or female) were included as fixed effects in all mod-
els. We tested whether the effect of inbreeding on TL varied 
between sexes and populations by including two-way inter-
action terms between the inbreeding coefficient and sex or 
population identity. Random intercepts were fitted for year 
and brood identity to account for the non-independence of 
nestlings from the same year and brood. This also controls 
for within-brood effects of inbreeding levels (Olsson et al. 
2018). We then tested whether the inclusion of the inbreed-
ing coefficient and interaction terms improved the baseline 
model (without the inbreeding coefficient) by comparing 
the resulting 5 candidate models using Akaike’s infor-
mation criterion corrected for small sample sizes (AICc, 
Akaike 1973; Hurvich and Tsai 1989). Akaike weights (w) 
and evidence ratios (ER) were calculated to determine the 
relative fit of models to the data (Burnham and Anderson 
2002). Models were validated visually using diagnostic 
plots of residuals, and model parameters are from models 
refitted with restricted maximum likelihood (REML). Esti-
mates are reported with standard errors (SE) and 95% confi-
dence intervals (CI). Regression lines were visualized using 
ggplot2 (Wickham 2016).
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S5) showed that TL was shorter in more inbred sparrows 
(βF_GRM = -1.517 ± 0.293, CI = [-2.150, -0.920], n = 371, 
Fig. 1d, and Table 3). In addition, the effect of FGRM on TL 
was stronger in the Træna population (βF_GRM*island[Hestmannøy] 
= 0.824 ± 0.339, CI = [0.142, 1.529], Table 3) and in males 
(βF_GRM*sex[female] = 0.644 ± 0.314, CI = [0.034, 1.262], 
Table 3).

Including a break point at the mean FGRM improved the 
model compared to a model with no break point (compar-
ing models without interaction terms which were ranked 8 
and 5: ∆8:5AICc = 4.5, see Table S6). The highest ranked 
model (∆2:1AICc = 3.1, Table S6) revealed a strong negative 
association between TL and FGRM among individuals with 
FGRM < 0.016 but no association among inbred individuals 
with FGRM > 0.016 (Fig. 1e; Table 4). This indicates that a 
heterosis effect resulting in longer telomeres in outbred indi-
viduals may explain the negative association found between 
inbreeding and TL. This model also included an interaction 
term suggesting that this heterosis effect was stronger in the 
Træna population (Table 4).

The runs-of-homozygosity inbreeding coefficient (FROH) 
estimates varied from 0.000 to 0.240 (mean 0.010, 73% 
non-zero values). The best model provided evidence for 
a negative effect of FROH on TL (βF_ROH = -1.148 ± 0.512, 
CI = [-2.144, -0.153], n = 371, Fig. 1f, Table S7 and 5). This 
model also indicated that the negative effect of FROH tended 
to be stronger in males (βF_ROH*sex [female] = 0.915 ± 0.610, 
CI = [-0.270, 2.102]).

DISCUSSION

We found evidence using genomic measures of inbreeding 
that more inbred house sparrow nestlings had shorter telo-
meres (Fig. 1). Individual differences in TL are established 
early in life (Entringer et al. 2018), are heritable (Dugdale 
and Richardson 2018; Pepke et al. 2021a), and are posi-
tively associated with fitness in some species (Heidinger 

of inbreeding in recruits were not biased towards stronger 
inbreeding effects in recruits.

Genomic inbreeding coefficient (FGRM) estimates var-
ied from -0.200 to 0.300 (mean 0.016, which is different 
from the expected 0, because FGRM was calculated across 
the whole metapopulation simultaneously, see Niskanen et 
al. 2020). The highest ranked model (∆2:1AICc = 2.1, Table 

Response variable: log10(TL) Estimate SE Lower CI Upper 
CI

intercept -3.1E-4 0.037 -0.072 0.071
inbreeding coefficient (FPED) -0.169 0.101 -0.366 0.028
tarsus length -0.003 0.002 -0.008 0.001
sex [female] -0.006 0.006 -0.017 0.005
island identity [Hestmannøy] 0.025 0.012 0.001 0.049
age -0.003 0.002 -0.007 0.001
hatch day -1.4E-4 1.6E-4 -4.4E-4 1.7E-4
σ2

brood ID (n = 500) 0.002 0.001 0.003
σ2

year (n = 20) 0.003 0.001 0.006

Table 2 Estimates, standard errors (SE), 
lower and upper 95% confidence intervals 
(CI) from the highest ranked model of 
FPED predicting variation in early-life TL 
(n = 1195, see Table S2 and Fig. 1a). The 
model included random intercepts for brood 
identity (ID) and year. Estimates with CIs 
not overlapping 0 are shown in italics

Marginal R2/Conditional R2: 0.014/0.393

 

Fig. 1 Associations between early-life telomere length 
(log10-transformed) and various individual measures of inbreeding 
in wild house sparrows: (a) microsatellite pedigree-based inbreeding 
coefficient (FPED), (b) FPED for individuals with at least two full ances-
tral generations known, (c) testing for an interaction effect between 
FPED and first-year survival (survivors: n = 206 in grey, dotted regres-
sion line; non-survivors: n = 989 in black, solid regression line), (d) 
genomic inbreeding coefficient FGRM, (e) regression with a break point 
at the mean FGRM (0.016), and (f) runs-of-homozygosity FROH. Black 
lines show the predicted effect of the inbreeding coefficient on TL from 
LMMs described in the text and the grey area shows 95% confidence 
intervals. Note that the y-axis is not scaled equally across panels and 
that color of points are graduated for visibility

 

644



Conservation Genetics (2022) 23:639–651

1 3

(Fig. 1d-f), probably because they are better at capturing 
homozygosity causing inbreeding depression compared 
to using a pedigree-based estimator (Fig. 1a-c, Alemu et 
al. 2021; Huisman et al. 2016; Kardos et al. 2016). For 
instance, the frequency peak at FPED=0 (see histograms in 
Fig. S1) is better resolved using FGRM, which is expected 
due to pedigree incompleteness and Mendelian sampling 
variation in realized inbreeding levels around the pedigree 
prediction (Huisman et al. 2016). Mating between full sib-
lings or between parent and offspring (F = 0.25) resulted 
in a severe reduction in (relative) TL of 58% (FGRM), 48% 
(FROH) or 11% (FPED) compared to breeding between unre-
lated individuals (Tables 2 and 3, and 5). However, such 
high levels of inbreeding were rare (Fig. 1), and our results 
may need to be confirmed using larger datasets of highly 
inbred individuals. TL may be under strong selection in 
natural populations (Voillemot et al. 2012). Consequently, 
strong inbreeding depression is expected for fitness compo-
nents or traits that are under strong selection (Bérénos et al. 
2016; DeRose and Roff 1999). The analyses using genomic 
estimators of inbreeding were limited to recruited individ-
uals, but the negative effect of inbreeding on TL may be 
even stronger if very inbred individuals, presumably with 
short telomeres, do not survive their first year and were thus 
excluded from our analyses (Jensen et al. 2007; Wilbourn 
et al. 2018). There was a tendency for such an effect when 
using pedigree-based levels of inbreeding (Fig. 1c and Table 
S4).

We found some evidence that inbreeding had stronger 
negative effects on TL in males than females (Tables 3 and 
5). Such sex-specific effects of inbreeding are known from 
other species de Boer et al. 2018a, b; Janicke et al. 2013), but 
have rarely been observed early in life. There was a weak 
tendency for longer TL in males than females (Tables 2, 3, 
4 and 5), which has been observed in similar house sparrow 
populations (Pepke et al. 2021b). Thus, males may be better 
buffered against the effects of inbreeding on TL. However, 
no sex-specific differences in inbreeding depression were 
observed in adult sparrows across this study metapopula-
tion (Niskanen et al. 2020).

Increased inbreeding may be accompanied by population 
decline in small populations (Bozzuto et al. 2019; Chen et 
al. 2016; Feng et al. 2019), which can drive populations to 
extinction (O’Grady et al. 2006; Saccheri et al. 1998; Wright 
et al. 2007; Niskanen et al. 2020) showed that inbreeding 
depression in adult sparrows in our study system varied lit-
tle across years or across the different island environments 
inhabited by these house sparrows. Hence, the strength 
of inbreeding depression is similar between populations, 
but due to harboring more inbred individuals, the relative 
effect is stronger in smaller populations (Niskanen et al. 
2020). Small declining populations may be characterized 

et al. 2012; Wilbourn et al. 2018). Thus, short telomeres 
in more inbred individuals may underpin a physiological 
basis of inbreeding depression in fitness components that 
has been found in this species (Billing et al. 2012; Jensen 
et al. 2007; Niskanen et al. 2020) and in other wild animal 
populations (Keller and Waller 2002).

The effect of inbreeding on TL in house sparrows was 
negative across all measures of inbreeding, but only statis-
tically significant (i.e. with confidence intervals not over-
lapping zero) when using genomic levels of inbreeding 

Table 3 Estimates, standard errors (SE), lower and upper 95% confi-
dence intervals (CI) from the highest ranked model of FGRM predicting 
variation in early-life TL (n = 371, see Table S6 and Fig. 1d)
Response variable: 
log10(TL)

Estimate SE Lower 
CI

Upper 
CI

intercept 0.069 0.038 -0.004 0.145
inbreeding coefficient 
(FGRM)

-1.517 0.293 -2.150 -0.920

tarsus length -0.001 0.005 -0.011 0.009
sex [female] -0.016 0.011 -0.039 0.006
island identity 
[Hestmannøy]

-0.036 0.016 -0.068 -0.004

age -0.006 0.003 -0.012 4.6E-4
hatch day -3.3E-4 2.8E-4 -0.001 2.1E-4
FGRM* island 
[Hestmannøy]

0.824 0.339 0.142 1.529

FGRM* sex [female] 0.644 0.314 0.034 1.262
σ2

brood ID (n = 273) 0.004 0.002 0.006
σ2

year (n = 17) 0.001 0.000 0.003
Marginal R2/Conditional R2: 0.085/0.512

Table 4 Estimates, standard errors (SE), lower and upper 95% con-
fidence intervals (CI) from the highest ranked model from Table S7 
including a break point at FGRM = 0.016 (n = 371, see also Table S1). 
These effects of FGRM are shown in Fig. 1e
Response variable: 
log10(TL)

Estimate SE Lower 
CI

Upper 
CI

intercept 0.021 0.037 -0.051 0.095
inbreeding coefficient 
(FGRM) < 0.016

-2.177 0.372 -3.051 -1.379

inbreeding coefficient 
(FGRM ) > 0.016

0.189 0.498 -0.780 1.153

tarsus length -0.001 0.005 -0.011 0.008
sex [female] -0.006 0.010 -0.027 0.014
island identity 
[Hestmannøy]

-0.009 0.016 -0.041 0.024

age -0.005 0.003 -0.011 0.001
hatch day -3.7E-4 2.7E-4 -0.001 1.5E-4
FGRM<0.016 * island 
[Hestmannøy]

1.562 0.465 0.610 2.576

FGRM>0.016 * island 
[Hestmannøy]

-0.026 0.561 -1.114 1.061

σ2
brood ID (n = 273) 0.003 0.001 0.005

σ2
year (n = 17) 0.001 0.000 0.003

Marginal R2/Conditional R2: 0.106/0.458
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to environmental stressors such as harsh abiotic conditions 
(Chatelain et al. 2020). We speculate that environmental dif-
ferences between the habitats of the two sparrow popula-
tions may explain the exacerbated effects of inbreeding on 
TL in the Træna population. For instance, in juvenile Sey-
chelles warblers a negative relationship between homozy-
gosity and TL was found only in poor seasons, i.e. when 
food availability was low (Bebbington et al. 2016). In adult 
Seychelles warblers, the effect of homozygosity on TL was 
consistently negative across seasons, suggesting that the 
negative effects of inbreeding accumulate through life and 
are reflected in telomere erosion (Bebbington et al. 2016). 
Here, we showed that inbreeding manifests in TL already at 
the nestling stage in a similar wild passerine.

We measured TL in blood, thus it is possible that inbreed-
ing or heterosis only affected telomeres in erythrocytes 
(Manning et al. 2002; Olsson et al. 2020). However, this 
is unlikely because TLs often correlate well across tissues 
within the organism (Daniali et al. 2013; Demanelis et al. 
2020; Reichert et al. 2013), especially in early-life (Prowse 
and Greider 1995). Although genomic inbreeding estimates 
were only available for first-year survivors, we may have 
avoided confounding effects of selective mortality of inbred 
individuals at much older ages by measuring TL already at 
the nestling stage (Hemmings et al. 2012; Sánchez-Montes 
et al. 2020). Furthermore, since the mutation accumula-
tion theory of senescence predicts that deleterious effects 
of inbreeding increase with age (Charlesworth and Hughes 
1996; Keller et al. 2008), we may expect that the effect on 
TL is persistent and potentially stronger in adult sparrows. 
Thus, future studies are required to investigate if inbreed-
ing leads to persistently eroded TL throughout life, and if 
there are combined fitness consequences of any interaction 
between TL and inbreeding in wild populations. Even in 
the absence of a mechanism directly linking inbreeding and 
TL via the effects of oxidative stress (cf. the introduction), 
we may find inbred individuals to have short telomeres, 
because inbreeding impairs other physiological processes 
that affects both fitness and TL (Bebbington et al. 2016). 
Thus, the conflicting evidence in the literature of an effect 
of inbreeding on TL (reviewed in the introduction) suggests 
that an experimental procedure is needed to further eluci-
date the mechanisms underlying the correlation reported 
here (Manning et al. 2002), especially in wild populations.

In conclusion, the negative associations between inbreed-
ing levels and TL found in this study suggest that TL may 
reveal subtle somatic costs of inbreeding in wild popula-
tions, and thereby demonstrates a potential route by which 
inbreeding negatively impacts the physiological state of an 
organism in early life. The observation of a potential het-
erosis effect on TL suggests that maintenance of dispersal 

by gradual population-wide and trans-generational telomere 
erosion. For instance, Dupoué et al. (2017) observed shorter 
TL along an extinction risk gradient in populations of com-
mon lizards (Zootoca vivipara) that are disappearing from 
low altitudes at their southern range limit, presumably due 
to climate warming (Sinervo et al. 2010). Combined, these 
results suggest that TL may represent a potential physiolog-
ical biomarker or molecular tool in conservation genetics 
addressing the viability of some small animal populations 
(Bebbington et al. 2016; Bergman et al. 2019; Dupoué et al. 
2017; Madliger et al. 2020).

The negative effect of FGRM on TL (Fig. 1d) was stronger 
among individuals that were less related than the average 
population (Fig. 1e). This suggests that longer telomeres 
in outbred individuals may partly be attributed to a general 
heterosis effect (Charlesworth and Willis 2009) involving 
mating between immigrants and native individuals (Dickel 
et al. 2021; Ebert et al. 2002). In our study metapopula-
tion, the proportion of dispersers among recruits can be 
high among the island populations (0.2 on average rang-
ing from 0.0 to 1.0 across years and islands, Ranke et al. 
2021; Saatoglu et al. 2021), and hence most islands are not 
strongly differentiated (Niskanen et al. 2020). We found 
that the negative effect of FGRM on TL was stronger in the 
Træna population (Tables 3 and 4). Træna is known to have 
a higher proportion of immigrants than Hestmannøy (Ranke 
et al. 2021), which may contribute to a stronger effect of 
heterosis in this population (Table 4). Furthermore, the 
gardens of Træna expose the sparrows to a different envi-
ronment than the farms on Hestmannøy (Araya-Ajoy et al. 
2019; Pärn et al. 2012). Inbreeding depression is expected 
to have more severe consequences under environmental 
stress (Armbruster and Reed 2005; Reed et al. 2002), such 
as harsh weather or competition de Boer et al. 2018a; Fox 
and Reed 2011; Marr et al. 2006). Telomeres shorten due 

Table 5 Estimates, standard errors (SE), lower and upper 95% con-
fidence intervals (CI) from the highest ranked model from of FROH 
predicting variation in early-life TL (n = 371, see Table S8 and Fig. 1f)
Response variable: 
log10(TL)

Estimate SE Lower 
CI

Upper 
CI

intercept 0.051 0.040 -0.027 0.130
inbreeding coefficient 
(FROH)

-1.148 0.512 -2.144 -0.153

tarsus length -0.001 0.005 -0.011 0.010
sex [female] -0.018 0.012 -0.041 0.005
island identity 
[Hestmannøy]

-0.020 0.016 -0.052 0.012

age -0.005 0.003 -0.012 0.001
hatch day -2.9E-4 3.0E-4 -0.001 2.9E-4
FROH * sex [female] 0.915 0.610 -0.270 2.102
σ2

brood ID (n = 273) 0.006 0.004 0.008
σ2

year (n = 17) 0.002 4.6E-4 0.004
Marginal R2/Conditional R2: 0.029/0.579
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