Skip to main content

Advertisement

Log in

Assessing conservation risks to populations of an anadromous Arctic salmonid, the northern Dolly Varden (Salvelinus malma malma), via estimates of effective and census population sizes and approximate Bayesian computation

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Census population size (N c ) is crucial to the development of resource management strategies, however, monitoring the effective population size (N e ) of managed populations has proliferated because of this parameter’s relationship to the short-term impacts of genetic stochasticity and long-term population viability. Thus, having a sound understanding of both N c and N e , including population connectivity, provides valuable insights into both the demographic and genetic risks to extinction. Here, we assessed microsatellite DNA variation in four (of five known) anadromous northern Dolly Varden (NDV, Salvelinus malma malma) populations from Canada’s western Arctic region, to estimate N e using both temporal-based and single-sample estimators and to test for associations between N e and N c . We also employed approximate Bayesian computation (ABC) to evaluate several evolutionary scenarios that have potentially shaped contemporary population structure in this species, focusing particularly on population size and connectivity. We found evidence for moderate to large contemporary and historical N e , suggesting that short- and long-term extinction risks are low for these populations. Estimates of contemporary and long-term N e were variable within and among populations and overall estimates could not be reliably linked with N c or available spawning habitat. The overall estimate of N e /N c , was 0.152 and ranged from 0.024 to 0.442 when including errors around the estimate of N e and N c . Finally, ABC analyses suggest that NDV had a common origin followed by divergence in isolation while maintaining large effective sizes, but also that these populations were bottlenecked in the past, likely the result of post-glacial colonization processes. These results corroborate indications of limited gene flow at present, indicating independent demographic and evolutionary trajectories that imply NDV is best managed on a per-river-population basis. Overall, the results of this study further our general understanding of N e , N e /N c and demographic independence in NDV, and provide a comprehensive and quantitative assessment of the potential genetic and demographic risk status of Arctic anadromous salmonids, including baselines for future monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW, Luikart GH, Aitken SN (2013) Conservation and the genetics of populations. Wiley, Hoboken

    Google Scholar 

  • Beaumont MA (2003) Estimation of population growth or decline in genetically monitored populations. Genetics 164:1139–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

    PubMed  PubMed Central  Google Scholar 

  • Belmar-Lucero S, Wood JL, Scott S et al (2012) Concurrent habitat and life history influences on effective/census population size ratios in stream-dwelling trout. Ecol Evol 2:562–573

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernos TA, Fraser DJ (2016) Spatiotemporal relationship between adult census size and genetic population size across a wide population size gradient. Mol Ecol 25:4472–4487

    Article  CAS  PubMed  Google Scholar 

  • Bertorelle G, Benazzo A, Mona S (2010) ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Mol Ecol 19:2609–2625

    Article  CAS  PubMed  Google Scholar 

  • Blum MG, François O (2010) Non-linear regression models for approximate Bayesian computation. Stat Comput 20:63–73

    Article  Google Scholar 

  • Caballero A (1994) Developments in the prediction of effective population size. Heredity 73:657–679

    Article  PubMed  Google Scholar 

  • Cavalli-Sforza Ll, Edwards AWF (1967) Phylogentic analysis models and estimation procedures. Am J Hum Genet 19:233–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charlier J, Palmé A, Laikre L, Andersson J, Ryman N (2011) Census (NC) and genetically effective (Ne) population size in a lake-resident population of brown trout Salmo trutta. J Fish Biol 79:2074–2082

    Article  CAS  PubMed  Google Scholar 

  • Consuegra S, Verspoor E, Knox D, de Leaniz CG (2005) Asymmetric gene flow and the evolutionary maintenance of genetic diversity in small, peripheral Atlantic salmon populations. Conserv Genet 6:823–842

    Article  CAS  Google Scholar 

  • Cook J, Brochmann C, Talbot S (2013) Genetic perspectives on Arctic biodiversity. In: Meltofte H et al (eds) Arctic biodiversity assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri, pp 459–483

    Google Scholar 

  • COSEWIC (2010) COSEWIC assessment and status report on the Dolly Varden Salvelinus malma malma (Western Arctic populations) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. p x + 65. (www.sararegistry.gc.ca/status/status_e.cfm)

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper & Row, New York

    Google Scholar 

  • Csillery K, Francois O, Blum MGB (2012) Abc: an R package for approximate Bayesian computation (ABC). Method Ecol Evol 3:475–479

    Article  Google Scholar 

  • Csillery K, Blum MG, Gaggiotti OE, François O (2010) Approximate Bayesian computation (ABC) in practice. Trends Ecol Evol 25:410–418

    Article  PubMed  Google Scholar 

  • Depaulis F, Mousset S, Veuille M (2003) Power of neutrality tests to detect bottlenecks and hitchhiking. J Mol Evol 5:S190–S200

    Article  CAS  Google Scholar 

  • DFO (2003) Big fish river Dolly Varden. DFO Science Stock Status Report D5—60 (2002)

  • Do C, Waples RS, Peel P, Macbeth GM, Tillett BJ, Ovenden JR (2014) NEESTIMATOR v2: re-implementation of software for the estimation of contemporary effective population size (N e ) from genetic data. Mol Ecol Res 14(1):209–214

    Article  CAS  Google Scholar 

  • Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation at microsatellite loci and their consequences for population genetic analysis. Mol Ecol 11:1591–1604

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Excoffier L, Foll M (2011) Fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27(9):1332–1334

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (2009) PHYLIP (Phylogeny Inference Package) version 3.6.9. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

  • Fontaine MC, Roland K, Calves I et al (2014) Postglacial climate changes and rise of three ecotypes of harbour porpoises, Phocoena phocoena, in western Palearctic waters. Mol Ecol 23:3306–3321

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Franklin IR (1980) Evolutionary change in small populations. Conservation biology: an evolutionary-ecological perspective. Sinauer Associates, Sunderland, MA, pp 135–149

  • Franklin I, Frankham R (1998) How large must populations be to retain evolutionary potential? Anim Conserv 1:69–70

    Article  Google Scholar 

  • Fraser DJ, Hansen MM, Ostergaard S et al (2007) Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems. Mol Ecol 16:3866–3889

    Article  PubMed  Google Scholar 

  • Fraser DJ, Calvert AM, Bernatchez L, Coon A (2013) Multidisciplinary population monitoring when demographic data are sparse: a case study of remote trout populations. Ecol Evol 3:4954–4969

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallagher CP, Howland KL, Harris LN, Bajno R, Sandstrom S, Loewen T, Reist J (2013) Dolly Varden (Salvelinus malma malma) from the Big Fish River: abundance estimates, effective population size, biological characteristics, and contribution to the coastal mixed-stock fishery. DFO Can Sci Advis Sec Res Doc 2013/059. p v + 46

  • Gallagher CP, Roux M-J, Howland KL, Tallman, RF (2012) Synthesis of biological and harvest information used to assess populations of northern form Dolly Varden (Salvelinus malma malma) in Canada. Part III: Comparison among populations. DFO Can Sci Advis Sec Res. Doc 2011/128. p vi + 81

  • Garza J, Williamson E (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Goldstein DB, Linares AR, Cavilla-Sforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellites. Genetics 139:463–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goudet J (2002) FSTAT: a program to estimate and test gene diversities and fixation indices [online]. Version 2.9.3.2. Available from www2.unil.ch/popgen/softwares/fstat.htm

  • Hansen MM, Ruzzante DE, Nielsen EE, Bekkevold D, Mensberg KLD (2002) Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations. Mol Ecol 11:2523–2535

    Article  PubMed  Google Scholar 

  • Hansen MM, Limborg MT, Ferchaud A-L, Pujolar J-M (2014) The effects of Medieval dams on genetic divergence and demographic history in brown trout populations. BMC Evol Biol 14:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Hare M, Nunney L, Schwartz MK, Ruzzante DE, Burford M, Waples RS, Ruegg K, Palstra FP (2011) Understanding and estimating effective population size for practical application in marine conservation and management. Conserv Biol 25(3):438–439

    Article  PubMed  Google Scholar 

  • Harris LN, Taylor EB, Tallman RF, Reist JD (2012) Gene flow and effective population size in two life-history types of broad whitefish Coregonus nasus from the Canadian Arctic. J Fish Biol 81:288–307

    Article  CAS  PubMed  Google Scholar 

  • Harris LN, Moore J-S, Galpern P, Tallman R, Taylor E (2014) Geographic influences on fine-scale, hierarchical population structure in northern Canadian populations of anadromous Arctic Char (Salvelinus alpinus). Environ Biol Fish 97:1233–1252

    Article  Google Scholar 

  • Harris LN, Bajno R, Gallagher CP et al (2015) Life-history characteristics and landscape attributes as drivers of genetic variation, gene flow, and fine-scale population structure in northern Dolly Varden (Salvelinus malma malma) in Canada. Can J Fish Aquat Sci 72:1477–1493

    Article  Google Scholar 

  • Heath DD, Busch C, Kelly J, Atagi DY (2002) Temporal change in genetic structure and effective population size in steelhead trout (Oncorhynchus mykiss). Mol Ecol 11:197–214

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW, Rashbrook VK, Hedgecock D (2000) Effective population size of winter-run chinook salmon based on microsatellite analysis of returning spawners. Can J Fish Aquat Sci 57:2368–2373

    Article  Google Scholar 

  • Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genet Res 38:209–216

    Article  Google Scholar 

  • Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21:797–807

    Article  Google Scholar 

  • Howland K, Mochnacz N, Gallagher C, Tallman R, Ghamry H, Roux M-J, Sandstrom S, Reist J (2012) Developing strategies for improved assessment and ecosystem-based management of Canadian Northern Dolly Varden. In: Browman HI, Cochrane KL, Evans D, Jamieson GS, Livingston PA, Woodby D, Zhang CI (eds) Global progress in ecosystem-based fisheries management. Alaska Sea Grant, University of Alaska Fairbanks, Fairbanks. doi:10.4027/gpebfm.2012.09

    Google Scholar 

  • Hsieh, C-H, Reiss CS, Hunter JR et al (2006) Fishing elevates variability in the abundance of exploited species. Nature 443:859–862

    Article  CAS  PubMed  Google Scholar 

  • Jamieson IG, Allendorf FWA et al (2013) A school of red herring: reply to Frankham et al. Trends Ecol Evol 28:188–189

    Article  PubMed  Google Scholar 

  • Johnstone DL, O’Connell MF, Palstra FP, Ruzzante DE (2013) Mature male parr contribution to the effective size of an anadromous Atlantic salmon (Salmo salar) population over 30 years. Mol Ecol 22:2394–2407

    Article  PubMed  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Res 10:551–555

    Article  Google Scholar 

  • Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics 177:927–935

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kalinowski ST, Waples RS (2002) Relationship of effective to census size in fluctuating populations. Conserv Biol 16:129–136

    Article  Google Scholar 

  • Kamath PL, Haroldson MA, Luikart G, Paetkau D, Whitman C, Manen FT (2015) Multiple estimates of effective population size for monitoring a long-lived vertebrate: an application to Yellowstone grizzly bears. Mol Ecol 24:5507–5521

    Article  PubMed  Google Scholar 

  • Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kristofferson AH, Wiswar D, Lemieux P, Marshall D, Blouw A, Hemming C, Antoniuk G, Archie W (1991) Joint Canada-USA field survey of the charr (Salvelinus) resources of the Firth River, Yukon Territory and Alaska, 1989. Can Data Rep Fish Aquat Sci 861:21

    Google Scholar 

  • Krueger CC, Wilmot RL, Everett RJ (1999) Stock origins of Dolly Varden collected from Beaufort Sea coastal sites of Arctic Alaska and Canada. Trans Am Fish Soc 12:49–57

    Article  Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    Article  CAS  PubMed  Google Scholar 

  • Lauck T, Clark CW, Mangel M, Munro GR (1998) Implementing the precautionary principle in fisheries management through marine reserves. Ecol App 8:S72–S78

    Article  Google Scholar 

  • Leberg P (2005) Genetic approaches for estimating the effective size of populations. J Wildl Manag 69:1385–1399

    Article  Google Scholar 

  • Lindsay CC, McPhail JD (1986) Zoogeography of fishes of the Yukon and Mackenzie basins. In: Hocutt CH, Wiley EO (eds) The zoogeography of North American freshwater fishes. Wiley, New York, pp 639–674

    Google Scholar 

  • Lohmueller KE, Bustamante CD, Clark AG (2010) The effect of recent admixture on inference of ancient human population history. Genetics 185:611–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373

    Article  CAS  Google Scholar 

  • Lynch M, Lande R (1998) The critical effective size for a genetically secure population. Anim Conserv 1:70–72

    Article  Google Scholar 

  • Mochnacz NJ, Schroeder BS, Sawatzky CD, Reist JD (2010) Assessment of northern Dolly Varden, Salvelinus malma malma (Walbaum, 1792), habitat in Canada. Can Manuscr Rep Fish Aquat Sci 2926:vi + 48

    Google Scholar 

  • Moore J-S, Harris LN, Tallman RF, Taylor EB (2013) The interplay between dispersal and gene flow in anadromous Arctic char (Salvelinus alpinus): implications for potential for local adaptation. Can J Fish Aquat Sci 70:1327–1338

    Article  Google Scholar 

  • Mousset S, Derome N, Veuille M (2004) A test of neutrality and constant population size based on the mismatch distribution. Mol Biol Evol 2:724–731

    Article  CAS  Google Scholar 

  • Musick JA (1999) Criteria to define extinction risk in marine fishes: the American Fisheries Society initiative. Fisheries 24:6–14

    Article  Google Scholar 

  • Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7(5):783–787

    Article  CAS  Google Scholar 

  • Neel MC, McKelvey K, Ryman N et al (2013) Estimation of effective population size in continuously distributed populations: there goes the neighborhood. Heredity 111:189–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nunney L, Elam DR (1994) Estimating the effective population size of conserved populations. Conserv Biol 8:175–184

    Article  Google Scholar 

  • Olafsson K, Pampoulie C, Hjorleifsdottir S, Gudjonsson S, Hreggvidsson GO (2014) Present-day genetic structure of Atlantic Salmon (Salmo salar) in Icelandic rivers and ice-cap retreat models. PLoS ONE 9(2):e86809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oleinik A, Skurikhina L, Bondar E, Brykov V (2013) Phylogeography of northern Dolly Varden Salvelinus malma (Salmoniformes: Salmonidae) from Asia and North America: An analysis based on the mitochondrial DNA genealogy. J Ichthyol 53:820–832

    Article  Google Scholar 

  • Palstra FP, Fraser DJ (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol 2:2357–2365

    Article  PubMed  PubMed Central  Google Scholar 

  • Palstra FP, O’Connell, MF, Ruzzante DE (2007) Population structure and gene flow reversals in Atlantic salmon (Salmo salar) over contemporary and long-term temporal scales: effects of population size and life history. Mol Ecol 16(21):4504–4522

    Article  CAS  PubMed  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    Article  PubMed  Google Scholar 

  • Palstra F, Ruzzante DE (2011) Demographic and genetic factors shaping contemporary metapopulation effective size and its empirical estimation in salmonid fish. Heredity 107:444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palstra FP, O’Connell MF, Ruzzante DE (2009) Age structure, changing demography and effective population size in Atlantic Salmon (Salmo salar). Genetics 182:1233–1249

    Article  PubMed  PubMed Central  Google Scholar 

  • Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946

    Article  PubMed  Google Scholar 

  • Perrier C, Normandeau E, Dionne M, Bernatchez L (2014) Alternative reproductive tactics increase effective population size and decrease inbreeding in wild Atlantic salmon. Evol App 7:1094–1106

    Article  Google Scholar 

  • Poesch MS, Chavarie L, Chu C, Pandit SN, Tonn WM (2016) Climate change impacts on freshwater fishes: a Canadian perspective. Fisheries 41(7):385–391

    Article  Google Scholar 

  • R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Rambaut A (2009) FigTree v1. 3.1: Tree Fig. drawing tool. FigTree website

  • Reist JD, Wrona FJ, Prowse TD et al (2006a) General effects of climate change on Arctic fishes and fish populations. Ambio 35:370–380

    Article  PubMed  Google Scholar 

  • Reist JD, Wrona FJ, Prowse TD et al (2006b) An overview of effects of climate change on selected Arctic freshwater and anadromous fishes. Ambio 35:381–387

    Article  PubMed  Google Scholar 

  • Robert CP, Cornuet J-M, Marin J-M, Pillai NS (2011) Lack of confidence in approximate Bayesian computation model choice. Proc Natl Acad Sci 10:15112–15117

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Sandstrom S, Harwood L, Howland K (2009) Status of anadromous Dolly Varden char (Salvelinus malma) of the Rat River, Northwest Territories, as assessed through mark-recapture and live-sampling at the spawning and overwintering site (1995–2007). Can Tech Rep Fish Aquat Sci 2842:23

    Google Scholar 

  • Saura M, Caballero A, Caballero P, Moran P (2008) Impact of precocious male parr on the effective size of a wild population of Atlantic salmon. Freshw Biol 53(12):2375–2384

    Article  Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33

    Article  PubMed  Google Scholar 

  • Seber GAF (1982) The estimation of animal abundance and related parameters, 2nd edn. London, Edward Arnold

    Google Scholar 

  • Sherwin W, Moritz C (2000) Managing andmonitoring genetic erosion. In: Young AG, Clarke GM (eds) Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge, pp 9–34

    Chapter  Google Scholar 

  • Shrimpton JM, Heath DD (2003) Census vs. effective population size in chinook salmon: large-and small-scale environmental perturbation effects. Mol Ecol 12:2571–2583

    Article  CAS  PubMed  Google Scholar 

  • Smith TB, Kark S, Schneider CJ, Wayne RK, Moritz C (2001) Biodiversity hotspots and beyond: the need for preserving environmental transitions. Trends Ecol Evol 16:431

    Article  Google Scholar 

  • Soulé ME (1980) Thresholds for survival: maintaining fitness and evolutionary potential. Conserv Biol 111:124

    Google Scholar 

  • Stockwell CA, Heilveil JS, Purcell K (2013) Estimating divergence time for two evolutionarily significant units of a protected fish species. Conserv Genet 14:215–222

    Article  Google Scholar 

  • Tallman R, Zhu X, Janjua Y et al (2013) Data limited assessment of selected North American anadromous charr stocks. J Ichthyol 53:867–874

    Article  Google Scholar 

  • Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19:489–496

    Article  PubMed  Google Scholar 

  • Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Res 8:299–301

    Article  Google Scholar 

  • Taylor EB, May-McNally SL (2015) Genetic analysis of Dolly Varden (Salvelinus malma) across its North American range: evidence for a contact zone in southcentral Alaska. Can J Fish Aquat Sci 72:1048–1057

    Article  Google Scholar 

  • Templeton AR (1994) Biodiversity at the molecular-genetic level—experiences from disparate macroorganisms. Philos Trans R Soc B 345:59–64

    Article  CAS  Google Scholar 

  • Thrall PH, Richards CM, McCauley DE, Antonovics J (1998) Metapopulation collapse: the consequences of limited gene flow in spatially structured populations. In: Bascompte J, Sole RV (eds) Modeling Spatiotemporal Dynamics in Ecology. Academic Press, San Diego, pp 83–104

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538

    Article  CAS  Google Scholar 

  • Wang J (2001) A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genet Res 78:243–257

    Article  CAS  PubMed  Google Scholar 

  • Wang J (2005) Estimation of effective population sizes from data on genetic markers. Philos Trans R Soc B 360:1395–1409

    Article  CAS  Google Scholar 

  • Wang J, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163:429–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121:379–391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waples RS (2004) Salmonid insights into effective population size. In: Hendry A, Stearns S (eds) Evolution Illuminated: salmon and their relatives. Oxford University Press, New York, pp 295–314

    Google Scholar 

  • Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Mol Ecol 14:3335–3352

    Article  CAS  PubMed  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Waples RS (2010) Spatial-temporal stratifications in natural populations and how they affect understanding and estimation of effective population size. Mol Ecol Res 10:785–796

    Article  Google Scholar 

  • Waples RS (2016) Making sense of genetic estimates of effective population size. Mol Ecol 25:4689–4691

    Article  CAS  PubMed  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Res 8:753–756

    Article  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Ecol Appl 3:244–262

    Google Scholar 

  • Waples RS, Yokota M (2007) Temporal estimates of effective population size in species with overlapping generations. Genetics 175:219–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Waples RS, Luikart G, Faulkner JR, Tallmon DA (2013) Simple life history traits explain key effective population size ratios across diverse taxa. Proc R Soc Lond Ser B 280(1768):1339

    Article  Google Scholar 

  • Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197:769–780

    Article  PubMed  PubMed Central  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49

    Article  PubMed  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Ann Rev Ecol Evol Syst 37:433–458

    Article  Google Scholar 

  • Wollebæk J, Heggenes J, Røed KH (2011) Population connectivity: dam migration mitigations and contemporary site fidelity in Arctic char. BMC Evol Biol 11:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright S (1931) Evolution in mendelian populations. Genetics 16:97–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87(2263):430–431

    Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations: vol. 2. The theory of gene frequencies. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Fisheries Joint Management Committee, the Gwich’in Renewable Resource Board, Polar Continental Shelf Project, Fisheries and Oceans Canada (DFO) (including both regular and Genomics Research Development Initiative sources), Parks Canada and International Polar Year Chars and Climate Change project. We extend thanks to R. Fudge, B. McDonald, S. Sandstrom, multiple Gwich’in and Inuvialuit field assistants from Aklavik and Fort McPherson, the Aklavik Hunters and Trappers Committee and Ehdiitat Renewable Resource Council for assistance with sample collection and planning assistance and logistical coordination. We also thank the regional fishery managers (specifically V. Gillman, L. Dow, E. Lea and R. Allen) over the years for continuing to provide support for the project. Some computationally intensive analyses were run on the Linux cluster of the “Museum National d’Histoire Naturelle” (administrated by Julio Pedraza Acosta) and we thank L. Excoffier for advice regarding fastsimcoal simulations. The manuscript was greatly improved by the comments and suggestions of Robin Waples and two anonymous reviewers. Raw microsatellite data used for all analyses and the R code used for the ABC analyses are available from the Dryad Digital Repository: doi:10.5061/dryad.6nd54.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Les N. Harris.

Additional information

Les N. Harris and Friso P. Palstra have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, L.N., Palstra, F.P., Bajno, R. et al. Assessing conservation risks to populations of an anadromous Arctic salmonid, the northern Dolly Varden (Salvelinus malma malma), via estimates of effective and census population sizes and approximate Bayesian computation. Conserv Genet 18, 393–410 (2017). https://doi.org/10.1007/s10592-016-0915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0915-5

Keywords

Navigation